BAB IV

DATA DAN ANALISIS

Bab ini berisi konsep dasar, data proyek, pendekatan untuk risiko proyek, kriteria manajemen waktu konstruksi, kriteria manajemen insentif biaya konstruksi, analisis terhadap waktu, dan analisis terhadap biaya

4.1 Konsep Dasar

Untuk membantu mengilustrasikan konsep dasar dalam menggunakan variabel waktu dan biaya sebagai variabel manajemen risiko yang utama, sebuah proyek contoh akan dijelaskan terlebih dahulu. Misalnya sebuah proyek pelabuhan membutuhkan pembangunan sejumlah *onshore*, *offshore elements*, termasuk *breakwater*, *the dredging of basin*, konstruksi *jetty* untuk mengakomodasi beban muatan. Pemilik menetapkan waktu 30 bulan untuk melaksanakan pembangunan. Perusahaan konsultan telah dilibatkan sebelum pekerjaan dijalankan. Para konsultan telah mempersiapkan konsep desain untuk fasilitas terhadap informasi geoteknis dasar laut yang terbatas.

Konsultan telah menaksir biaya yang digunakan adalah sebesar 550 juta (biaya dalam \$ Australia). Pemilik mendapatkan persetujuan dari dewan direksi untuk melanjutkan pekerjaan tersebut dengan batas anggaran 550 juta, dan batas waktu selama 30 bulan. Sesuai dengan keadaan tersebut para kontrakter telah

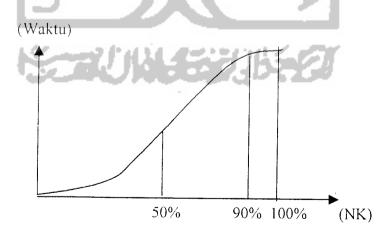
diundang untuk mengajukan penawaran atas pekerjaan tersebut sesuai dengan desain yang sudah ditentukan pemilik.

Pemilik menerima 5 tawaran, namun cukup mengejutkan ketika mengetahui bahwa tak satupun tawaran yang mendekati biaya tersebut. *Mean value* tawaran yang diajukan oleh 5 kontraktor adalah 667 juta dan *deviasi standar* 28 juta.

Pemilik menyerahkan persoalan kepada konsultan independen, dengan meminta laporan atas masalah, serta rekomendasi-rekomendasi yang tepat untuk memperbaiki kesenjangan antara tawaran-tawaran dengan biaya yang disediakan oleh pemilik. Konsultan independen mengetahui bahwa para kontraktor telah mempertimbangkan banyak ketidakpastian dalam hal kondisi alam (gempa, gelombang, dll), keamanan, dan kemampuan kontraktor (sumber daya, peralatan, sistem manajemen, pengalaman menangani proyek sejenis, dan lain-lain). Akhirnya konsultan independen menyarankan pemilik menggunakan strategi kontrak alternatif untuk menangani waktu dan biaya dengan cara yang fleksibel. Strategi kontrak alternatif yang digunakan adalah kontrak *lump-sum* dengan insentif.

4.2 Data Provek

Data proyek pada kasus ini berupa data sekunder yang disadur dari (Jaafari, 1996), sebagaimana diperlihatkan pada Tabel 4.1. Pada kasus ini, dicapai kesepakatan antara pemilik dan kontraktor dalam menentukan parameter untuk skema waktu yang berdasarkan nilai karakteristik (NK) yang terjadi pada 50% dan 90%, dan pada nilai 25%, 50%, dan 90% untuk skema biaya.


