BAB V ANALISIS DAN PEMBAHASAN

5.1 Analisis Kekuatan Pelat Lantai Tulangan Konvensional

5.1.1 Pelat Lantai A1

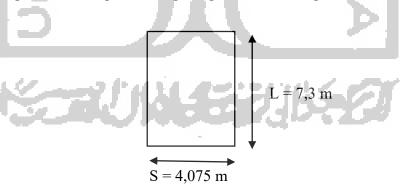
1. Pelat Lantai A1 Tulangan S

Data yang didapat dari pihak kontraktor yang melaksanakan Pembangunan Hotel Pondokan Bhayangkara Yogyakarta merupakan data sekunder. Berikut ini adalah data struktur pelat lantai tipe A1 Tulangan Y yang didapat dari proyek Pembangunan Hotel Pondokan Bhayangkara Yogyakarta.

Mutu Bahan digunakan:

Mutu Beton = 25 MPa

Mutu Baja Polos = 240 MPa


Tulangan = 10P100

Beban Sendiri Pelat $= 2 \text{ kN/m}^2$

Beban Rumah Singgah $= 3 \text{ kN/m}^2$

Tebal Pelat Lantai = 150 mm

Dimensi pelat lantai dapat dilihat pada gambar 5.1 sebagai berikut.

Gambar 5.1 Dimensi Pelat Lantai A1

(Sumber: Data Lapangan)

Setelah didapat data-data yang dibutuhkan, selanjutnya adalah menghitung beban hidup maksimum yang dapat diampu oleh pelat dengan tulangan yang telah ditentukan. Berikut ini adalah langkah-langkah perhitungannya.

f'c = 25 MPa < 30 MPa, maka β_1 . fy = 240 MPa $\Rightarrow \epsilon_y$ = fy/Es = 240/200000 = 0,001 Tulangan yang digunakan adalah P10 dan penutup beton 20 mm, maka :

ds
$$= 20 + 10/2 = 25 \text{ mm}$$

d =
$$h - ds = 150 - 25 = 125 \text{ mm}$$

Luas 1 batang P10
$$\Rightarrow$$
 A_{1P} = $\frac{1}{4} \pi$ D² = $\frac{1}{4}$. 3,14. 10^2 = 78,50 mm²

Tulangan yang digunakan adalah P10-100, maka luas tulangan yang digunakan untuk setiap 1000 mm lebar pelat :

$$As_1 = A_{1P}.1000/S = 78,50.1000/100 = 785 \text{ mm}^2$$

Dianggap tulangan telah mencapai regangan leleh, sehingga gaya-gaya dalam yang bekerja adalah:

T =
$$0.85$$
. f'c. b. a = 0.85 . 25. 1000. a = $21250,000$.a N

C = As.
$$F_y = 785,000.240 = 188400,000 N$$

Keseimbangan gaya-gaya dalam C = T

$$188400,000 = 21250,000.a$$

$$x = a/\beta_1 = 8,866/0,85 = 10,430 \text{ mm}$$

Periksa regangan tulangan

$$\epsilon_{\rm s} = {\rm d} - {\rm x/x}$$
 . $\epsilon_{\rm cu} = 125 - (10,430/10,430)$. $0,003 = 0,033 > \epsilon_{\rm y} = 0,001$ \Rightarrow leleh Momen nominal dan momen terfaktor

Mn = As.Fy.
$$(d - a/2)$$

$$=785,000.240.$$
 $(125-8,866/2)$

$$= 22,715 \text{ kNm}$$

$$Mu = \phi$$
. Mn

$$= 0.8.22,715$$

$$= 18,172 \text{ kNm}$$

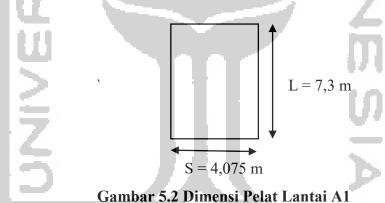
2. Pelat Lantai A1 Tulangan L

Data yang didapat dari pihak kontraktor yang melaksanakan Pembangunan Hotel Pondokan Bhayangkara Yogyakarta merupakan data yang didapat melalui wawancara. Berikut ini adalah data struktur pelat lantai tipe A1 Tulangan Y yang didapat dari proyek Pembangunan Hotel Pondokan Bhayangkara Yogyakarta.

Mutu Bahan digunakan:

Mutu Beton = 25 MPa

Mutu Baja Polos = 240 MPa


Tulangan = 10P200

Beban Sendiri Pelat $= 2 \text{ kN/m}^2$

Beban Rumah Singgah $= 3 \text{ kN/m}^2$

Tebal Pelat Lantai = 150 mm

Dimensi pelat lantai dapat dilihat pada gambar 5.2 sebagai berikut.

(Sumber: Data Lapangan)

Setelah didapat data-data yang dibutuhkan, selanjutnya adalah menghitung beban hidup maksimum yang dapat diampu oleh pelat dengan tulangan yang telah ditentukan. Berikut ini adalah langkah-langkah perhitungannya.

f'c = 25 MPa < 30 MPa, maka
$$\beta_1$$
 = 0,85

Tulangan yang digunakan adalah P10 dan penutup beton 20 mm, maka:

ds
$$= 20 + 10/2 = 25 \text{ mm}$$

$$d = h - ds = 150 - 25 = 125 \text{ mm}$$

Luas 1 batang P10 \rightarrow A_{1P} = $\frac{1}{4} \pi r^2 = \frac{1}{4} . 3,14. 10^2 = 78,50 \text{ mm}^2$

Tulangan yang digunakan adalah P10-100, maka luas tulangan yang digunakan untuk setiap 1000 mm lebar pelat :

$$As_2 = As_{2P}.1000/S = 78,50.\ 1000/200 = 392,5 \text{ mm}^2$$

Dianggap tulangan telah mencapai regangan leleh, sehingga gaya-gaya dalam yang bekerja adalah :

C = As. Fy =
$$392,5.240 = 94200,000 \text{ N}$$

Keseimbangan gaya-gaya dalam C = T

94200,000 = 21250,000.a
a = 94200,000 /21250,000 = 4,433 mm
x = a/
$$\beta_1$$
 = 8,866/0,85 = 5,215 mm

Periksa regangan tulangan

$$\epsilon_s = d - x/x$$
 . $\epsilon_{cu} = 125 - 5,2155,215$. $0,003 = 0,069 > \epsilon_y = 0,001$ \Longrightarrow leleh

Momen nominal dan momen terfaktor

Mn = As.Fy.
$$(d - a/2)$$

= 392,500.240 (125 - 8,866/2)
= 11,566 kNm

 $Mu = \phi. Mn$

= 0.8.11,566

= 9,253 kNm

5.1.2 Pelat Lantai A2

Berdasarkan perhitungan pelat lantai A1, didapat rekapitulasi pelat Lantai A2 yang dapat dilihat pada Tabel 5.1 dan 5.2 berikut ini.

Tabel 5.1 Rekapitulasi Perhitungan Pelat Lantai A2 Tulangan S

Mutu	Bahan	Satuan	Keterangan	
Mutu Beton	fc	25	MPa	
Mutu Baja	fy	240	MPa	
Tulangan Polos	10	100	mm	
Beban Sendiri Pelat	wD	2	kN/m ²	

Lanjutan Tabel 5.1 Rekapitulasi Perhitungan Pelat Lantai A2 Tulangan S

Mutu Bahan			Satuan	Keterangan
Beban Rumah	wL	3	kN/m ²	
Singgah				
Tebal Pelat Lantai	h	130	mm	
Panjang Pelat Lantai	L	7,3	m	
	β1	0,850	VA.	
M/n	εγ	0,001		
Penutup Beton	sb	20	mm	71
- 4	ds	25	mm	
	d	105	mm	
1.4	A1P	78,500	mm ²	Y
10	b	1000	mm	(0)
X. 1	As	785,000	mm ²	
Gaya Dalam	Т	21250,000	a.N	7
10.00	С	188400,000	N	=1
1,00	Kese	eimbangan Ga	ya Dalam	1111
	С	T		
	a	8,866	mm	UI
17	X	10,430	mm	
Periksa Regangan εs 0,027		>	εy (leleh)	
N N	Iomen No	ominal dan Mo	men Terf	aktor
	Mn	18,947	kNm	
40	Mu	15,157	kNm	1.00

Tabel 5.2 Rekapitulasi Perhitungan Pelat Lantai A2 Tulangan L

Muti	ı Bahan	Satuan	Keterangan	
Mutu Beton	fc	25	MPa	
Mutu Baja	fy	240	MPa	
Tulangan Polos	10	200		
Beban Sendiri Pelat	wD	2	kN/m ²	

