BAB IV

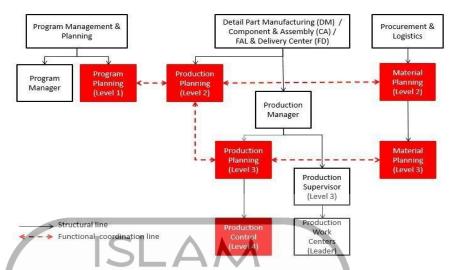
PENGUMPULAN DAN PENGOLAHAN DATA

4.1 Pengumpulan Data

Pengumpulan data yang digunakan merupakan hasil pengamatan langsung yang dilakukan di PT. Dirgantara Indonesia (Persero). Adapun data yang dibutuhkan dalam penelitian ini ialah data yang berkaitan dengan gambaran umum dan informasi perusahaan, data permintaan produk, informasi produk, serta proses produksi.

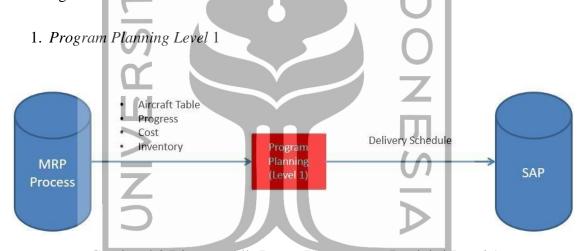
4.1.1 Deskripsi Perusahaan

PT. Dirgantara Indonesia (Persero) (PTDI)/Indonesian Aerospace (IAe) adalah industri pesawat terbang yang pertama dan satu-satunya di Indonesia dan di wilayah Asia Tenggara. Perusahaan ini dimiliki oleh Pemerintah Indonesia. Perusahaan Dirgantara Indonesia berbadan hukum menurut peraturan pemerintah No.12 tanggal 5 April 1975 dan mulai diresmikan pendiriannya pada tanggal 23 Agustus 1976 dengan nama PT. Industri Pesawat Terbang Nurtanio dan B.J Habibie sebagai Presiden Direktur. Industri Pesawat Terbang Nurtanio kemudian berganti nama menjadi Industri Pesawat Terbang Nusantara (IPTN) pada 11 Oktober 1985. Setelah direstrukturisasi, IPTN kemudian berubah nama menjadi Dirgantara Indonesia pada 24 Agustus 2000 yang diresmikan di Bandung oleh Presiden RI ke-4 K.H. Abdurrahman Wahid. Restrukturisasi yang dilakukan oleh managemen PT. Dirgantara Indonesia (Persero) berdasarkan pembenahan yang sistematis, terarah dan


koordinatif dalam membentuk *good corporate governance* (GCG) atau tata kelola perusahaan yang baik dan kompetitif. Salah satu point restrukrisasi tersebut adalah pembentukan sekretaris perusahaan baik secara fungsional, strukturis. Seketaris perusahaan itu sendiri dibentuk berdasarkan ketentuan normatif yaitu:

- 1. UU RI No.19/2003 tentang tata pelaksanaan Badan Usaha Milik Negara (BUMN) pasal 20.
- 2. Keputusan Menteri BUMN No.117/M-MBU/2002 yaitu praktek *good corporate governance* (GCG) bagian Sembilan pasal 24.
- 3. SKEP Direksi: SKEP/5915/03206/PTD/UT000/03/2003 yang mengandung isi antara lain menunjuk *corporate secetary* untuk mengelola informasi manajemen, melakukan pelaporan ke eksekutif, mengkoordinasi penerapan GCG dan mengelola aplikasi komunikasi perusahaan dalam membentuk citra positif.

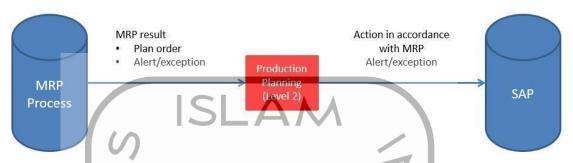
PT. Dirgantara Indonesia (PTDI) adalah salah satu perusahaan pesawat terbang di Asia yang memiliki kompetensi inti dalam desain dan pengembangan pesawat terbang, pembuatan struktur pesawat terbang, perakitan pesawat terbang, dan layanan pesawat udara untuk pesawat tempur ringan dan menengah sipil dan militer.


