### **CHAPTER IV**

#### DATA COLLECTING AND PROCESSING

#### 4.1. **Collecting Data**

In this chapter, researcher will identify material requirement planing in Couvee Coffee. The historical data are used to collect data about sales that consist of sales demand. Historical data is needed for supporting data processing. Historical data ofdemand on coffee beans that will be used are accumulated in 10 month from August 2018 until May 2019. The data structure will be shown in the Table 4.1.

# 4.1.1. Forecasting

The researcher collected data in Couvee from August 2018 until May 2019, later the data are processed to forecast the demand in future. By forecasting the data, it will improve the amounts of coffee beans availability in Couvee. The author gets the data of coffee demand per cup that are shown in Table 4.1.

|                 | Table 4.1 Demand of coffee per cup |                   |                 |                  |                  |                 |                  |               |                  |                |  |  |  |
|-----------------|------------------------------------|-------------------|-----------------|------------------|------------------|-----------------|------------------|---------------|------------------|----------------|--|--|--|
| Coffee Demand   |                                    |                   |                 |                  |                  |                 |                  |               |                  |                |  |  |  |
|                 | Augu<br>st '18                     | Septemb<br>er '18 | Octob<br>er '18 | Novemb<br>er '18 | Decemb<br>er '19 | Januar<br>y '19 | Februar<br>y '19 | Marc<br>h '19 | Apri<br>1<br>'19 | Ma<br>y<br>'19 |  |  |  |
| 1st<br>Wee<br>k | 521                                | 259               | 456             | 719              | 1265             | 791             | 921              | 981           | 977              | 157<br>7       |  |  |  |
| 2nd<br>Wee      | 530                                | 268               | 510             | 748              | 831              | 825             | 917              | 973           | 125<br>7         | 135<br>1       |  |  |  |

T-11. 4 1 D .... ad of ooff

| k   |     |     |     |     |     |     |     |      |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|
| 3rd |     |     |     |     |     |     |     |      | 135 | 147 |
| Wee | 529 | 242 | 540 | 762 | 857 | 852 | 949 | 947  | 135 | 0   |
| k   |     |     |     |     |     |     |     |      | 1   | 9   |
| 4th |     |     |     |     |     |     |     |      | 157 | 152 |
| Wee | 476 | 227 | 558 | 788 | 889 | 883 | 957 | 1027 | 157 | 155 |
| 1_  |     |     |     |     |     |     |     |      | 9   | 3   |
| K   |     |     |     |     |     |     |     |      |     |     |

In Table 4.2, it is shown the 40 data of coffee demand per pack which is explained in detail from each week for 10 months.

|                 |                |                   |                 | Coffee           | Demand           |                 |                  |               |                  |                |
|-----------------|----------------|-------------------|-----------------|------------------|------------------|-----------------|------------------|---------------|------------------|----------------|
|                 | Augu<br>st '18 | Septemb<br>er '18 | Octob<br>er '18 | Novemb<br>er '18 | Decemb<br>er '19 | Januar<br>y '19 | Februar<br>y '19 | Marc<br>h '19 | Apri<br>1<br>'19 | Ма<br>У<br>'19 |
| 1st<br>Wee<br>k | 11             | 6                 | 10              | 15               | 16               | 16              | 19               | 20            | 20               | 32             |
| 2nd<br>Wee<br>k | 11             | 6                 | 11              | 15               | 16               | 17              | 19               | 20            | 25               | 27             |
| 3rd<br>Wee<br>k | 11             | 5                 | 11              | 16               | 16               | 18              | 19               | 19            | 27               | 30             |
| 4th<br>Wee<br>k | 10             | 5                 | 12              | 16               | 16               | 18              | 20               | 21            | 32               | 31             |

| Table 4.2 Demand of coffee per pack |
|-------------------------------------|
|-------------------------------------|

4.1.2 Data of Coffee Beans Demand

Data of coffee beans demand in Couvee is significantly raised month by month as shown by Table 4.1 and 4.2. The author determines to get the data because there are some problems with the coffee beans availability. The data above could become a source for the forecasting calculation.

Forecasting method that is chosen by the author is Simple Moving Average (SMA) and Linear Regression. The author wants to identify the forecasting of coffee beans demand for the next few months. After that from the Simple Moving Average (SMA) and Linear Regression calculation, it can be found the error from each calculation. Then the author could compare them and identify which has the lowest error that will be selected for the best method in this research.