Lanjutan Tabel 5.2 Rekapitulasi Perhitungan Pelat Lantai A2 Tulangan L

Mutu Bahan	Mutu Bahan			Keterangan
Beban Rumah	wL	3	kN/m ²	
Singgah				
Tebal Pelat Lantai	h	130	mm	
Panjang Pelat	L	4,075	m	
Lantai	151	LA.	M	
II.o	β1	0,850		
144	εy	0,001		
Penutup Beton	3.75	20	mm	
	ds	25	mm	Oi
	d	105	mm	
TU)	A1P	78,500	mm^2	
TO T	b	1000	mm	7
135	As	392,500	mm ²	4
Gaya Dalam	T	21250,000	a.N	101
	С	94200,000	N	
	Kese	imbangan G	aya Dalam	UII
TZ.	С	T		
15	a	4,433	mm	Ъ
	X	5,215	mm	
Periksa Regangan	ES .	0,057	>	εy (leleh)
	Iomen No	minal dan M	Iomen Terfa	iktor
"L.E	Mn	9,682	kNm	700
	Mu	7,746	kNm	

5.1.3 Pelat Lantai A3

Berdasarkan perhitungan pelat lantai 2, didapat rekapitulasi pelat Lantai A3 yang dapat dilihat pada Tabel 5.3 dan 5.4 berikut ini.

Tabel 5.3 Rekapitulasi Perhitungan Pelat Lantai A3 Tulangan S

Mutu Bahan			Satuan	Keterangan
Mutu Beton	fc	25	MPa	
Mutu Baja	fy	240	MPa	
Tulangan	10	200		-71
Beban Sendiri	wD	2	kN/m ²	7-
Pelat				
Beban Rumah	wL	3	kN/m ²	9
Singgah			7.	
Tebal Pelat Lantai	h	130	mm	9
100	L	7,3	m	7
1	β1	0,850		
	εy	0,001		
Penutup Beton		20	mm	
	ds	25	mm	10
17	d	105	mm	M4
	A1P	78,500	mm ²	
12	b	1000	mm	P
	As	392,500	mm ²	
Gaya Dalam	T	21250,000	a.N	A CONTRACTOR
	C	94200,000	N	
	Kes	seimbangan G	aya Dalam	
	С	T		
	a	4,433	mm	
	х	5,215	mm	
Periksa Regangan	εs	0,057	>	εy (leleh)
	Momen N	Nominal dan N	omen Terfal	ktor
	Mn	9,682	kNm	
	Mu	7,746	kNm	

Tabel 5.4 Rekapitulasi Perhitungan Pelat Lantai A3 Tulangan L

Mutu Bahan			Satuan	Keterangan			
	fc	25	MPa				
	fy	240	MPa				
Tulangan	10	200					
Beban Sendiri	wD	2	kN/m ²				
Pelat	115	I A	NA .				
Beban Rumah	wL	3	kN/m ²				
Singgah			***************************************	7			
Tebal Pelat Lantai	h	130	mm	7-			
	L	4,075	m	lel			
	β1	0,850		24			
110	εy	0,001	Z 1	(6)			
Penutup Beton		20	mm				
146	Ds	25	mm	7			
1.71	D	105	mm	=			
	A1P	78,500	mm ²				
	В	1000	mm				
	As	392,500	mm ²	UII			
Gaya Dalam	Т	21250,000	a.N				
13	С	94200,000	N	N			
	Ke	seimbangan G	aya Dalam				
	С	T					
10	Α.	4,433	mm				
	X	5,215	mm	760			
Periksa Regangan	Es	0,057	>	εy (leleh)			
	Momen 1	Nominal dan M	lomen Terfak	tor			
	Mn	9,682	kNm				
	Mu	7,473	kNm				

5.1.4 Rekapitulasi Kekuatan Pelat Lantai Tulangan Konvensional

Berdasrkan perhitungan semua pelat lantai didapat rekapitulasi kekuatan pelat lantai konvensional yang dapat di lihat pada Tabel 5.5 berikut ini

Tabel 5.5 Rekapitulasi Kekuatan Pelat Lantai Konvensional

Pelat	Tulangan Konvensional							
Lantai	1.5	Tulangan S	N A	Tulangan L				
- / A		10P-100		A_{i}	10P-200			
Pelat A1	Mn	22,715	kNm	Mn	11,566	kNm		
	Mu	18,172	kNm	Mu	9,253	kNm		
		10P-100			10P-200			
Pelat A2	Mn	18,947	kNm	Mn	9,682	kNm		
1.75	Mu	15,157	kNm	Mu	7,746	kNm		
101		10P-200	A STATE OF		10P-200			
Pelat A3	Mn	9,682	kNm	Mn	9,682	kNm		
135	Mu	7,746	kNm	Mu	7,746	kNm		

5.2 Biaya Pekerjaan Pelat Lantai Tulangan Konvensional

Biaya pekerjaan pelat lantai konvensional adalah data eksisting proyek pembangunan Pondokan Hotel Bhayangkara

5.2.1 Rekapitulasi Biaya Pekerjaan Pelat Lantai Tulangan Konvensional

Rekapitulasi biaya pekerjaan pelat lantai tulangan konvensional dapat dilihat pada Tabel 5.6 berikut ini.

Tabel 5.6 Rekapitulasi Biaya Pekerjaan Pelat Lantai Tulangan Konvensional

Pekerjaan ⁻	Biaya			
Bekisting	Rp	272.641.318,34		
Pembesian	Rp	211.430.784,81		
Beton 25 Mpa	Rp	116.558.704,09		
TOTAL	Rp	600.630.807,24		

Sumber: Trisasono (2017)

5.3 Analisis Waktu Pelaksanaan Pekerjaan Pelat Lantai Tulangan Konvensional

Waktu pelaksanaan merupakan aspek yang penting dalam sebuah proyek konstruksi. Apabila waktu pelaksanaan tidak direncanakan dengan sebaik-baiknya, maka akan berimbas kepada biaya proyek yang akan semakin tinggi. Terlambatnya suatu proyek konstruksi juga akan mengakibatkan kontraktor yang melaksanakan suatu proyek terkena denda dikarenakan tidak sesuai dengan kontrak awal sebuah proyek konstruksi. Maka dari itu, perhitungan waktu pelaksanaan menjadi faktor penting dari sebuah proyek konstruksi. Dalam proyek Pembangunan Hotel Pondokan Bhayangkara Yogyakarta, waktu total perencanaan awal pengerjaan proyek ini sampai dengan selesai adalah 210 hari kerja. Untuk pengerjaan pelat lantai bangunan, total waktu yang dibutuhkan untuk menyelesaikannya adalah 24 minggu dari total 29 minggu atau 210 hari kerja. Hal ini terdapat dalam *time schedule* proyek pembangunan Hotel Pondokan Bhayangkara Yogyakarta (terlampir).

Perhitungan waktu pelaksanaan pekerjaan pelat lantai tulangan konvensional dibagi menjadi 3 bagian, yaitu pekerjaan pemasangan bekisting, pemasangan tulangan/pembesian dan pembuatan beton.

5.3.1 Perhitungan Waktu Pelaksanaan Pekerjaan Pelat Lantai 2

1. Pekerjaan pemasangan 1 m² bekisting dapat dilihat pada Tabel 5.7 berikut ini.

Tabel 5.7 Analisa Harga Satuan Pekerjaan 1 m² Bekisting Pelat Lantai

No	Jenis Pekerja	Satuan Volume		Harga	Jumlah
110	Joins Texer Ju	Sutuan	, outline	Satuan (Rp)	Harga (Rp)
1	Pekerja	oh	0,660	50.000,00	33.000,00
2	Tukang Kayu	oh	0,330	67.000,00	22.110,00
3	Kepala Tukang	oh	0,033	70.000,00	2.310,00
4	Mandor	oh	0,033	80.000,00	2.640,00
Tota	60.060,00				

Dari tabel di atas, bisa dilihat bahwa pekerjaan pemasangan 1 m² bekisting pelat, koefisien tukang kayu sebesar 0,330. Ini artinya 1 orang tukang kayu bisa menyelesaikan minimal 1 orang : 0,330 oh = 3,030 m² bekisting dalam 1 hari. . Apabila jam kerja efektif dalam 1 hari adalah 8 jam, maka (1 hari : 0,330 /hari) x 8 jam = 24,242 m² bekisting dalam 1 hari.

Pekerjaan bekisting dalam Proyek Pembangunan Hotel Pondokan Bhayangkara Yogyakarta ini berjumlah 5 tukang kayu, maka durasi pekerjaannya menjadi :

Total *volume* pekerjaan bekisting lantai 2 : *volume* pekerjaan harian x total pekerja.

