BAB II

TINJAUAN PUSTAKA

2.1 Umum

Tiang pancang adalah bagian bawah struktur bangunan yang memiliki kegunaan untuk meneruskan beban struktur atas ke lapisan tanah keras di bawahnya. Tiang pancang dengan dipasang dengan cara dipukul, dibor atau didongkrak ke dalam tanah dan dihubungkan dengan *Pile cap*.

Pondasi tiang digunakan untuk mendukung bangunan bila lapisan tanah kuat berada sangat dalam. Fondasi tiang juga digunakan untuk mendukung bangunan yang menahan gaya angkat ke atas terutama pada bangunan-bangunan tingkat tinggi yang dipengaruhi oleh gaya-gaya penggulingan akibat beban angin. (Hardiyatmo, 2010).

2.2 Pondasi Tiang Pancang

Penelitian yang dilakukan oleh Priarianto dan Widodo (2002) dengan judul Analisis Pengaruh Diameter, Panjang, dan Formasi Tiang Terhadap Kapasitas Dukung dan Penurunan Pondasi Tiang Pancang. Tujuan dari analisis ini untuk mengetahui pengaruh diameter, panjang, dan formasi tiang terhadap kapasitas dukung tiang dan penurunan pondasi tiang pancang. Hasil perhitungan yang didapat bahwa semakin besar diameter dan panjang tiang, kapasitas dukung akan semakin besar. Demikian dengan penurunan ujung dan penurunan akibar deformasi aksial tiang akan semakin besar. Formasi tiang berpengaruh terhadap kapasitas dukung kelompok tiang yang disebabkan efisiensi kelompok tiang. Semakin besar lebar fondasi maka semakin besar penurunan kelompok tiang yang terjadi.

Hudoyono (2017) dalalm penelitiannya yang berjudul Analisis Kapasitas Dukung dan Penurunan Tiang Bor pada Proyek Apartemen Vivo bertujuan untuk mengetahui berapa besar kapasitas dukung tiang pondasi yang terjadi menggunakan tiang bor dan mengetahui besar penurunan yang terjadi. Hasil yang diperoleh dari

penelitian ini adalah besar kapasitas dukung tiang bor pada diameter 0,6 m sebesar 204,8 Ton > 173,77 Ton sehingga dinilai aman, sementara besar penurunan kelompok tiang adalah 0,026 m. Besar kapasitas dukung tiang bor pada diameter 1 m sebesar 652,3 Ton > 241,32 Ton sehingga dinilai aman, sementara besar penurunan kelompok tiang adalah 0,172 m.

Dirgananta (2018) dalam penelitiannya yang berjudul Perencanaan Ulang Pondasi Tiang Pancang dengan Variasi Diameter menggunakan Metode Mayerhoff, Aoki & De Alencar dan Luciano Decourt ini bertujuan untuk mengetahui nilai kapasitas dukung pondasi tiang pancang, mengetahui perbandingan kapasitas dukung pondasi eksisting, dan mengetahui penurunan pada pondasi tiang pancang. Analisis struktur atas dilakukan menggunakan program *ETABS* dari analisis yang dilakukan didapat beban struktur bangunan (P) = -730,553 Ton. Berdasarkan analisis yang dilakukan didapatkan analisis alternatif yang digunakan adalah alternatif pertama dengan diameter 0,5 m metode Meyerhoff menggunakan data SPT dengan jumlah 3 tiang dalam 1 kelompok tiang. Hal ini berdasarkan hasil kapasitas dukung tiang kelompok (Qg) lebih besar dari beban aksial (P) dan beban aksial total yang diterima (Pt) sebesar 903,296 > 730,533 dan 903,296 > 773,805.

2.3 Penelitian Sejenis yang Dilakukan

Penelitian-penelitian tentang tiang pancang yang pernah dilakukan sebelumya dapat dilihat seperti pada Tabel 2.1 berikut.

Tabel 2.1 Penelitian-penelitian Terdahulu dengan Sekarang

	Penelitian Sekarang				
Peneliti	Priarianto dan Widodo	Hudoyono	Dirgananta	Dwitasari	Oza
	(2002)	(2017)	(2018)	(2018)	(2019)
Judul Penelitian	Analisis Pengaruh Diameter,	Analisis Kapasitas	Perencanaan Ulang	Kajian Kapasitas	Analisis Kapasitas
	Panjang, dan Formasi Tiang	Dukung dan Penurunan	Pondasi Tiang Pancang	Dukung Fondasi Tiang	Dukung dan Penurunan
	Terhadap Kapasitas Dukung	Tiang Bor pada Proyek	dengan Variasi	Pancang pada Tangki	Fondasi Mini Pile dengan
	dan Penurunan Pondasi Tiang	Apartemen Vivo	Diameter	Timbun dengan	Berbagai Dimensi pada
	Pancang		menggunakan Metode	Metode Elemen Hingga	Proyek Penataan
		8	Mayerhoff, Aoki & De	dan Meyerhof	Prasarana Pendukung
			Alencar dan Luciano		Situ Pondok Jagung
			Decourt		Tangerang Selatan
		>			
	Mengetahui pengaruh	Mengetahui berapa	Mengetahui nilai	Mengetahui kapasitas	Mengetahui kapasitas
	diameter, panjang, dan	besar kapasitas dukung	kapasitas dukung	dukung fondasi	dukung dan penurunan
	formasi tiang terhadap	tiang pondasi	pondasi tiang pancang,	eksisting, mengetahui	berbagai dimensi fondasi
	kapasitas dukung tiang dan	menggunakan tiang bor	mengetahui	kapasitas dukung	mini pile pada proyek
Tujuan	penurunan pondasi tiang	dan mengetahui besar	perbandingan kapasitas	desain fondasi tiang	Penataan Prasarana
Penelitian	pancang	penurunan	dukung pondasi	pancang dengan	Pendukung Situ Pondok
	1	الالالعات	eksisting, dan	beberapa variasi dan	Jagung, Tangerang
			mengetahui penurunan	perbandingan kapasitas	Selatan.
			pada pondasi tiang	dukung tiang eksisting	
			pancang	dengan alternatif	

Lanjutan Tabel 2.1 Penelitian-Penelitian Terdahulu dengan Sekarang

	Penelitian Sekarang				
Peneliti	Eko dan Wahyu	Bramudo	Fahri	Mahasti	Oza
	(2002)	(2017)	(2018)	(2018)	(2019)
Hasil Penelitian	Hasil perhitungan yang didapat bahwa semakin besar diameter dan panjang tiang, kapasitas dukung akan semakin besar. Demikian dengan penurunan ujung dan penurunan akibar deformasi aksial tiang akan semakin besar	m sebesar 204,8 Ton > 173,77 Ton sehingga dinilai aman, sementara besar penurunan kelompok tiang adalah	pertama dengan diameter 0,5 m metode Meyerhoff menggunakan data SPT dengan jumlah 3 tiang dalam 1 kelompok tiang. Hal ini berdasarkakn hasil kapasitas dukung tiang kelompok (Qg) lebih besar dari beban aksial (P) dan beban aksial total yang diterima (Pt)	kelompok (Qg) sebesar 48.599,57 kN dan 47.009,33 kN.	Hasil analisis kapasitas dukung tiang dengan dimensi 0,2 m, 0,25 m dan 0,3 m didapatkan kapasitas dukung ultimit tiang (Qijin) sebesar 40,395 Ton, 58,770 Ton dan 80,456 Ton. Hasil penurunan dari analisis penurunan fondasi tiang tunggal sebesar 0,003963 m, 0,004327 m, dan 0,00477 m.