## 4.2 Data Processing

The data processing already conducted by performing several calculations. Simple Moving Average (SMA) calculation will be shown in Table 4.3.

|       | MA 2   |          |        |        |                 |          |  |  |  |  |  |  |
|-------|--------|----------|--------|--------|-----------------|----------|--|--|--|--|--|--|
| Month | Demand | Forecast | FE     | CFE    | FE <sup>2</sup> |          |  |  |  |  |  |  |
| 1     | 41120  |          |        |        |                 |          |  |  |  |  |  |  |
| 2     | 19920  |          |        |        |                 |          |  |  |  |  |  |  |
| 3     | 41280  | 30520    | 10760  | 10760  | 115777600       |          |  |  |  |  |  |  |
| 4     | 60340  | 30600    | 29740  | 40500  | 884467600       |          |  |  |  |  |  |  |
| 5     | 76840  | 50810    | 26030  | 66530  | 677560900       | SEE      |  |  |  |  |  |  |
| 6     | 67020  | 68590    | -1570  | 64960  | 2464900         |          |  |  |  |  |  |  |
| 7     | 74880  | 71930    | 2950   | 67910  | 8702500         |          |  |  |  |  |  |  |
| 8     | 78560  | 70950    | 7610   | 75520  | 57912100        |          |  |  |  |  |  |  |
| 9     | 103280 | 76720    | 26560  | 102080 | 705433600       |          |  |  |  |  |  |  |
| 10    | 118800 | 90920    | 27880  | 129960 | 777294400       |          |  |  |  |  |  |  |
| Total |        |          | 129960 | 558220 | 3229613600      | 23200.62 |  |  |  |  |  |  |

Table 4.3 Simple Moving Average Calculation

As shown in table 4.3, the author can get the result of Forecast Error (FE) amount are 129960, total amount of Cumulative Forecast Error (CFE) is 558220, total amount of Square Forecast Error (FE<sup>2</sup>) is 3229613600 and total Standard Error Estimated (SEE) is 23200.62.



Figure 4.1 Graphic of Simple Moving Average Calculation

In Figure 4.1, it is shown the 10 data already calculated by Simple Moving Average (SMA) method and transforms the data into graphic. According to the Figure 4.1, the forecast and actual demand has equal result in period 4 and 6.

The processing data already calculated by the author. Linear Regression calculation will be shown in table 4.4.

| Mont | th Demand | Forecast | Y(t)*t | t^2 | FE           | CFE     | $[y(t) - y'(t)]^2$ |     |
|------|-----------|----------|--------|-----|--------------|---------|--------------------|-----|
| 1    | 41120     | 118298.6 | 41120  | 1   | -<br>77178.6 | 695.12  | 5956539385.10      | SEE |
| 2    | 19920     | 127406.7 | 39840  | 4   | -<br>107487  | -106792 | 11553399275.83     |     |

Table 4.4 Linear Regression Calculation

|       | 3  | 41280  | 136514.9 | 123840  | 9   | 95234.9      | -202026 | 9069678559.22  |          |
|-------|----|--------|----------|---------|-----|--------------|---------|----------------|----------|
|       | 4  | 60340  | 145623   | 241360  | 16  | -85283       | -287309 | 7273186677.68  |          |
|       | 5  | 76840  | 154731.1 | 384200  | 25  | -<br>77891.1 | -365201 | 6067023459.21  |          |
|       | 6  | 67020  | 163839.2 | 402120  | 36  | -<br>96819.2 | -462020 | 9373961361.41  |          |
|       | 7  | 74880  | 172947.3 | 524160  | 49  | -<br>98067.3 | -560087 | 9617203174.68  |          |
|       | 8  | 78560  | 182055.5 | 628480  | 64  | -<br>103495  | -663583 | 10711310240.61 |          |
|       | 9  | 103280 | 191163.6 | 929520  | 81  | 87883.6      | -751466 | 7723523633.62  |          |
|       | 10 | 118800 | 200271.7 | 1188000 | 100 | 81471.7      | -832938 | 6637637900.89  |          |
| Total | 55 | 682040 | 1592852  | 4502640 | 385 | 910812       | 4230727 | 83983463668.24 | 102459.4 |

As shown in table 4.4, the period that author used is 10 periods and has total 55 periods. The result of Forecasting times period (Y(t)\*t) is 4502640, the total amount of square of period is 385, then for Forecast Error (FE) amount are -910812, total amount of Cumulative Forecast Error (CFE) is -4230727, total amount Sum of Square Error  $([y(t) - y'(t)]^2)$  is 83983463668.24 and total Standard Error Estimated (SEE) is 102459.4.