Tabel 4.1 Data proyek

Data	Waktu (bulan)	Biaya (\$ Australia x juta)	
Mean	30	550	
Deviasi standar	3.5	35	

4.3 Pendekatan Untuk Kriteria Risiko Proyek

Secara lebih khusus pemilik merekomendasikan pendekatan yang digunakan untuk kriteria risiko proyek yang akan dijelaskan sebagai berikut.

a. Direkomendasikan agar pemilik menunjuk konsultan independen untuk menurunkan kurva distribusi probabilitas untuk waktu dan biaya proyek, termasuk identifikasi dari 50% dan 90% nilai-nilai karakteristik (NK) untuk waktu proyek, dan 25%, 50%, dan 90% NK untuk biaya aktual. NK adalah nilai yang didapat dari nilai distribusi probabilitas kumulatif yang merupakan hasil dari simulasi *Monte Carlo*. Untuk lebih jelasnya, dengan mengambil contoh NK untuk waktu dapat dilihat pada Gambar 4.1.

Gambar 4.1 Cara menentukan nilai karakteristik (NK) untuk waktu

- b. Tingkat denda keterlambatan direkomendasikan untuk dihubungkan dengan tingkat bonus penyelesaian lebih cepat. Tingkat bonus dan denda yang akan ditetapkan terlepas dari biaya konstruksi, dan semata-mata berhubungan dengan kegunaan proyek bagi pemilik, yaitu rugi pendapatan sewa pada proyek ditambah biaya tambahan.
- c. Sistem insentif untuk waktu dan biaya konstruksi sebaiknya dijalankan berdasarkan pada kontraktor yang memiliki pengajuan yang pantas pada penawarannya tanpa ancaman denda dari pemilik
- d. Kurva distribusi probabilitas untuk waktu konstruksi akan digunakan oleh konsultan independen untuk menurunkan kurva distribusi probabilitas yang terkait biaya pembangunan, yang memperhitungkan bukan hanya pengaruh waktu, namun juga biaya yang berhubungan dengan sumber daya, material atau bahan, harga, cuaca, dsb. Kategori-kategori biaya tersebut akan diperlakukan sebagai variabel tak pasti pada biaya keseluruhan.
- e. 50% NK dan 90% NK dari waktu, dan 25% NK, 50% NK, dan 90% NK dari biaya aktual akan diberikan dari kurva distribusi probabilitas. Pemilik menyediakan biaya maksimal sebesar 90% NK, dan kontraktor menjamin bahwa biaya tidak lebih dari 90% NK. Besarnya biaya untuk kontrak *lump-sum* terjadi pada saat 50% NK.

Pada laporan Tugas Akhir ini, proses simulasi *Monte Carlo* menggunakan program *Microsoft Excel*, dan pembangkitan bilangan random sebanyak 100 bilangan. Pada proses simulasi dicapai kesepakatan antara kontraktor dengan

pemilik untuk menurunkan kurva distribusi terhadap waktu dan biaya, dengan memperbesar nilai *deviasi standar* untuk waktu menjadi 7 bulan, dan biaya menjadi 70 juta. *Flowehart* simulasi *Monte Carlo* terhadap waktu dan biaya dapat dilihat pada Lampiran 3 dan 4.

4.4 Kriteria Manajemen Insentif Waktu Konstruksi

Berdasarkan pada kesepakatan bersania antara penilik dan kontraktor, besarnya bonus/denda yang terkait waktu dalam kasus ini ditetapkan sebesar 10 juta per bulan bersih. Seperti yang telah dikemukakan, angka ini ditetapkan dengan mempertimbangkan biaya ketidakpastian dan juga pendapatan bersih potensial pada waktu akan datang karena penundaan dan faktor-faktor tain yang relevan. Kriteria untuk manajemen waktu aktual (actual duration = AD) konstruksi hasil kesepakatan antara kontraktor pemilik dapat dilihat pada Tabel 4.2.