 $200,195 \text{ m}^2: 24,242 \text{ m}^2/\text{hari } \text{x 5 orang} = 1,652 \text{ hari } \approx 2 \text{ hari}$

Maka, total waktu pekerjaan bekisting yang dibutuhkan untuk menyelesaikan pekerjaan pelat lantai 2 sebesar 1,652 hari ≈ 2 hari

2. Pekerjaan pembesian 10 kg dengan besi polos atau besi ulir dapat dilihat pada Tabel 5.8 berikut ini.

Harga Jumlah Jenis Pekerjaan No Satuan Volume Satuan Harga (Rp) (Rp) 0,070 50.000,00 3.500,00 Pekerja oh Tukang Besi oh 0,070 67.000,00 4.480,00 3 Kepala Tukang 0,007 70.000,00 490,00 oh 0,004 Mandor 80.000,00 320,00 oh Total Upah per 10 kg Besi 8.790,00

Tabel 5.8 Analisa Harga Satuan Pekerjaan 10 kg Besi

Dari tabel di atas, bisa dilihat bahwa pekerjaan pemasangan 10 kg besi, koefisien tukang besi sebesar 0,070. Ini artinya 1 orang tukang besi bisa menyelesaikan minimal = 1 orang : 0,070 oh = 14,286 kg besi dalam 1 hari. Apabila jam kerja efektif dalam 1 hari adalah 8 jam, maka (1 hari : 14,286 kg/hari) x 8 = 114,286 kg besi dalam 1 hari.

108.700,00

Pekerjaan pembesian dalam Proyek Pembangunan Hotel Pondokan Bhayangkara Yogyakarta ini berjumlah 5 tukang besi, maka durasi pekerjaannya menjadi:

Total *volume* pekerjaan pembesian lantai dasar : (*volume* pekerjaan x jumlah pekerja)

 $2773,861 \text{ kg} : (114,286 \text{ kg/hari } \times 5 \text{ orang}) = 4,854 \text{ hari } \approx 5 \text{ hari}$

Maka, total waktu pekerjaan pembesian yang dibutuhkan untuk menyelesaikan pekerjaan pelat lantai dasar sebesar 4,854 hari ≈ 5 hari

3. Pekerjaan pembuatan Beton K300 dapat dilihat pada Tabel 5.9 berikut ini.

Membuat 1 m³ Beton Mutu F'c = 25 Mpa (K 300), Slump (12 ± 2) Cm, W/C = 0.52 Harga Jumlah No Jenis Pekerjaan Satuan Volume Upah Upah (Rp) Satuan (Rp) Pekerja oh 1,650 50.000,00 82.500,00 2 Tukang Batu oh 0,275 67.000,00 17.600,00 3 Kepala Tukang 0,028 70.000,00 1.960,00 oh 80.000,00 Mandor 0,083 6.640,00 oh

Tabel 5.9 Analisa Harga Satuan 1 m³ Beton K300

Dari tabel di atas, bisa dilihat bahwa pekerjaan pembuatan beton K300, koefisien pekerja sebesar 1,650. Ini artinya 1 orang pekerja bisa menyelesaikan minimal 1 orang : 1,650 oh = 0,606 m³ beton dalam 1 hari. Apabila jam kerja efektif dalam 1 hari adalah 8 jam, maka 1 hari : $(0,606 \text{ m}^3/\text{hari } \times 8) = 4,848 \text{ m}^3$ beton dalam 1 hari.

Pekerjaan pembuatan beton K300 dalam Proyek Pembangunan Hotel Pondokan Bhayangkara Yogyakarta ini berjumlah 5 pekerja, maka durasi pekerjaannya menjadi:

Total *volume* pekerjaan beton lantai dasar : *volume* pekerjaan harian x jumlah pekerja

 $30,029 \text{ kg}: 4,848 \text{ m}^3/\text{hari x 5 orang} = 1,239 \text{ hari} \approx 2 \text{ hari}$

Jumlah Tenaga Kerja

Maka, total waktu pekerjaan pembesian yang dibutuhkan untuk menyelesaikan pekerjaan pelat lantai dasar sebesar 1,239 hari ≈ 2 hari

5.3.2 Perhitungan Waktu Pekerjaan Pelat Lantai 3

Mengacu pada perhitungan waktu pelaksanaan pada pekerjaan pelat lantai 2, maka didapat rekapitulasi perhitungan waktu pelaksanaan pada pelat Lantai 3, yang dapat dilihat pada Tabel 5.10 berikut ini.

Volume Total Pekerjaan Volume Waktu No Pekerjaan Koefisien Satuan Pekerjaan Harian Pekerjaan (Hari) 0,330 24,242 m^2 200,195 2 1 Bekisting oh m^2 2773,861 Kg 2 Pembesian 0,070114,286 oh Kg 5 3 Beton 1,650 oh 4,848 m^3 30,029 m^3 2 Total 9

Tabel 5.10 Rekapitulasi Waktu Pekerjaan Pelat Lantai 3

5.3.3 Perhitungan Waktu Pekerjaan Pelat Lantai 4

Mengacu pada perhitungan waktu pelaksanaan pada pekerjaan pelat lantai 2, maka didapat rekapitulasi perhitungan waktu pelaksanaan pada pelat Lantai 4, yang dapat dilihat pada Tabel 5.11 berikut ini.

No	Pekerjaan	Koefisien	Satuan	Volun Pekerja Haria	an	Volum Pekerja	an	Total Waktu Pekerjaan (Hari)
1	Bekisting	0,330	oh	24,242	m^2	200,195	m^2	2
2	Pembesian	0,070	oh	114,286	Kg	2773,861	Kg	5
3	Beton	1,650	oh	4,848	m^3	30,029	m^3	2
Tota	ıl							9

Tabel 5.11 Rekapitulasi Waktu Pekerjaan Pelat Lantai 4

5.3.4 Perhitungan Waktu Pekerjaan Pelat Lantai 5

Mengacu pada perhitungan waktu pelaksanaan pada pekerjaan pelat lantai 2, maka didapat rekapitulasi perhitungan waktu pelaksanaan pada pelat Lantai 5, yang dapat dilihat pada Tabel 5.12 berikut ini.

Tabel 5.12 Rekapitulasi Waktu Pekerjaan Pelat Lantai 5

No	Pekerjaan	Koefisien	Satuan	Volume Pekerjaan Harian		<i>Volume</i> Pekerjaan	Total Waktu Pekerjaan (Hari)
1	Bekisting	0,330	oh	24,242	m ²	200,195 m	n^2 2
2	Pembesian	0,070	oh	114,286	Kg	2773,861 K	.g 5
3	Beton	1,650	oh	4,848	m ³	30,029 m	n ³ 2
Tota				1	à	VI	9

5.3.5 Perhitungan Waktu Pekerjaan Pelat Lantai 6

Mengacu pada perhitungan waktu pelaksanaan pada pekerjaan pelat lantai 2, maka didapat rekapitulasi perhitungan waktu pelaksanaan pada pelat Lantai 6, yang dapat dilihat pada Tabel 5.13 berikut ini.

Tabel 5.13 Rekapitulasi Waktu Pekerjaan Pelat Lantai 6

No	Pekerjaan	Koefisien	Satuan	<i>Volum</i> Pekerja Haria	an	<i>Volum</i> Pekerja		Total Waktu Pekerjaan (Hari)
1	Bekisting	0,330	oh	24,242	m^2	200,195	m^2	2
2	Pembesian	0,070	oh	114,286	Kg	2773,861	Kg	5
3	Beton	1,650	oh	4,848	m^3	30,029	m^3	2
Tota	al							9

5.3.6 Perhitungan Waktu Pekerjaan Pelat Atap

Mengacu pada perhitungan waktu pelaksanaan pada pekerjaan pelat lantai 2, maka didapat rekapitulasi perhitungan waktu pelaksanaan pada pelat Atap yang dapat dilihat pada Tabel 5.14 berikut ini.

Tabel 5.14 Rekapitulasi Waktu Pelaksanaan Pekerjaan Pelat Atap

No	Pekerjaan	Koefisien	Satuan	<i>Volume</i> Pekerjaan Harian	<i>Volume</i> Pekerjaan	Total Waktu Pekerjaan (Hari)
1	Bekisting	0,330	oh	24,242 m ²	200,195 m ²	1
2	Pembesian	0,070	oh	114,286 Kg	2773,861 Kg	2
3	Beton	1,650	oh	4,848 m ³	30,029 m ³	1
Tota	ıl 💮		~		7	4

5.3.7 Rekapitulasi Waktu Pelaksanaan Pekerjaan Pelat Lantai

Berdasarkan hasil perhitungan sebelumnya, maka didapat total waktu pelaksanaan pekerjaan pelat lantai tulangan konvensional yang dapat dilihat pada Tabel 5.15 berikut ini.