4.1.2 Proses Bisnis PT. Dirgantara Indonesia (Persero)

Proses bisnis umum PT. Dirgantara Indonesia (Persero) dalam memproduksi berbagai pesawat terbang dibagi menjadi empat level perencanaan dimana proses tersebut telah diintegrasikan dengan menggunakan *software* SAP. Proses bisnis umum tersebut meliputi proses perencanaan dan pengendalian produksi mulai dari manajemen program perencanaan sampai ke level pengendalian di manajemen *shopfloor*. Perancanaan dan pengendalian produksi disusun untuk setiap jenis pesawat. Berikut ini merupakan diagram alir struktur organisasi dan koordinasi dalam menjalankan proses bisnis umum perusahaan.

Gambar 4.1 Diagram Alir Proses Bisnis Umum PT. Dirgantara Indonesia (Persero)

Proses bisnis umum perusahaan tersebut akan dijelaskan secara terperinci sebagai berikut:

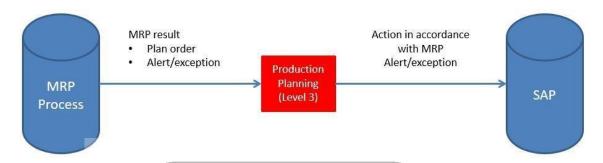


Gambar 4.2 Diagram Alir Proses Perencanaan Produksi Level 1

Setelah perusahaan menerima kontrak kerja, maka tahap selanjutnya *Program Management Planning* (PMO) menyusun perencanaan produksi level 1. Perencanaan tersebut meliputi sebagai berikut:

- a. Mengkoordinasikan *delivery schedule (demand)* dengan program *manager*, *production planning level* 2, *procurement planning level* 2 dan keuangan.
- b. Memastikan validitas data aircraft table.
- c. Memberikan otorisasi untuk memulai aktivitas produksi.
- d. Memberikan otorisasi untuk memulai aktivitas procurement.

- e. Menyusun laporan tentang status *delivery*, resiko, *cost* dari produk yang sudah dikirim dan WIP, data inventory dan indikator lainnya sesuai dengan KPI yang telah ditetapkan.
- 2. Production Planning Level 2

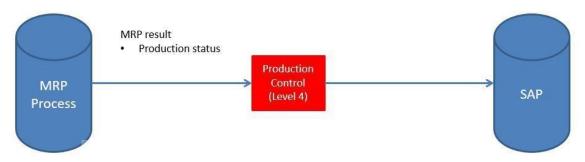


Gambar 4.3 Diagram Alir Proses Perencanaan Produksi Level 2

Perencanaan produksi level 2 merupakan perencanaan jangka menengah yang disusun oleh *Program Engineer* (PE) untuk acuan masing-masing fungsi perencanaan lainnya meliputi PL, DPM, CA, dan FD. Berikut ini merupakan perencanaan produksi level 2 secara terperinci:

- a. Memastikan perencanaan produksi di tingkat divisi dilakukan untuk jangka menengah.
- b. Melakukan *workload capacity balance* ditingkat divisi untuk jangka menengah, mengidentifikasi resiko dan merekomendasikan tindakan mitigasi yang diperlukan (*extend shift*, menambah *resource*, atau *subcontract*).
- c. Berkoordinasi dengan fungsi *planning* lainnya untuk memastikan rencana untuk memenuhi *schedule deliveryy*ang disepakati.
- d. Memastikan production planner level 3 memiliki perencanaan jangka pendek.
- e. Mengelola planning parameter.
- f. Memastikan keandalan data (akurasi) dan merekomendasikan aktivitas *data cleaning* bila diperlukan.
- g. Menyusun laporan tentang status *delivery*, resiko, *cost* dari produk yang sudah dikirim dan WIP, data *inventory* dan indikator lainnya sesuai dengan KPI yang telah ditetapkan.

3. Production Planning Level 3



Gambar 4.4 Diagram Alir Proses Perencanaan Produksi Level 3

Perencanaan produksi level 3 merupakan perencanan produksi jangka pendek dimana proses tersebut dilakukan oleh masing- masing *planner* pada divisi PL, DPM, CA, dan FD. Perencanaan produksi tersebut meliputi sebagai berikut:

- a. Melakukan perencanaan produksi untuk jangka pendek sebagai referensi production control level 4 dan tim produksi.
- b. Melakukan work load capacity balance dimasing- masing work center.
- c. Menganalisa output MRP dan membuat detail scheduling.
- d. Mengkoordinasikan dan memastikan kesiapan paket *work order* sebelum turun ke produksi.
- e. Mencetak work orders.
- f. Memonitor progress workorder terhadap rencana produksi.
- g. Menyampaikan prioritas pengadaan *material* dan atau paket *subcontract* bila diperlukan.
- h. Menyusun laporan mengenai status *delivery* (rencana vs aktual) sesuai dengan KPI yang telah ditetapkan.