Tabel 4.2 Kriteria manajemen waktu konstruksi

Kondisi waktu konstruksi	Kriteria
AD < 50% NK	Dapat bonus terbagi rata
$50\% \text{ NK} \ge \text{AD} \le 90\% \text{ NK}$	Tidak ada bonus/denda
AD > 90% NK	Dapat denda

4.5 Kriteria Manajemen Insentif Biaya Konstruksi

Konsep ini mengenali risiko-risiko dan ketidakpastian yang dihadapi oleh kontraktor ketika sedang mencoba untuk menetapkan harga penawaran. Konsep ini memberikan penilaian terhadap *performance* berdasarkan kriteria yang dapat dilihat pada Tabel 4.3.

Tabel 4.3 Kriteria penilaian performance berdasarkan actual cost (AC)

Kondisi biaya	Kriteria
AC ≤ 25% NK	Sangat bagus
25% NK < AC ≤ 50% NK	Bagus
50% NK < AC ≤ 90% NK	Buruk
AC > 90% NK	Sangat buruk

Skema insentif untuk manajemen biaya konstruksi hasil kesepakatan antara kontraktor dengan pemilik dapat dilihat pada Tabel 4.4.

Tabel 4.4 Kriteria manajemen biaya konstruksi

Kondisi	Kriteria
AC ≤ 25% NK	Bonus penuh = 0.1 (90% NK – 50% NK)
25% NK< AC < 50% NK	Bonus={(AC-50% NK)/(25% NK-50% NK)}{(0.1(90%
155	NK-50% NK)}
AC = 50% NK	Tidak ada bonus/denda
50 % NK< AC< 90% NK	Denda={(AC-50% NK)/(90% NK-50% NK)} {(0.1(90%
IZ	NK-50% NK)}
AC = 90% NK	Denda penuh = $\{0.1(90\% \text{ NK-50\% NK})\}$
AC > 90% NK	Membayar kelebihan biaya di atas 90% NK ditambah
15-2	denda penuh={0.1(90 % NK-50% NK)+ AC-90% NK}

4.6 Analisis Terhadap Waktu

Dengan diketahui *mean* dan *deviasi standar* maka akan dihasilkan nilai probabilitas dari distribusi waktu dengan mengasumsikannya mengikuti distribusi probabilitas normal, seperti yang terlihat pada Tabel 4.5. Sedangkan untuk

histogram dan grafik distribusi probabilitas kumulatif sebelum simulasi dapat dilihat pada Gambar 4.2 dan 4.3.

Tabel 4.5 Distribusi probabilitas normal untuk waktu

Waktu	Distribusi	Distribusi	Distribusi	Distribusi
(bulan)	f(x)	kumulatif	probabilitas	probabilitas
			:	kumulatif
(1)	(2)	(3)	$(4)=(2)/\sum(2)$	(5)
14	1.673()	1.6730	0.0169	0.0169
18	5.2461	6.9191	0.0529	0.0698
22	11.8676	18.7867	0.1197	0.1895
26	19.3677	38.1544	0.1954	0.3849
30	22.8025	60.9569	0.2301	0.6150
34	19.3677	80.3246	0.1954	0.8104
38	11.8676	92.1922	0.1197	0.9301
42	5,2461	97.4383	0.0529	0.9830
46	1.6730	99.1113	0.0169	10 1
	Σ=99.1113			<u> </u>

Dari data di atas kemudian dilakukan simulasi *Monte Carlo* untuk waktu. Hasil simulasi *Monte Carlo* tersebut dapat dilihat pada Tabel 4.6. Hasil tersebut didapat dari nilai simulasi yang *mean*-nya paling mendekati dan lebih besar dari 30 bulan. Beberapa contoh simulasi untuk waktu dapat dilihat pada Lampiran 5 dan 6. Dan untuk histogram dan grafik distribusi probabilitas kumulatif sesudah simulasi dapat dilihat pada Gambar 4.4 dan 4.5. Dari Gambar 4.5 didapat nilai untuk 50% NK = 31.6 bulan, dan 90% NK = 40.5 bulan.