Tabel 5.15 Rekapitulasi Total Waktu Pekerjaan Pelat Lantai

No	Pekerjaan	Total Waktu Pekerjaan (Hari)
1	Bekisting	11 200
2	Pembesian	27
3	Beton	
Total		49

Maka, total waktu yang dibutuhkan untuk menyelesaikan pekerjaan pelat lantai tulangan konvensional pada Pembangunan Hotel Pondokan Bhayangkara Yogyakarta ini selama 49 hari.

Analisis Kekuatan Pelat Lantai Tulangan Wiremesh

5.4.1 Pelat Lantai A1

1. Pelat Lantai A1

Perhitungan Pelat Lantai 2 Tulangan Wiremesh ini mengacu pada perhitungan Pelat Lantai 2 Tulangan Konvensional, dimana tulangan yang telah didapatkan pada pelat lantai dasar tulangan konvensional diubah menjadi tulangan wiremesh. Berikut ini perhitungan konversi tulangan konvensional ke tulangan wiremesh.

Tulangan Konvensional didapat P10-100. Berdasarkan hal ini, didapat :

Mutu Tulangan Polos

Fy =
$$2400 \text{ kg/cm}^2$$

Mutu Tulangan Wiremesh

Fyw
$$= 5000 \text{ kg/cm}^2$$

Luas Tulangan Konvensional

As
$$= (0.25 \times PI \times 10^{2}) \times 1000/100$$
$$= 785,40 \text{ mm}^{2}$$

Luas Tulangan Wiremesh yang dibutuhkan

Asbutuh
$$= As/(Fy/Fyw)$$

$$= 785,40 / (2400/5000)$$
$$= 376,99 \text{ mm}^2$$

$$= 376.99 \text{ mm}^2$$

Maka, digunakan wiremesh M10-200, dimana:

Asw =
$$(0.25 \times PI \times 10^2) \times 1000/200$$

= 392.70 mm^2

Aswsisa = Asbutuh - Asw =
$$+ (376,99 - 392,70)$$
 = $(15,71) \text{ mm}^2$

Maka tulangan yang digunakan adalah M10-200

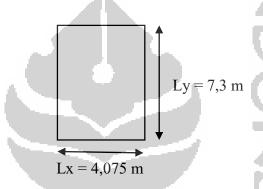
Astetap
$$=$$
 Asw $=$ 392.70

Setelah didapat hasil konversi tulangan wiremesh yang dibutuhkan, maka dilanjutkan menghitung kekuatan tulangan wiremesh yang telah didapatkan. Berikut ini adalah perhitungan kekuatan pelat lantai tulangan wiremesh.

Mutu Bahan digunakan:

Mutu Beton = 25 MPa

Mutu Baja *Wiremesh* = 500 MPa


Tulangan = M10-200

Beban Sendiri Pelat = 2 kN/m^2

Beban Hotel = 3 kN/m^2

Tebal Pelat Lantai = 150 mm

Dimensi pelat lantai dapat dilihat pada gambar 5.3 sebagai berikut.

Gambar 5.3 Dimensi Pelat Lantai A1

(Sumber: Data Lapangan)

Setelah data-data yang dibutuhkan didapatkan, selanjutnya adalah menghitung beban hidup maksimum yang dapat diampu oleh pelat dengan tulangan yang telah ditentukan. Berikut ini adalah langkah-langkah perhitungannya.

f'c = 25 MPa < 30 MPa, maka
$$\beta_1 = 0.85$$

fy = 500 MPa
$$\rightarrow \epsilon_y$$
 = fy/Es = 500/200000 = 0,003

Tulangan yang digunakan adalah M10 dan penutup beton 20 mm, maka:

ds
$$= 20 + 10/2 = 25 \text{ mm}$$

$$d = h - ds = 150 - 25 = 125 \text{ mm}$$

Luas 1 batang M10
$$\Rightarrow$$
 A_{1P} = $\frac{1}{4} \pi r^2 = \frac{1}{4} . 3,14. 10^2 = 78,5 \text{ mm}^2$

Tulangan yang digunakan adalah M10-200, maka luas tulangan yang digunakan untuk setiap 1000 mm lebar pelat :

$$As_1 = As_{1P}.1000/S = 78,5.\ 1000/200 = 392,500 \text{ mm}^2$$

Dianggap tulangan telah mencapai regangan leleh, sehingga gaya-gaya dalam yang bekerja adalah :

C = As.
$$Fy = 423,900.500 = 196250,000 N$$

Keseimbangan gaya-gaya dalam C = T

$$= 196250,000 / 21250,000 = 9,235 \text{ mm}$$

$$x = a/\beta_1 = 9,974/0,85 = 10,865 \text{ mm}$$

Periksa regangan tulangan

$$\epsilon_s = d - x/x$$
 . $\epsilon_{cu} = 125 - 10,865 / 10,865$. $0,003 = 0,032 > \epsilon_y = 0,003$ \Longrightarrow leleh

Momen nominal dan momen terfaktor

Mn = As.Fy.
$$(d - a/2)$$

$$= 392,500.500. (125 - 9,235/2)$$

$$= 23,625 \text{ kNm}$$

 $Mu = \phi. Mn$

= 0.8.23,625

= 18,900 kNm

5.4.2 Pelat Lantai A2

Berdasarkan perhitungan pelat lantai A1, didapat rekapitulasi perhitungan konversi wiremesh pelat lantai A2 yang dapat dilihat pada Tabel 5.16 dan 5.16 di bawah ini.

Tabel 5.16 Rekapitulasi Tulangan Wiremesh Pelat Lantai A2

	Mutu Bahan	Δ	NA	Satuan	Keterangan
Mutu Beton		fc	25	MPa	
Mutu Baja		fy	500	MPa	
Tulangan	7	M10	200	7/-	
Beban Sendiri Pelat		wD	2	kN/m²	
Beban Rumah Singgah	1	wL	3	kN/m²	
Tebal Pelat Lantai	A	h	130	mm	
Ų,		L	7,3	m	
107		β1	0,850	7/4	
1.77		εγ	0,003	=	
Penutup Beton			20	mm	
		ds	25	mm	
		d	105	mm	
17		A1P	78,500	mm ²	
12		b	1000	mm	
12		As	392,500	mm ²	
Gaya Dalam		T	21250,000	a.N	
10/	r tracke	C	196250,000	N	ř.
Pa - 18	Keseim	bangan	Gaya Dalam	THE STATE OF THE S	
		С	Т		
		a	9,235	mm	
		X	10,865	mm	
Periksa Regangan		ES	0,026	>	εy (leleh)
]	Momen Nomi	nal dan	Momen Terfa	ktor	<u>'</u>
		Mn	19,700	kNm	
		Mu	15,760	kNm	

5.4.3 Pelat Lantai A3

Berdasarkan perhitungan pelat lantai A1, didapat rekapitulasi perhitungan konversi wiremesh lantai A3 yang dapat dilihat pada Tabel 5.18 dan 5.17 di bawah ini.

Tabel 5.17 Rekapitulasi Tulangan Wiremesh Pelat Lantai A3

Mutu Bahan	A	N.A.	Satuan	Keterangan
Mutu Betom	fc	25	MPa	
Mutu Baja	fy	500	MPa	
Tulangan	8	200	7 (3)	
Beban Sendiri Pelat	wD	2	kN/m ²	
Beban Rumah Singgah	wL	3	kN/m²	
Tebal Pelat Lantai	h	130	mm	
V.	L	7,3	m	
	β1	0,850	7	
	εy	0,003		
Penutup Beton		20	mm	
	ds	24	mm	
12	d	106	mm	
7	A1P	50,240	mm ²	
	b	1000	mm	
	As	502,4	mm ²	
Gaya Dalam	Т	21250,000	a.N	
100 92414	C	125600,000	N	ė.
	bangan	Gaya Dalam	- 4	
	C	T		
	a	5,911	mm	
	Х	6,954	mm	
Periksa Regangan	εs	0,043	>	εy (leleh)
Momen Nomi	nal dan	Momen Terfa	ktor	<u> </u>
	Mn	12,942	kNm	
	Mu	10,354	kNm	

