BAB II STUDI PUSTAKA

2.1 Penelitian Terdahulu

Penelitian-penelitian mengenai penggunaan agregat daur ulang pada beton telah banyak dilakukan. Adapun beberapa penelitian terdahulu yang dijadikan tinjauan pustaka pada penelitian ini adalah penelitian yang dilakukan oleh Mulyati dan Arman (2014), Hamid dkk (2014), serta Aulia dkk (2015).

Penelitian oleh Mulyati dan Arman (2014), bertujuan untuk mengetahui pengaruh penggunaan limbah beton sebagai pengganti sebagian atau lebih agregat kasar dan agregat halus terhadap kuat tekan beton. Komposisi limbah beton daur ulang sebagai agregat kasar dan agregat halus sebesar 50%, 60%, 70%, serta 80% dengan pembanding campuran adukan beton menggunakan agregat kasar (split) dan agregat halus (pasir) yang berasal dari Gunung Nago. Benda uji berbentuk kubus, masing-masing komposisi berjumlah 3 buah benda uji. Untuk perawatan benda uji dengan cara direndam dalam air. Umur pengujian dilakukan pada 7 hari, 14 hari, 21 hari, dan 28 hari dengan menggunakan *Universal Testing Machine* (UTM). Pada pengujian karakteristik limbah beton, hasil pemeriksaan analisa saringan diperoleh agregat kasar memenuhi spesifikasi gradasi sesuai AASHTO T 27 serta masuk pada zona butiran 40 mm dengan modulus kehalusan 7,01, sedangkan agregat halus masuk pada zona II (pasir kasar) dengan modulus kehalusan 4,22. Nilai kuat tekan beton rata-rata pada umur 28 hari untuk penggunaan agregat alami ialah sebesar 26,71 MPa, sedangkan dari penggunaan limbah beton sebagai agregat kasar nilai kuat tekan beton tertinggi hanya 24,82 MPa untuk proporsi 60% serta limbah beton sebagai agregat halus nilai kuat tekan tertinggi adalah 25,82 MPa untuk proporsi 80%.

Penelitian oleh Hamid dkk (2014), bertujuan untuk mengetahui pengaruh dari penggunaan agregat halus daur ulang sebagai pengganti agregat alam terhadap kuat tekan dan modulus elastisitas pada beton berkinerja tinggi *grade* 80 atau kuat tekan minimal 80 Mpa. Komposisi limbah beton daur ulang sebagai pengganti agregat

halus ialah 0%, 20%, 40%, 60%, 80%, dan 100%. Agregat alami (pasir halus) yang digunakan merupakan agregat lolos saringan no. 20 atau mempunyai diameter butir maksimal 0,85 mm. Material daur ulang yang dipakai pada penelitian tersebut ialah limbah beton dari Laboratorium Bahan Universitas Sebelas Maret, Surakarta. Benda uji berbentuk silinder dengan diameter 7,62 cm serta tinggi 15,24 cm. Untuk perawatan benda uji dengan cara direndam dalam bak air selama 26 hari. Umur pengujian dilakukan pada 28 hari. Hasil pengujian kuat tekan beton dengan agregat halus alami adalah 85,51 MPa. Pada hasil pengujian kuat tekan beton agregat halus daur ulang mengalami penurunan yang signifikan pada variasi 20% pengganti agregat halus daur ulang sebesar 20,97% dengan nilai kuat tekan 67,58 MPa, berlanjut pada penurunan rasio pergantian berikutnya yaitu 40% (fc' = 62,06 MPa), 60% (fc' = 60,68 MPa), 80% (fc' = 57,92 MPa), serta 100% = (fc' = 53,79 MPa).