Tabel 4.6 Hasil simulasi Monte Carlo untuk waktu (bulan)

No	Bilangan	Variabel
	random	waktu
1	90	38
2	2	18
3	7	22
4	38	30
5	14	22
6	88	38
7	32	26
8	0	14
9	40	30
10	37	26
11	18	22
12	61	30
13	89	38
14	30	26
15	38	30
16	92	38
17	24	26
18	45	30
19	93	42
20	82	38
21	91	38
22	39	30
23	94	42
24	97	42
25	84	38
26	12	22
27	44	30

No	Bilangan	Variabel
	random	waktu
28	83	38
29	98	46
30	18	22
31	97	42
32	50	30
33	20	26
34	59	30
35	3	18
36	85	38
37	21	26
38	95	42
39	86	38
40	81	34
41	19	26
42	87	38
43	57	30
44	99	46
45	60	30
46	88	38
47	72	34
48	59	30
49	78	34
50	47	30
51	67	34
52	89	38
53	95	42
54	23	26

Tabel 4. 6 Lanjutan

No	Bilangan	Variabel
	random	waktu
55	38	30
56	63	34
57	53	30
58	96	42
59	67	34
60	90	38
61	11	22
62	94	42
63	56	30
64	68	34
65	80	34
66	93	42
67	36	26
68	65	34
69	92	38
70	58	30
71	20	26
72	9	22
73	68	34 1 4
74	31	26
75	35	26
76	70	34
77	62	34

No	Bilangan	Variabel
:	random	waktu
78	34	26
79	5	18
80	60	30
81	32	26
82	39	30
83	77	34
84	53	30
85	10	22
86	79	34
87	67	34
88	1	14
89	51	30
90	80	34
91	37	26
92	34	26
93	79	34
94	99	46
95	75	34
96	33	26
97	98	46
98	8	22
99	49	30
100	74	34
		$\mu = 31.6$

4.7 Analisis Terhadap Biaya

Dengan diketahui *mean* dan *deviasi standar* make akan dihasilkan nilai probabilitas dari distribusi biaya dengan mengasumsikannya mengikuti distribusi probabilitas normal, seperti yang terlihat pada l'abel 4.7. Sedangkan untuk histogram dan grafik distribusi probabilitas kumulatif sebelum simulasi dapat dilihat pada Gambar 4.6 dan 4.7.

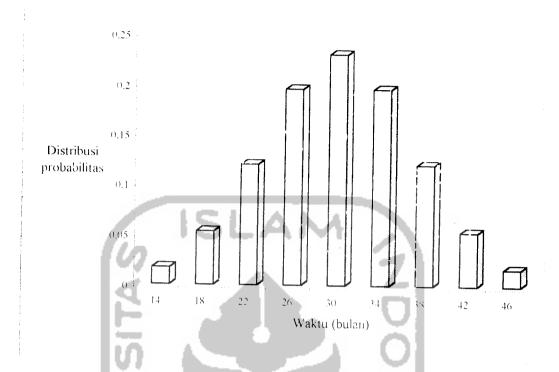
Tabel 4.7 Distribusi probabilitas normal untuk biaya

Biaya	Distribusi	Distribusi	Distribusi	Distribusi
(\$ Australia x juta)	f(x)	kumulatif	probabilitas	probabilitas
lin			ı Ol	kumulatif
(1)	(2)	(3)	$(4) (2) \Sigma(2)$	(5)
400	2.8694	2.8694	0.0290	0.0290
450	10.2739	13.1433	0.1038	0.1328
500	22.0853	35.2286	0.2232	0.3560
550	28.5031	63.7317	0.2880	0.6440
600	22.0853	85.8170	0.2232	0.8672
650	10.2739	96.0909	0.1038	0.9710
700	2.8694	98.9603	0.0290	1
اعد	Σ=98.9603		1	