5.5 Analisis Kebutuhan Biaya Pekerjaan Pelat Lantai Tulangan Wiremesh

5.5.1 Analisa Harga Satuan Pekerjaan Pelat Lantai Tulangan Wiremesh

Pekerjaan pelat lantai dengan tulangan wiremesh ini sama dengan pekerjaan pelat lantai tulangan biasa, tetapi tulangan yang dipakai dalam pekerjaan ini adalah besi wiremesh, besi wiremesh ini adalah pengganti dari besi polos/ulir yang biasa digunakan dalam pengerjaan pelat lantai. Pekerjaan ini mengacu pada koefisien Standar Nasional Indonesia (SNI) yaitu SNI 7394 : 2008, dengan beberapa modifikasi sesuai keadaan dilapangan, dilakukan perhitungan harga satuan pekerjaan bekisting, pekerjaan pembesian, dan pekerjaan beton cor K 300 Sebagai berikut :

1. Pekerjaan pembesian 1 kg dengan besi *wiremesh* dapat dilihat pada Tabel 5.18 berikut ini.

Tabel 5.18 Analisa Harga Satuan Pekerjaan 1 kg Besi Wiremesh

No	Jenis Pekerjaan	Satuan	Volume	Harga Satuan (Rp)	Jumlah Harga (Rp)
1	Pekerja	oh	0,025	50.000,00	1.250,00
2	Tukang Besi	oh	0,025	64.000,00	1.600,00
3	Kepala Tukang	oh	0,002	70.000,00	140,00
4	Mandor	oh	0,001	80.000,00	80,00
Jun	ılah Tenaga Kerja				3.070,00
No	Bahan	Satuan	Volume	Harga Satuan	Jumlah
				(Rp)	Harga (Rp)
1	Wiremesh M8	kg	1,020		8.160,00
1 2				(Rp)	
_	Wiremesh M8	kg	1,020	(Rp) 8.000,00	8.160,00
2	Wiremesh M8 Wiremesh M10	kg kg	1,020 1,020	(Rp) 8.000,00 16.600,00	8.160,00 16.932,00

Perancanaan Luasan Struktur Pelat Lantai

Pelaksanaan pembangunan Hotel Pondokan Bhayangkara Yogyakarta yang mempunyai tinggi 6 lantai dan atap. Lantai 2 sampai dengan lantai 6 mempunyai luas pelat yang sama, sedangkan pelat atap mempunyai luas yang berbeda dengan pelat lantai lainya. Hal ini berdasarkan data gambar denah struktur pelat lantai bangunan (terlampir). Rekapitulasi luasan pelat lantai dapat dilihat pada Tabel 5.19, 5.20, 5.21, 5.22, 5.23, 5.24 berikut ini.

Tabel 5.19 Luas Pelat Lantai 2

	Lantai 2				
Tipe	Ly (m)	Lx (m)	Luas (m ²)	Jumlah (Bidang)	Luas Pelat (m ²)
Elevasi Lantai 2 (+3,20)					
P1	7,300	4,075	29,748	2,000	59,495
P2	7,300	2,988	21,809	6,000	130,853
Р3	5,050	1,950	9,848	1,000	9,848
Total I	uas Pelat				200,195

Tabel 5.20 Luas Pelat Lantai 3

Lantai 3					-
Tipe	Ly (m)	Lx (m)	Luas (m ²)	Jumlah (Bidang)	Luas Pelat (m ²)
		El	evasi Lantai	3 (±6,80 m)	
P1	7,300	4,075	29,748	2,000	59,495
P2	7,300	2,988	21,809	6,000	130,853
P3	5,050	1,950	9,848	1,000	9,848
Total Luas Pelat					200,195

Tabel 5.21 Luas Pelat Lantai 4

	Lantai 4				
Tipe	Ly (m)	Lx (m)	Luas (m ²)	Jumlah (Bidang)	Luas Pelat (m ²)
	l	Ele	evasi Lantai	4 (±10,10 m)	
P1	7,300	4,075	29,748	2,000	59,495
P2	7,300	2,988	21,809	6,000	130,853
P3	5,050	1,950	9,848	1,000	9,848
	Total Luas Pelat 200,195				
Tabel 5.22 Luas Pelat Lantai 5					

Lantai 5					
Tipe	Ly (m)	Lx (m)	Luas (m ²)	Jumlah (Bidang)	Luas Pelat (m ²)
	Elevasi Atap (±13,40 m)				
P1	7,300	4,075	29,748	2,000	59,495
P2	7,300	2,988	21,809	6,000	130,853
P3	5,050	1,950	9,848	1,000	9,848
Total I	Total Luas Pelat 200,195				

Tabel 5.23 Luas Pelat Lantai 6

	Lantai 6					
Tipe	Ly (m)	Lx (m)	Luas (m ²)	Jumlah (Bidang)	Luas Pelat (m ²)	
	Elevasi Atap (±17,10 m)					
P1	7,300	4,075	29,748	2,000	59,495	
P2	7,300	2,988	21,809	6,000	130,853	
Р3	5,050	1,950	9,848	1,000	9,848	
Total L	uas Pelat	200,195				

Atap Luas (m2) Tipe Jumlah (Bidang) Luas Pelat (m²) Ly (m) Lx (m) Elevasi Atap ($\pm 20,40$ m) P1 5,050 1,950 9,848 1,000 9,848 P2 5,050 1,500 7,575 1,000 7,575 P3 5,050 2,200 11,110 1,000 11,110 P4 1,000 2,950 5.050 1,650 2,950 31,483 **Total Luas Pelat**

Tabel 5.24 Luas Pelat Atap

4.5.2 Perhitungan Kebutuhan Material dan Bahan

1. Perhitungan Pelat Lantai 2

Pelat Lantai 2 Tipe 1 ini mempunyai luas sebesar 29,748 m². Pelat ini mempunyai 2 bidang. Berikut ini adalah perhitungan kebutuhan material dan bahan pada pelat lantai dasar tipe 1.

a. Perhitungan kebutuhan material pembesian

1) Perhitungan pembesian

Dari perhitungan luas tipe-tipe pelat yang terdapat pada bangunan lantai 2, maka didapat total luasan struktur pelat lantai tipe 1 pada bangunan lantai 2 memiliki luasan seluas 59,495 m².

Untuk pekerjaan pembesian *wiremesh* tipe m10 yang memiliki ukuran perlembar seluas 2,1 x 5,4 m atau 11,34 m² dengan berat besi *wiremesh* sebesar 96,54 kg, maka untuk luasan besi *wiremesh* 1 m² memiliki berat sebesar 8,51 kg. Pekerjaan 1 kg *wiremesh* mempunyai koefisien 1,02.

Untuk perhitungan kebutuhan *volume* besi *wiremesh* pada struktur pelat lantai pembangunan Hotrl Bhayangkara pada bangunan Lantai 2 yaitu :

Kebutuhan wiremesh dalam $kg = ((Ly \times Lx) \times 8,51) \times Jumlah Tipe \times 1,02$ Contoh perhitungan kebutuhan besi Wiremesh sebagai berikut :

Pelat Lantai dasar Tipe $1 = 7.3 \times 4.075 \times 8.51 \times 2 \times 1.02 = 516.428 \text{ kg}$.

Total kebutuhan besi *Wiremesh* pada pekerjaan pelat lantai dasar adalah 516,428 kg.

2) Perhitungan Kawat

Untuk pekerjaan pemasangan 1 kg besi *wiremesh* dibutuhkan kawat sebesar 0,05 kg. Kebutuhan kawat untuk luasan pelat 59,495 m² adalah:

 $= 516,428 \text{ kg} \times 0,05 \text{ kg} = 25,821 \text{ kg}.$

2. Perhitungan Pelat Lantai 2

Dari perhitungan Kebutuhan Material Pelat Lantai 2 Tipe 1 didapat hasil perhitungan untuk pelat Lantai 2 yang dapat dilihat pada Tabel 5.25 berikut ini.

Tabel 5.25 Rekapitulasi Kebutuhan Material Pelat Lantai 2

Tipe Pelat	Jenis I	Material
Lantai 2	Pem	besian
Lantai 2	Wiremesh (kg)	Kawat (kg)
P1	516,428	25,821
P2	1135,826	56,791
P3	85,478	4,274
Total	1737,733	86,887

3. Perhitungan Pelat Lantai 3

Dari perhitungan Kebutuhan Material Pelat Lantai 2 Tipe 1 didapat hasil perhitungan untuk pelat Lantai 3 yang dapat dilihat pada Tabel 5.26 berikut ini.

Tabel 5.26 Rekapitulasi Kebutuhan Material Pelat Lantai 3

Tipe Pelat	Jenis I	Material Material			
Lantai 3	Pembesian				
Lantai 3	Wiremesh (kg)	Kawat (kg)			
P1	516,428	25,821			
P2	1135,826	56,791			
Р3	85,478	4,274			
Total	1737,733	86,887			

4. Perhitungan Pelat Lantai 4

Dari perhitungan Kebutuhan Material Pelat Lantai 2 Tipe 1 didapat hasil perhitungan untuk pelat Lantai 4 yang dapat dilihat pada Tabel 5.27 berikut ini.