Figure 4.2 Graphic of Linear Regression Calculation

The author calculates it by using Linear Regression for 10 periods into graphic that shown in Figure 4.2. According to the Figure 4.2, the forecast and actual demand has equal result in period 3, 5, and 9.

Based on the analysis above, the author concludes that Simple Moving Average is the best method for this research, because the Simple Moving Average (SMA) method has the lowest amount of error compared to the Linear Regression. The error shows in Standard Error Estimated (SEE) column. Simple Moving Average (SMA) calculation has 23200.62, meanwhile Linear Regression has 102459.4.

#### 1.2.1. Inventory Record

Inventory record is inventory data in the form of quantity and kind of inventory on hand inventory. Table 4.5 below is the list of inventory record:

| Month | Item        | Total |  |  |  |  |
|-------|-------------|-------|--|--|--|--|
| 1     | Coffee Bean | 43000 |  |  |  |  |
| 2     | Coffee Bean | 22000 |  |  |  |  |
| 3     | Coffee Bean | 44000 |  |  |  |  |

Table 4.5 Inventory Record

| Month | Item        | Total  |  |  |  |
|-------|-------------|--------|--|--|--|
| 4     | Coffee Bean | 62000  |  |  |  |
| 5     | Coffee Bean | 64000  |  |  |  |
| 6     | Coffee Bean | 69000  |  |  |  |
| 7     | Coffee Bean | 77000  |  |  |  |
| 8     | Coffee Bean | 80000  |  |  |  |
| 9     | Coffee Bean | 104000 |  |  |  |
| 10    | Coffee Bean | 120000 |  |  |  |

From table 4.5 above, it can be seen that there are 10 items existed in the inventory record. The item of raw material above will be used as data for the next calculation of material requirement planning.

# 1.2.2 Lot for Lot

This section will calculate for material requirement planning of bean coffee. Calculation of material requirement planning in Couvee coffee will be shown in the figure below. This figure is describing about the gross requirement, on hand inventory, and net requirement of bean coffee. There is raw material that will be calculated to get gross material value.

| Item                   | Coffee Beans | Level     | 1 |        |        |        |        |        |        |        |        |        |        |        |
|------------------------|--------------|-----------|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Lot Size               | Lot For Lot  | Lead Time | 1 |        |        |        |        |        |        |        |        |        |        |        |
| Safety Stock           |              |           |   | 0      | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     |
| Gross Requirement      |              |           |   |        | 114920 | 112980 | 113950 | 113465 | 113708 | 113586 | 113647 | 113617 | 113632 | 113624 |
| Schedule Receipts      |              |           |   |        |        |        |        |        |        |        |        |        |        |        |
| On Hand Inventory      |              |           |   | 118800 | 3880   | 3880   | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| Net Requirement        |              |           |   |        |        | 109100 | 113950 | 113465 | 113708 | 113586 | 113647 | 113617 | 113632 | 113624 |
| Planned Order Receipts |              |           |   |        |        | 109100 | 113950 | 113465 | 113708 | 113586 | 113647 | 113617 | 113632 | 113624 |
| Planned Order Release  |              |           |   |        | 109100 | 113950 | 113465 | 113708 | 113586 | 113647 | 113617 | 113632 | 113624 |        |

Table 4.6 Material Requirement Planning of Lot For Lot of Coffee Beans

Table 4.6 above shows the results of the calculation of MRP, where the optimal order lot sizing is by releasing orders rate around 113148. So that supplier should fulfill the demand of coffee beans of Couvee Coffee around 113148 gr or in pack around 114 pack per month.

#### 4.2.3. Opportunity Cost Lost

Lost opportunity in cost because there are no stocks of coffee beans then cannot fulfill the demand. Strategy that applied in Couvee Coffee when they doesn't has stock is buy coffee beans accidental not to supplier but another roaster and will impact of cost monthly.

The opportunity loss of cost happened in Couvee Coffee, even only 1 day, could impact to the sales of coffee basis. The sales of coffee basis are around 40 - 60 cup per day. So, it could be estimated the cost that Couvee Coffee lost in 1 day, if the rate of sales coffee basis are 50 cup and the rate of price is around Rp. 20.000,- then the total about Rp. 1.000.000,- per day.

## 4.2.4. Key Performance Index

Key performance index of Couvee Coffee according to ratio productivity will be shown in figure 4.4 below.



Figure 4.3 Compare Key Performance Index of Coffee Beans

From figure 4.3, it is shown the differences of performance of coffee beans in Couvee Coffee. The ratio of productivity coffee beans as the performance index in Couvee Coffee, figure 4.3 indicates the performance that always increasing each month after new SOP is implemented in Couvee Coffee.