4. Production Control Level 4

Gambar 4.5 Diagram Alir Proses Perencanaan Produksi Level 4

Perencanaan produksi level 4 dilakukan oleh masing- masing divisi DPM, CA, dan FD. Perencanaan tersebut merupakan pengendalian pada manajemen *shopfloor* untuk memastikan bahwa proses produksi berjalan sesuai dengan perencaan dan jadwal yang telah ditetapkan. Aktifitas pada perencanaan produksi level 4 secara terperinci adalah sebagai berikut:

- a. Mengendalikan dan melakukan *follow up* eksekusi *work order* sesuai dengan rencana yang telah disusun oleh *production planner level* 3.
- b. Mengendalikan dan memastikan *part* yang telah selesai terkirim sesuai kebutuhan programnya.
- c. Memberikan masukan kepada *production planner level* 3 bila diperlukan *reschedule*.
- d. Berkoordinasi dengan *leader* produksi (dan atau fungsi lainnya) untuk memastikan kesiapan *resource* dan paket kerja.
- e. Memberikan laporan kepada *program manager* mengenai status *part* bila diperlukan oleh *program manager*.

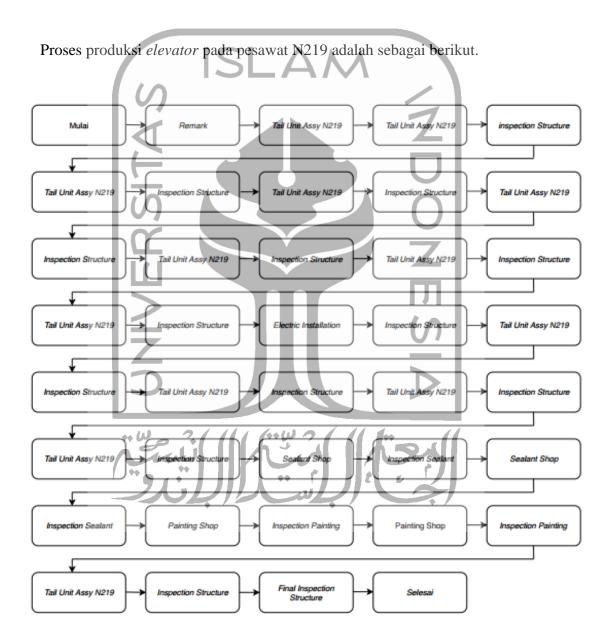
4.1.3 Visi dan Misi PT. Dirgantara Indonesia (Persero)

Visi PT. Dirgantara Indonesia (Persero) ialah menjadi perusahaan kelas dunia dalam industri berbasis pada penguasaan teknologi tinggi dan mampu bersaing dalam pasar global dengan mengandalkan keunggulan biaya. Adapun misi perusahaan dalam mencapai visi tersebut yaitu sebagai pusat keunggulan di bidang industri dirgantara

terutama dalam rekayasa, rancang bangun, manufaktur, produksi dan pemeliharaan untuk kepentingan komersial dan militer dan juga aplikasi di luar industri dirgantara. Menjalankan usaha dengan selalu berorientasi pada aspek bisnis dan komersial dan dapat menghasilkan produk jasa yang memiliki keunggulan biaya.

4.1.4 Key Performance Indocator (KPI) PT. Dirgantara Indonesia (Persero)

Key performance indicator (KPI) juga dapat diartikan sebagai alat ukur performa kinerja perusahaan, dengan begitu perusahaan harus mencerminkan tujuan yang ingin diraihnya. Key performance indicator (KPI) tentunya membutuhkan suatu perencanaan yang jelas dan juga harus didukung oleh ketersediaan data dan informasi yang aktual dari perusahaan. Pada key performance indicator (KPI) harus disusun berdasarkan lima point utama, yaitu: specific, measurable, achieveable, relevant, dan time. Di PT. Dirgantara Indonesia (Persero) ini key performance indicator (KPI) mengacu pada visi dan misi serta strategis perusahaan berdasarkan hasil diskusi yang dilakukan bersama expert dan dihasilkan key performance indicator (KPI) sebagai berikut:


Tabel 4.1 KPI PT. Dirgantara Indonesia (Persero)

Key Performance Indicator (KPI)	Unit	Nilai Target
	Pengukuran	
No Conforming	%	1,6%
Man Hour Efficiency	// 60 %	100%
Cycle time	1 % 1	100%
	No Conforming Man Hour Efficiency	No Conforming % Man Hour Efficiency %

Dari tabel diatas, key performance indicator (KPI) PT. Dirgantara Indonesia (Persero) memiliki 3 poin dalam pengukuran KPI yang didapatkan dari expert. Poin pertama adalah no conforming, yang dimaksud disini ialah ketidaksesuaian produksi yang dihasilkan maksimal 1,6% karna dalam poin ini masih sering terjadi produksi yang tidak sesuai dengan process sheet atau drawing yang ada. Poin kedua adalah man hour efficiency, yang dimaksud disini ialah efisiensi jam kerja karyawan harus 100% karna terdapat karyawan yang memiliki waktu idle yang cukup banyak dikarenakan pengiriman bahan baku atau komponen yang terlambat serta komponen

yang tidak sesuai. Poin ketiga adalah *cycle time*, yang dimaksud disini ialah waktu siklus yang sesuai atau waktu produksi yang sesuai dengan target harus 100% karena apabila kedatangan bahan baku atau komponen terlambat maka target selesai produksi pun akan tidak sesuai dengan standar.

4.1.5 Proses Produksi

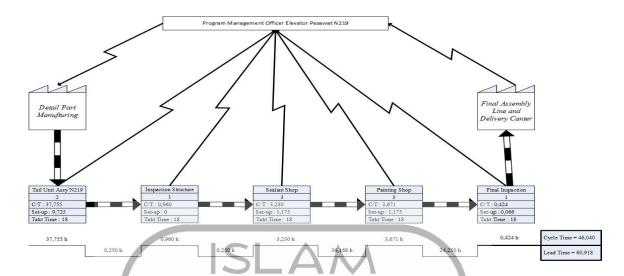
Gambar 4.6 Proses Produksi *Elevator* Pesawat N219

4.1.6 Data Produksi

Dalam penelitian kali ini, data yang diperlukan berupa data *capacity, cycle time, set-up time* serta jumlah operator untuk masing-masing *part* karna dalam proses produksi *elevator* terdapat beberapa *part* untuk dirakit/*assembly* agar menjadi satu buah *elevator*. Berikut ini adalah data proses produksi *elevator* untuk *process number* 185ND00002-003A01.