Penelitian oleh Aulia dkk (2015), bertujuan agar dapat memanfaatkan kembali agregat kasar dan agregat halus daur ulang yang berasal dari limbah beton untuk digunakan sebagai bahan konstruksi dengan menggunakannya bersamaan dengan agregat kasar dan halus alam pada campuran beton, mengetahui karakteristik agregat daur ulang, serta meneliti pengaruh agregat daur ulang terhadap kekuatan beton sehingga didapatkan kadar optimum yang diperlukan campuran beton agar dapat menghasilkan kuat tekan, kuat lentur, dan susut optimum. Komposisi limbah beton daur ulang ialah terdiri dari 40% agregat kasar daur ulang serta 0%, 20%, 40%, dan 60% agregat halus daur ulang dari limbah beton mutu K350 sampai K400. Bahan tambah yang dipakai adalah admixture dengan tipe Conplast SP 337. Pengujian dilakukan pada umur beton 7 hari, 21 hari, dan 28 hari. Karakteristik agregat halus daur ulang mendekati agregat halus alam dan masuk dalam standar ASTM C-33. Nilai absorpsi air cukup tinggi yaitu sebesar 20,48%. Hasil pengujian kuat tekan beton normal sebesar 30,11 MPa pada umur 28 hari. Komposisi agregat halus daur ulang 20% mengalami kenaikan 5,18% dengan kuat tekan rata-rata sebesar 31,67 MPa. Pengujian kuat tekan beton menggunakan 40% agregat halus daur ulang memiliki nilai kuat tekan sebesar 29,95 MPa, hampir sama dengan kuat tekan beton normal umur 28 hari dengan penurunan 0,53%. Pada pengujian kuat lentur agregat halus daur ulang 20%, 40%, dan 60% mempunyai

6

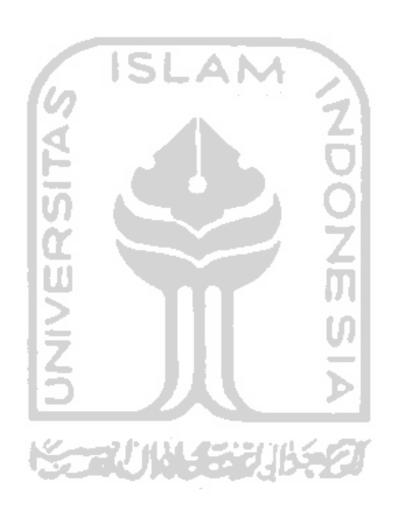
kuat lentur yang lebih kecil dibandingkan dengan beton normal. Penurunan kecil ditunjukkan oleh beton dengan komposisi 20% agregat halus daur ulang yaitu sebesar 3,14%. Nilai kuat lentur beton normal sebesar 33,12 MPa. Beton agregat halus daur ulang memiliki nilai susut yang lebih besar dibandingkan beton normal karena agregat ulang mempunyai nilai penyerapan air yang lebih besar.

2.2 Perbedaan Penelitian

Berdasarkan tinjauan pustaka dari beberapa penelitian terdahulu, adapun perbedaan dengan penelitian yang dilakukan seperti yang dapat dilihat pada Tabel 2.1 berikut.

7

Tabel 2.1 Perbedaan Penelitian Terdahulu


No	Penelitian	Bahan dan Pengujian	Hasil	Perbedaan Penelitian yang Dilakukan oleh Reginia (2019)
1.	Mulyati dan	1. Komposisi agregat kasar	1. Agregat kasar masuk zona butiran 40	Komposisi agregat halus
	Arman A (2014),	dan halus daur ulang 50%,	mm dengan modulus kehalusan 7,01.	daur ulang 0%, 20%, 40%,
	Pengaruh	60%, 70%, serta 80%.	2. Agregat halus masuk zona II (pasir	60%, 80%, dan 100%.
	Penggunaan	2. Pasir berasal dari Gunung	kasar) dengan modulus kehalusan	2. Agregat halus (pasir) dan
	Limbah Beton	Nago dan agregat kasar	4,22.	agregat kasar (split)
	sebagai Agregat	(split) dari PT. Jaya	3. Nilai kuat tekan beton rata-rata pada	berasal dari Merapi.
	Kasar dan	Sentrikon Indonesia.	umur 28 hari untuk penggunaan	3. Benda uji berbentuk
	Agregat Halus	3. Benda uji berbentuk kubus	agregat alami adalah 26,71 MPa.	silinder dengan diameter
	Terhadap Kuat	dengan ukuran 15 cm x 15	4. Nilai kuat tekan limbah beton agregat	15 cm serta tinggi 30 cm.
	Tekan Beton	cm x 15 cm.	kasar ialah 24,82 MPa untuk proporsi	4. Uji kuat tekan dan uji kuat
	Normal	4. Pengujian yang dilakukan	60%.	tarik belah.
		ialah uji kuat tekan.	5. Nilai kuat tekan limbah beton agregat	
			halus sebesar 25,82 untuk proporsi	
		14 500	80%.	
	1			,