Tabel 5.27 Rekapitulasi Kebutuhan Material Pelat Lantai 4

Tipe Pelat	Jenis M	laterial
Lantai 4	Pemb	esian
II.n	Wiremesh (kg)	Kawat (kg)
P1	516,428	25,821
P2	1135,826	56,791
P3	85,478	4,274
Total	1737,733	86,887

5. Perhitungan Pelat Lantai 5

Dari perhitungan Kebutuhan Material Pelat Lantai 2 Tipe 1 didapat hasil perhitungan untuk pelat Lantai 5 yang dapat dilihat pada Tabel 5.28 berikut ini.

Tabel 5.28 Rekapitulasi Kebutuhan Material Pelat Lantai 5

Tipe Pelat	Jenis M	aterial
Lantai 5	Pemb	esian
	Wiremesh (kg)	Kawat (kg)
P1	516,428	25,821
P2	1135,826	56,791
P3	85,478	4,274
Total	1737,733	86,887

6. Perhitungan Pelat Lantai 6

Dari perhitungan Kebutuhan Material Pelat Lantai 2 Tipe 1 didapat hasil perhitungan untuk pelat Lantai 5 yang dapat dilihat pada Tabel 5.29 berikut ini.

Tabel 5.29 Rekapitulasi Kebutuhan Material Pelat Lantai 6

Tipe Pelat	Jenis Material Pembesian				
Lantai 5	Wiremesh (kg)	Kawat (kg)			
P1	516,428	25,821			
P2	1135,826	56,791			
P3	85,478	4,274			
Total	1737,733	86,887			

7. Perhitungan Pelat Atap

Dari perhitungan Kebutuhan Material Pelat Lantai 2 Tipe 1 didapat hasil perhitungan untuk pelat atap yang dapat dilihat pada Tabel 5.30 berikut ini.

Tabel 5.30 Rekapitulasi Kebutuhan Material Pelat Atap

Tipe Pelat	Jenis M	aterial
Atap	Pemb	esian
Actap	Wiremesh (kg)	Kawat (kg)
P1	54,742	2,737
P2	42,109	2,105
P3	61,760	3,088
P4	46,320	2,316
Total	204,933	10,247

8. Rekapitulasi Perhitungan Pekerjaan Pelat Lantai

Dari perhitungan Kebutuhan Material Pelat Lantai 2, 3, 4, 5, dan Atap didapat total perhitungan dari setiap Pelat Lantai yang ada. Rekapitulasi perhitungannya dapat dilihat pada Tabel 5.31 berikut ini.

Tabel 5.31 Rekapitulasi Kebutuhan Material Pekerjaan Pelat Pada Pembangunan Hotel Pondokan Bhayangkara Yogyakarta

Ita	Jenis M	[aterial
Lantai	Pemb	esian
IQ.	Wiremesh (kg)	Kawat (kg)
2	1737,733	86,887
3	1737,733	86,887
4	1737,733	86,887
5	1737,733	86,887
6	1737,733	86,887
Atap	204,933	10,247
Total	8734,984	461,151

4.5.3 Perhitungan Kebutuhan Biaya Material Dan Bahan Pekerjaan Pembesian Pelat Lantai

Analisis perhitungan kebutuhan material berdasarkan peraturan SNI 7394-2008, dari perhitungan tersebut didapat kebutuhan biaya material untuk pekerjaan pelat lantai Tulangan Wiremesh (harga satuan material x *Volume* pekerjaan).

Rekapitulasi Biaya Kebutuhan Material Struktur Pelat Pada Pembangunan Hotel Pondokan Bhayangkara Yogyakarta dapat dilihat pada Tabel 5.32, 5.33, 5.34, 5.35, 5.36, 5.37, 5.38 berikut ini.

Tabel 5.32 Rekapitulasi Biaya Kebutuhan Material Pembesian Pelat Lantai 2

Pelat Lantai 2					
No	Material	Satuan	Volume	AHS (Rp)	Biaya (Rp)
Pekerjaan Pembesian					
1	Wiremesh	kg	1737,733	16.600,00	28.846.361,81
2	Kawat	kg	86,887	13.000,00	1.129.526,22
Sub Total Pelat Lantai 2 29.97				29.975.888,02	

Tabel 5.33 Rekapitulasi Biaya Kebutuhan Material Pembesian Pelat Lantai 3

Pelat Lantai 3				- N	
No	Material	Satuan	Volume	AHS (Rp)	Biaya (Rp)
Peke	Pekerjaan Pembesian				
1	Wiremesh	kg	1737,733	16.600,00	28.846.361,81
2	Kawat	kg	86,887	13.000,00	1.129.526,22
Sub	Total Pelat Lantai 3				29.975.888,02

Tabel 5.34 Rekapitulasi Biaya Kebutuhan Material Pembesian Pelat Lantai 4

Pela	Pelat Lantai 4					
No	Material	Satuan	Volume	AHS (Rp)		Biaya (Rp)
Pek	Pekerjaan Pembesian					1
1	Wiremesh		kg	1737,733	16.600,00	28.846.361,81
2 Kawat kg 86,887 13.000,00					1.129.526,22	
Sub	Sub Total Pelat Lantai 4					29.975.888,02

Tabel 5.35 Rekapitulasi Biaya Kebutuhan Material Pembesian Pelat Lantai 5

Pela	t Lantai 5	1/4			
No	Material	Satuan	Volume	AHS (Rp)	Biaya (Rp)
Pek	erjaan Pembesian				}
1	Wiremesh	kg	1737,733	16.600,00	28.846.361,81
2	Kawat	kg	86,887	13.000,00	1.129.526,22
Sub	Total Pelat Lantai	5		7 3	29.975.888,02

Tabel 5.36 Rekapitulasi Biaya Kebutuhan Material Pembesian Pelat Lantai 6

Pela	Pelat Lantai 6					
No	Material	Satuan	Volume	AHS (Rp)	Biaya (Rp)	
Pekerjaan Pembesian				h		
1	Wiremesh	kg	1737,733	16.600,00	28.846.361,81	
2	Kawat	kg	86,887	13.000,00	1.129.526,22	
Sub Total Pelat Lantai 6 29.975.888					29.975.888,02	

Tabel 5.37 Rekapitulasi Biaya Kebutuhan Material Pembesian Pelat Atap

Pela	Pelat Atap					
No	Material	Satuan	Volume	AHS (Rp)	Biaya (Rp)	
Pek	Pekerjaan Pembesian					
1	Wiremesh	kg	204,933	8.000,00	1.639.460,28	
2	Kawat	kg	10,247	13.000,00	133.206,15	
Sub Total Pelat Lantai Atap					1.772.666,43	

Tabel 5.38 Rekapitulasi Total Biaya Kebutuhan Material Pembesian Pelat Lantai Tulangan Wiremesh

Pelat	Wiremesh (Rp)	Kawat (Rp)	Biaya (Rp)
Pelat Lantai 2	28.846.361,81	1.129.526,22	29.975.888,02
Pelat Lantai 3	28.846.361,81	1.129.526,22	29.975.888,02
Pelat Lantai 4	28.846.361,81	1.129.526,22	29.975.888,02
Pelat Lantai 5	28.846.361,81	1.129.526,22	29.975.888,02
Pelat Lantai 6	28.846.361,81	1.129.526,22	29.975.888,02
Pelat Atap	1.639.460,28	133.206,15	1.772.666,43
Total Biaya Ma	151.130.423,07		

4.6 Analisis Waktu Pelaksanaan Pekerjaan Pelat Lantai Tulangan Wiremesh

Waktu pelaksanaan merupakan aspek yang penting dalam sebuah proyek konstruksi. Apabila waktu pelaksanaan tidak direncanakan dengan sebaik-baiknya, maka akan berimbas kepada biaya proyek yang akan semakin tinggi. Terlambatnya suatu proyek konstruksi juga akan mengakibatkan kontraktor yang melaksanakan suatu proyek terkena denda dikarenakan tidak sesuai dengan kontrak awal sebuah proyek konstruksi. Maka dari itu, perhitungan waktu pelaksanaan menjadi faktor penting dari sebuah proyek konstruksi. Dalam proyek Pembangunan Hotel Pondokan Bhayangkara Yogyakarta ini, waktu total perencanaan awal pengerjaan proyek ini sampai dengan selesai adalah 210 hari kerja. Untuk pengerjaan pelat lantai bangunan, total waktu yang dibutuhkan untuk menyelesaikannya adalah 24 minggu dari total 29 minggu atau 210 hari kerja. Hal ini terdapat dalam *time schedule* proyek pembangunan Hotel Pondokan Bhayangkara Yogyakarta (terlampir).