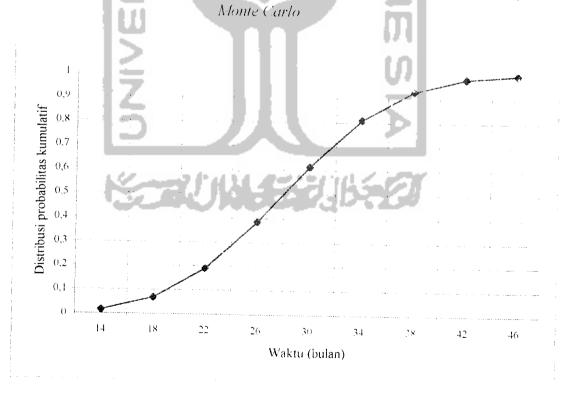
Dari data tersebut kemudian dilakukan simulasi, di mana hasil simulasi tersebut dapat dilihat pada Tabel 4.8. Hasil tersebut didapat dari simulasi yang *mean*- nya paling mendekati dan lebih kecil dari nilai 550 juta. Beberapa contoh untuk simulasi terhadap biaya dapat dilihat pada Lampiran 7 dan 8. Dan untuk histogram dan distribusi probabilitas kumulatif sesudah simulasi dapat dilihat

pada Gambar 4.8 dan 4.9. Dari Gambar 4.9 didapat nilai untuk 25% NK = 495 juta, 50% NK = 535 juta, dan 90% NK = 615 juta.

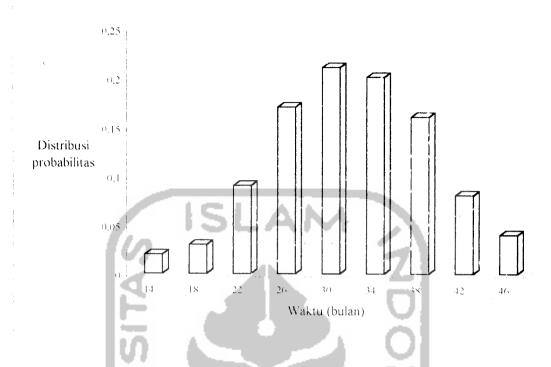
Tabel 4.8 Hasil simulasi Monte Carlo untuk biaya (\$ Australia x juta)


No	Bilangan	Variabel
	random	biaya
1	85	600
2	94	650
3	6	450
4	97	700
5	59	550
6	6	450
7	52	550
8	5	450
9	1	400
10	56	550
11	99	700
12	10	450
13	79	600
14	45	550
15	33	500
16	48	550
17	94	650
18	85	600
19	16	500
20	17	500
21	61	550
22	36	550
23	35	500
24	9	450

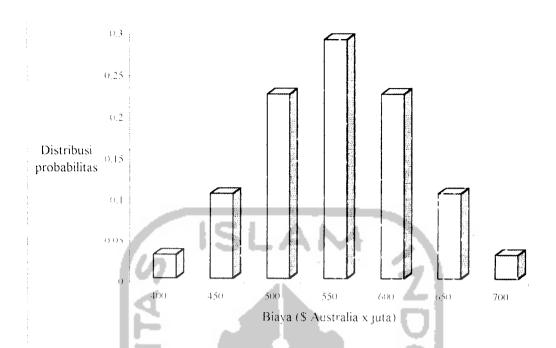
No	Bilangan	Variabel
	random	biaya
25	50	550
26	8	450
27	80	600
28	64	550
29	92	650
30	32	500
31	12	450
32	67	600
33	66	600
34	33	500
35	44	550
36	6	450
37	40	550
38	12	450
39	6	450
40	58	550
41	81	600
42	21	500
43	38	550
44	81	600
45	45	550
46	59	550
47	4	450
48	14	500