Lanjutan Tabel 2.1 Perbedaan Penelitian Terdahulu

1				Perbedaan Penelitian yang
No	Penelitian	Bahan dan Pengujian	Hasil	Dilakukan oleh Reginia
		(131	AM	(2019)
2.	Hamid dkk	1. Komposisi agregat halus	1. Hasil pengujian kuat tekan beton	1. Agregat halus (pasir) dan
	(2014), Pengaruh	daur ulang 0%, 20%, 40%,	agregat alami adalah 85,51 MPa.	agregat kasar (split)
	Penggunaan	60%, 80%, dan 100%.	Untuk hasil pengujian kuat tekan	berasal dari Merapi.
	Agregat Daur	2. Benda uji berbentuk	beton agregat halus daur ulang	2. Benda uji berbentuk
	Ulang Terhadap	silinder dengan diameter	mengalami penurunan yang	silinder dengan diameter
	Kuat Tekan dan	7,62 cm serta tinggi 15,24	signifikan pada variasi 20% yaitu	15 cm serta tinggi 30 cm.
	Modulus	cm.	sebesar 20,97% dengan nilai kuat	3. Kuat tekan rencana 25
	Elastisitas Beton	3. Diameter butir maksimal	tekan 67,58 MPa.	MPa.
	Berkinerja Tinggi	agregat alami 0,85 mm.	2. Nilai modulus elastisitas pada beton	4. Uji kuat tekan dan uji kuat
	Grade 80	4. Kuat tekan rencana 80	agregat halus alami ialah 49,045	tarik belah.
		MPa.	GPa. Pada modulus elastisitas beton	
		5. Uji kuat tekan dan	agregat halus daur ulang juga	
		modulus elastisitas.	mengalami penurunn yang stabil.	
		TO THE STATE OF		

Lanjutan Tabel 2.1 Perbedaan Penelitian Terdahulu

	Penelitian		Bahan dan Pengujian	Hasil			Perbedaan Penelitian yang	
No							Dilakukan oleh Reginia	
			121		-AM		(2019)	
3.	Aulia dkk (2015),	1.	Komposisi agregat kasar	1.	Nilai absorpsi air cukup tinggi yaitu	1.	Komposisi agregat halus	
	Studi Pengaruh		daur ulang 60% serta	4	sebesar 20,48%.		daur ulang 0%, 20%, 40%,	
	Penggunaan		agregat halus daur ulang	2.	Hasil pengujian kuat tekan beton		60%, dan 100%.	
	Agregat Halus dan		0%, 20%, 40%, dan 60%.		normal adalah 30,11 MPa pada umur	2.	Agregat halus (pasir) serta	
	Kasar Daur Ulang	2.	Bahan tambah yang		28 hari, mengalami kenaikan 5,18%		agregat kasar (split)	
	dari Limbah Beton		dipakai ialah admixture		untuk komposisi agregat halus daur		berasal dari Merapi.	
	Padat dengan Mutu		dengan tipe Conplast SP		ulang 20% ialah sebesar 31,67 MPa.	3.	Kuat tekan rencana 25	
	K350-K400		337.	3.	Pengujian kuat lentur beton normal		MPa.	
	Menggunakan	3.	Kuat tekan rencana 30		33,12 MPa, untuk beton yang	4.	Umur pengujian dilakukan	
	Admixture		MPa.	ŀ	menggunakan agregat daur ulang		pada 28 hari.	
	Conplast SP 337	4.	Umur pengujian 7 hari, 21	١,	mengalami penurunan.	5.	Uji kuat tekan dan kuat	
	Terhadap Kuat		hari, dan 28 hari.	4.	Beton agregat daur ulang mempunyai		tarik belah.	
	Tekan, Kuat	5.	Uji kuat tekan, kuat lentur,	i	nilai susut yang lebih tinggi			
	Lentur, dan Susut		dan susut.	k	dibandingkan beton normal.			
	Pada Beton							