Perhitungan waktu pelaksanaan pekerjaan pelat lantai tulangan wiremesh dibagi menjadi 3 bagian, yaitu pekerjaan pemasangan bekisting, pemasangan tulangan/pembesian dan pembuatan beton.

5.6.1 Perhitungan Waktu Pelaksanaan Pekerjaan Pelat Lantai 2

1. Pekerjaan pemasangan 1 m² bekisting dapat dilihat pada Tabel 5.39 berikut ini.

Tabel 5.39 Analisa Harga Satuan Pekerjaan 1 m² Bekisting Pelat Lantai

No	Jenis Pekerjaan	Volume	Harga Satuan (Rp)	Jumlah Harga (Rp)
1	Pekerja	0,660	50.000,00	33.000,00
2	Tukang Kayu	0,330	67.000,00	22.110,00
3	Kepala Tukang	0,033	70.000,00	2.310,00
4	Mandor	0,033	80.000,00	2.640,00
Tota	al Upah per 1 m ² Bekisting			60.060,00

Dari tabel di atas, bisa dilihat bahwa pekerjaan pemasangan 1 m² bekisting pelat, koefisien tukang kayu sebesar 0,330. Ini artinya 1 orang tukang kayu bisa

menyelesaikan minimal 1 orang : $0,330 = 3,030 \text{ m}^2$ bekisting dalam 1 jam. Apabila jam kerja efektif dalam 1 hari adalah 8 jam, maka 1 hari : $(0,330 \text{ oh/hari } \times 8 \text{ jam}) = 24,242 \text{ m}^2$ bekisting dalam 1 hari.

Pekerjaan bekisting dalam Proyek Pembangunan Hotel Pondokan Bhayangkara Yogyakarta ini berjumlah 5 tukang kayu, maka durasi pekerjaannya menjadi :

Total *volume* pekerjaan bekisting lantai dasar : *volume* pekerjaan harian x total pekerja.

 $59,495 \text{ m}^2$: 24,242 m²/hari x 5 orang = 1,652 hari \approx 2 hari

Maka, total waktu pekerjaan bekisting yang dibutuhkan untuk menyelesaikan pekerjaan pelat lantai dasar sebesar 1,652 hari ≈ 2 hari

2. Pekerjaan pembesian 1 kg dengan *wiremesh* dapat dilihat pada Tabel 5.40 berikut ini.

	L /		Harga	4	
No	Jenis Pekerjaan	Volume	Satuan	Jumlah l	Harga (Rp)
	15		(Rp)	171	
1	Pekerja	0,025	50.000,00	101	1.250,00
2	Tukang Besi	0,025	64.000,00	7.1	1.600,00
3	Kepala Tukang	0,002	70.000,00	7.	140,00
4	Mandor	0,001	80.000,00	2	80,00
Tota	al Upah per 10 Kg <i>Wirem</i>	esh			3.070,00

Tabel 5.40 Analisa Harga Satuan Pekerjaan 10 kg Wiremesh

Dari tabel di atas, bisa dilihat bahwa pekerjaan pemasangan 1 kg *wiremesh*, koefisien tukang besi sebesar 0,025. Apabila jam kerja efektif dalam 1 hari adalah 8 jam, maka (1 jam : 0,025 kg/hari) x 8 = 320,000 kg *wiremesh* dalam 1 hari.

Pekerjaan pembesian dalam Proyek Pembangunan Hotel Pondokan Bhayangkara Yogyakarta ini berjumlah 5 tukang besi, maka durasi pekerjaannya menjadi :

= Total *volume* pekerjaan pembesian lantai dasar : (*volume* pekerjaan x jumlah pekerja)

= 2181,126 kg : $(320,000 \text{ kg/hari x 5 orang}) = 1,364 \text{ hari} \approx 2 \text{ hari}$

Maka, total waktu pekerjaan pembesian yang dibutuhkan untuk menyelesaikan pekerjaan pelat lantai dasar sebesar 1,364 hari ≈ 2 hari

3. Pekerjaan pembuatan Beton K300 dapat dilihat pada Tabel 5.41 berikut ini.

Tabel 5.41 Analisa Harga Satuan 1 m³ Beton K300

Mer	Membuat 1 m ³ Beton Mutu F'c = 25 Mpa (K 300), Slump (12 \pm 2) Cm, W/C = 0.52								
No	Jenis Pekerjaan	Volume	Harga Satuan (Rp)	Jumlah Harga (Rp)					
1	Pekerja	1,650	50.000,00	82.500,00					
2	Tukang Batu	0,275	64.000,00	17.600,00					
3	Kepala Tukang	0,028	70.000,00	1.960,00					
4	4 Mandor 0,083 80.000,00 6.640,00								
Tota	al Upah per 1 m ³ Beton k		108.700,00						

Dari tabel di atas, bisa dilihat bahwa pekerjaan pembuatan beton K300, koefisien pekerja sebesar 1,650. Ini artinya 1 orang pekerja bisa menyelesaikan minimal 1 orang : $1,650 = 0,606 \text{ m}^3$ beton dalam 1 hari. Apabila jam kerja efektif dalam 1 hari adalah 8 jam, maka (1 jam : $0,606 \text{ m}^3$ /hari) x 8 jam = $4,848 \text{ m}^3$ beton dalam 1 hari.

Pekerjaan pembuatan beton K300 dalam Proyek Pembangunan Hotel Pondokan Bhayangkara Yogyakarta ini berjumlah 5 pekerja, maka durasi pekerjaannya menjadi:

Total *volume* pekerjaan beton lantai dasar : *volume* pekerjaan harian x jumlah pekerja

 $30,029 \text{ kg} : 4,848 \text{ m}^3/\text{hari } \times 5 \text{ orang} = 1,239 \text{ hari } \approx 2 \text{ hari}$

Maka, total waktu pekerjaan pembesian yang dibutuhkan untuk menyelesaikan pekerjaan pelat lantai dasar sebesar 1,239 hari ≈ 2 hari

5.6.2 Perhitungan Waktu Pelaksanaan Pekerjaan Pelat Lantai 3

Mengacu pada perhitungan waktu pelaksanaan pada pekerjaan pelat lantai 2, maka didapat rekapitulasi perhitungan waktu pelaksanaan pada pelat Lantai 3, yang dapat dilihat pada Tabel 5.42 berikut ini.

Tabel 5.42 Rekapitulasi Waktu Pelaksanaan Pekerjaan Pelat Lantai 3

No	Pekerjaan	Koefisien	Satuan	Volume Pekerjaan Harian	Volume Pekerjaan	Total Waktu Pekerjaan (Hari)
1	Bekisting	0,330	oh	24,242 m ²	200,195 m ²	2
2	Pembesian	0,025	oh	320,000 Kg	1703,659 Kg	2
3	Beton	1,650	oh	4,848 m ³	30,029 m ³	2
Tota	al		~		7	6

5.6.3 Perhitungan Waktu Pelaksanaan Pekerjaan Pelat Lantai 4

Mengacu pada perhitungan waktu pelaksanaan pada pekerjaan pelat lantai 2, maka didapat rekapitulasi perhitungan waktu pelaksanaan pada pelat Lantai 3, yang dapat dilihat pada Tabel 5.43 berikut ini.

Tabel 5.43 Rekapitulasi Waktu Pelaksanaan Pekerjaan Pelat Lantai 4

No	Pekerjaan	Koefisien	Satuan	Volume Pekerjaa Harian	ın	Volum Pekerja:		Total Waktu Pekerjaan (Hari)
1	2	0,330	oh	24,242	m ²	200,195	m ²	2
2	2	0,025	oh	320,000 I	Kg	1703,659	Kg	2
3	2	1,650	oh	4,848	m ³	30,029	m^3	2
Tota	al				'			6

5.6.4 Perhitungan Waktu Pelaksanaan Pekerjaan Pelat Lantai 5

Mengacu pada perhitungan waktu pelaksanaan pada pekerjaan pelat lantai 2, maka didapat rekapitulasi perhitungan waktu pelaksanaan pada pelat lantai 5, yang dapat dilihat pada Tabel 5.44 berikut ini.