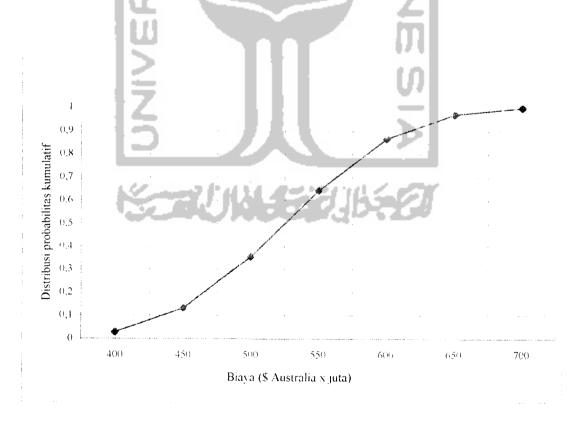

Tabel 4.8 Lanjutan

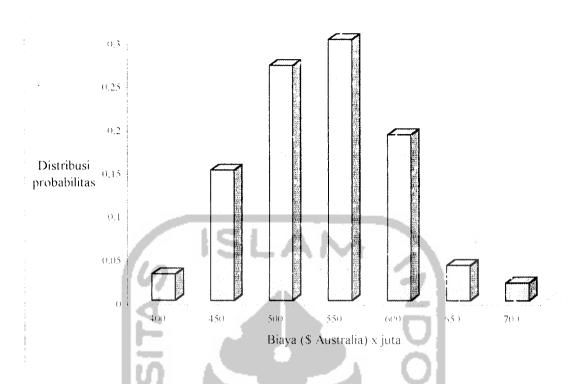
No	Bilangan	Variabel
	random	biaya
49	55	550
50	37	550
51	57	550
52	26	500
53	33	500
54	45	550
55	56	550
56	25	500
57	81	600
58	7	450
59	23	500
60	19	500
61	61	550
62	78	600
63	53	550
64	77	600
65	28	500
66	13	500
67	27	500
68	55	550
69	13	500
70	82	600
71	0	400
72	82	600
73	80	600
74	77	600
75	16	500

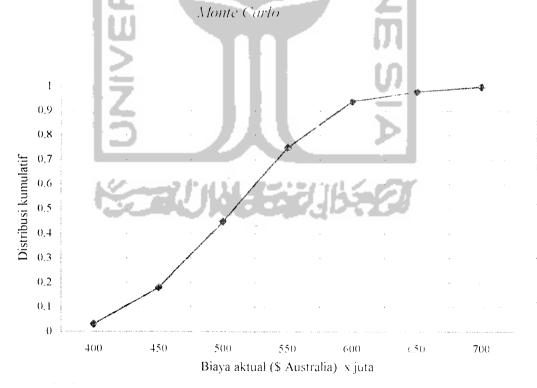

No	Bilangan	Variabel
	random	biaya
76	17	500
77	37	550
78	14	500
79	22	500
80	3	450
81	62	550
82	21	500
83	69	600
84	85	600
85	79	600
86	25	500
87	7	400
88	10	450
89	95	650
90	60	550
91	14	500
92	88	650
93	10	450
94	42	550
95	62	550
96	28	500
97	40	550
98	34	500
99	43	550
100	77	600
		$\mu = 535$

Gambar 4.2 Histogram distribusi probabilitas waktu sebelum simulasi


Gambar 4.3 Grafik distribusi probabilitas kumulatif waktu sebelum simulasi *Monte Carlo*


Gambar 4.4 Histogram distribusi probabilitas waktu sesudah simulasi


Gambar 4.5 Grafik distribusi probabilitas kumulatif waktu sesudah simulasi *Monte Carlo*


Gambar 4.6 Histogram distribusi probabilitas biaya sebelum simulasi *Monte Carlo*

Gambar 4.7 Grafik distribusi probabilitas kumulatif biaya sebelum simulasi *Monte Carlo*

Gambar 4.8 Histogram distribusi probabilitas biaya sesudah simulasi

Gambar 4.9 Grafik distribusi probabilitas kumulatif biaya sesudah simulasi *Monte Carlo*