Tabel 5.44 Rekapitulasi Waktu Pelaksanaan Pekerjaan Pelat Lantai 5

No	Pekerjaan	Koefisien	Satuan	Volume Pekerjaan Harian	<i>Volume</i> Pekerjaan	Total Waktu Pekerjaan (Hari)
1	Bekisting	0,330	oh	24,242 m ²	200,195 m ²	2
2	Pembesian	0,025	oh	320,000 Kg	1703,659 Kg	2
3	Beton	1,650	oh	4,848 m ³	30,029 m ³	2
Tota	al		~		7	6

5.6.5 Perhitungan Waktu Pelaksanaan Pekerjaan Pelat Lantai 6

Mengacu pada perhitungan waktu pelaksanaan pada pekerjaan pelat lantai 2, maka didapat rekapitulasi perhitungan waktu pelaksanaan pada pelat lantai 5, yang dapat dilihat pada Tabel 5.45 berikut ini.

Tabel 5.45 Rekapitulasi Waktu Pelaksanaan Pekerjaan Pelat Lantai 6

No	Pekerjaan	Koefisien	Satuan	Volume Pekerjaai Harian	n	Volum Pekerja	-	Total Waktu Pekerjaan (Hari)
1	Bekisting	0,330	oh	24,242 n	n ²	200,195	m ²	2
2	Pembesian	0,025	oh	320,000 K	ζg	1703,659	Kg	2
3	Beton	1,650	oh	4,848 n	n ³	30,029	m ³	2
Tota	al							6

5.6.6 Perhitungan Waktu Pelaksanaan Pekerjaan Pelat Atap

Mengacu pada perhitungan waktu pelaksanaan pada pekerjaan pelat lantai 2, maka didapat rekapitulasi perhitungan waktu pelaksanaan pada pelat atap, yang dapat dilihat pada Tabel 5.46 berikut ini.

Tabel 5.46 Rekapitulasi Waktu Pelaksanaan Pekerjaan Pelat Atap

No	Pekerjaan	Satuan	Koefisien Pekerjaan	Volume Pekerjaan Harian	Volume Pekerjaan	Total Waktu Pekerjaan (Hari)
1	Bekisting	0,330	oh	24,242	36,865	1
2	Pembesian	0,025	oh	320,000	155,502	1
3	Beton	1,650	oh	4,848	4,280	1
Tota	al		~		4	3

5.6.7 Rekapitulasi Waktu Pelaksanaan Pekerjaan Pelat Lantai

Berdasarkan hasil perhitungan semua pelat, maka didapat total waktu pelaksanaan pekerjaan pelat lantai tulangan konvensional yang dapat dilihat pada Tabel 5.47 berikut ini.

Tabel 5.47 Rekapitulasi Total Waktu Pekerjaan Pelat Lantai

No	Pekerjaan	Total Waktu Pekerjaan (Hari)
1	Bekisting	11
2	Pembesian	
3	Beton	Contraction of the
Total		33

Maka, total waktu yang dibutuhkan untuk menyelesaikan pekerjaan pelat lantai tulangan wiremesh pada Pembangunan Hotel Pondokan Bhayangkara Yogyakarta ini selama 33 hari.

5.7 Pembahasan

Proyek Pembangunan Hotel Pondokan Bhayangkara Yogyakarta yang berlokasi di Jl. Bhayangkara No 13 Ngampilan, Yogyakarta ini memiliki total 6 pelat lantai dengan luas bangunan sebesar 1390 m². Proyek ini memiliki total tipe pelat lantai sebanyak 3 jenis, dimana tiap lantai memiliki tipe pelatnya masingmasing. Pada penelitian ini, pekerjaan pelat menjadi topik utama untuk dijadikan penelitian, pekerjaan pelat ini meliputi pelat lantai 2 sampai dengan pelat atap.

Dalam proyek ini, pekerjaan pelat lantai menggunakan pelat lantai tulangan konvensional. Oleh sebab itu, diperlukan analisis pekerjaan menggunakan pelat lantai tulangan *wiremesh*. Analisis dan perbandingan kekuatan pelat lantai tulangan polos dan tulangan *wiremesh* dapat dilihat pada Tabel 5.48 berikut ini.

Tabel 5.48 Rekapitulasi Kekuatan Tulangan Konvensional dan Penggunaan Tulangan Wiremesh

Pelat		Tulangan Konvensional					Tula	ngan <i>Wir</i>	emesh
Lantai	Tulangan S				Tulangan L				
		10P-100			10P-200		17	M8-100	
Pelat A1	Mn	22,715	kNm	Mn	11,566	kNm	Mn	23,625	kNm
1.7	Mu	18,172	kNm	Mu	9,253	kNm	Mu	18,900	kNm
12	-	10P-100			10P-200		3		
Pelat A2	Mn	18,947	kNm	Mn	9,682	kNm	Mn	19,700	kNm
	Mu	15,157	kNm	Mu	7,746	kNm	Mu	15,760	kNm
1.5	,	10P-200	HIA	7	10P-200	4.3			
Pelat A3	Mn	9,682	kNm	Mn	9,682	kNm	Mn	12,942	kNm
	Mu	7,746	kNm	Mu	7,746	kNm	Mu	10,354	kNm

Analisis kekuatan dalam pekerjaan pelat lantai ini adalah dengan menghitung momen rencana dan momen kapasitas berdasarkan tulangan yang sudah dipakai di dalam Proyek Pembangunan Hotel Bhayangkara. Setelah didapat momen rencana dan momen kapasitas, kemudian pelat tulangan konvensional dikonversikan ke tulangan wiremesh yang sesuai dengan pembahasan di dalam tugas akhir ini.

Perbandingan yang dilakukan dilihat dari momen rencana dan momen kapasitas yang didapat dari perhitungan pelat lantai tulangan konvensional dan tulangan wiremesh. Dari perhitungan di atas menunjukkan bahwa, momen rencana dan momen kapasitas pelat lantai tulangan wiremesh M10 dan M8 lebih besar dibandingkan dengan menggunakan pelat lantai tulangan konvensional. Hal ini menunjukkan bahwa penggunaan tulangan wiremesh berpengaruh pada hasil momen rencana dan momen kapasitas yang didapat. Selain unggul dalam hal kekuatan, penggunaan tulangan wiremesh pada pelat lantai juga lebih terjamin kualitasnya karena merupakan cetakan pabrik sehingga jarak antar tulangan lebih akurat dan mutunya lebih seragam jika di bandingkan dengan tulangan konvensional, karena tulangan konvensional semua prosesnya di kerjakan secara manual oleh tukang dari awal hingga pemasangan rangkaian tulangan.

Hal berikutnya adalah perhitungan biaya. rekapitulasi biaya pelat lantai tulangan konvensional dan pelat lantai tulangan wiremesh dapat dilihat pada Tabel 5.49 berikut ini.

Tabel 5.49 Rekapitulasi Perbandingan Biaya Pelat Lantai Tulangan Konvensional dan Tulangan Wiremesh

Komponen	Pelat	Lantai Tulangan	Pelat Lantai		
Komponen	K	Konvensional	Tulangan Wiremesh		
Bekisting	Rp	272.641.318,34	Rp	272.641.318,34	
Pembesian	Rp	211.430.784,81	Rp	151.130.423,07	
Beton 25 Mpa	Rp	116.558.704,09	Rp	116.558.704,09	
Total	Rp	600.630.807,24	Rp	540.330.445,47	

Dari tabel di atas, didapat selisih biaya untuk pekerjaan pelat lantai sebesar Rp. 60.300.361,74. Hal ini menunjukkan bahwa biaya pekerjaan pelat menggunakan tulangan *wiremesh* lebih ekonomis sebesar 10,04% dibandingkan dengan pekerjaan pelat lantai tulangan konvensional.

Setelah analisis harga total pekerjaan menggunakan pelat tulangan konvensional dan tulangan *wiremesh*, maka selanjutnya adalah membandingkan total waktu pekerjaan menggunakan tulangan konvensional dan tulangan *wiremesh*.

rekapitulasi pekerjaan menggunakan pelat tulangan konvensional dan tulangan wiremesh dapat dilihat pada Tabel 5.50 berikut ini.

Tabel 5.50 Rekapitulasi Waktu Pekerjaan Pelat Tulangan Konvensional dan Tulangan *Wiremesh*

No	Pekerjaan	Pelat Lantai Tulangan Biasa	Pelat Lantai Wiremesh	Satuan
1	Bekisting	-11	11	Hari
2	Pembesian	27	11	Hari
3	Beton	11	11	Hari
	Total	49	33	Hari

Pada pekerjaan pelat lantai tulangan konvensional, membutuhkan waktu pelaksanaan 49 hari. Sedangkan untuk pekerjaan pelat lantai tulangan *wiremesh*, waktu pelaksanaan 33 hari. Hal ini menunjukkan bahwa dengan menggunakan tulangan *wiremesh* lebih *efisien* 32,6% dalam hal waktu pekerjaan.