Tabel 4.2 Proses Produksi Elevator untuk Process Number 185ND00002-003A01

Tahun 2017

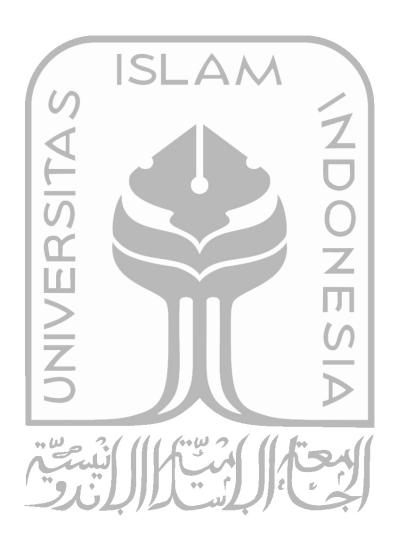

	-10				
Operation Number	Operation Short Text	Capacity	Total Actual	Setup Time	Operation
			Time (hour)	(hour)	
200	Tail Unit Assy N219	1	0,080	0,000	2
300	Tail Unit Assy N219	1	5,250	2,150	2
400	Inspection Structure	V 1	0,080	0,000	1
500	Tail Unit Assy N219	VI	6,995	1,025	2
600	Inspection Structure	1	0,080	0,000	1
700	Tail Unit Assy N219	1	6,995	1,025	2
800	Inspection Structure	1	0,080	0,000	1
900	Tail Unit Assy N219	1	4,500	1,025	2
1000	Inspection Structure	1	0,080	0,000	1
1100	Tail Unit Assy N219	1	3,500	1,025	2
1200	Inspection Structure	I	0,080	0,000	1
1300	Tail Unit Assy N219	(nwh/	3,500	1,025	2
1400	Inspection Structure	الماريا	0,080	0,000	1
1500	Tail Unit Assy N219	1	1,101	0,100	2
1600	Inspection Structure		0,080	0,000	1
1700	Electric Installation	1	0,750	0,100	1
1800	Inspection Structure	1	0,080	0,000	1
1900	Tail Unit Assy N219	1	0,167	0,100	2
2000	Inspection Structure	1	0,080	0,000	1
2100	Tail Unit Assy N219	1	0,167	0,100	2
2200	Inspection Structure	1	0,080	0,000	1
2300	Tail Unit Assy N219	1	3,500	1,025	2
2400	Inspection Structure	1	0,080	0,000	1
2500	Tail Unit Assy N219	1	1,250	1,025	2
2600	Inspection Structure	1	0,080	0,000	1

Operation Number	Operation Short Text	Capacity	Total Actual Time (hour)	Setup Time (hour)	Operation
2700	Sealant Shop	1	0,220	0,150	2
2800	Inspection Sealant	1	0,080	0,000	1
2900	Sealant Shop	1	2,850	1,025	2
3000	Inspaction Sealant	1	0,080	0,000	1
3100	Painting Shop	1	0,661	0,150	2
3200	Inspection Painting	1	0,080	0,000	1
3300	Painting Shop	A	2,85	1,025	2
3400	Inspaction Painting	_ /1\	0,080	0,000	1
3500	Tail Unit Assy N219	1	0,264	0,066	2
3600	Inspection Structure	1	0,080	0,000	1
3700	Final Inspection Structure		0,080	0,000	1

4.2 Pengolahan Data

4.2.1 Identifikasi Aliran Produksi *Elevator*

Untuk mengidentifikasi aliran produksi pada *elevator* N219, maka digunakan *Valuee Stream Mapping* (VSM) sebagai alat dalam menjabarkan prosesnya. Berikut ini merupakan *current value stream mapping* dari proses produksi *elevator* dengan *process number* 185ND00002-003A01.


Gambar 4.7 Current Value Stream Mapping Elevator

Dari hasil *current* VSM diatas, didapatkan gambaran tentang aliran proses produksi *elevator* dan *current* VSM tersebut dapat dijadikan acuan guna mengidentifikasi pemborosan (*waste*) yang terjadi di sepanjang *value stream mapping*. Berikut ini merupakan hasil rekap waktu proses produksi *elevator*.

Tabel 4.3 Rekap Waktu Pengerjaan Waktu Pengerjaan No Kegiatan 46,040 1 Cycle Time ++ (1) Waiting Time 2 hari 12 jam 2 3 Lead Time 60,918 Rentang Waktu Pengerjaan 19 Hari 4 Total Hari Kerja 5 14 Hari 6 Jam Kerja per Hari 6,4 Jam/hari

Dari tabel 4.3, diketahui bahwa *waiting time* selama 2 hari 12 jam akibat dari waktu menunggu proses pensealant-an dan *painting* selesai. Dengan begitu, selanjutnya dilakukan *Process Activity Mapping* yang dapat melihat kegiatan yang termasuk *Value Added* (VA), *Non-Value Added* (NVA), dan *Necessary Non-Value Added* (NNVA) guna mengetahui kegiatan apa saja yang dapat menyebabkan *waiting*

time tersebut. Berikut ini, hasil dari pengelompokkan kegiatan pada proses produksi elevator.

Tabel 4.4 Process Activity Mapping (PAM)

Prosess	Aktivitas	Mesin/Alat	Waktu			Aktiv	ritas		VA/NVA/NNVA
rrusess	Aktivitas	Mesiii/Alat	(Hour)	O	\mathbf{T}	I	\mathbf{S}	\mathbf{D}	V A/IN V A/ININ V A
	Mengecek identifikasi dan kondisi tiap part	Manual	0,080			I			NNVA
	Mengatur JIG untuk proses assembly Front Spar, Rear Spar, dan Rib	Manual Alat	5,250	О					VA
	Mengatur Ribs Leanding Edge seperti Front Spar pada JIG	Clamps dan Cleco	6,995	О					VA
	Pada <i>Rib</i> , dilakukan pengecekkan kondisi upper & lower skin	Alat Clamps dan Rivet	6,995	О					VA
	Pengerjaan Front Spar, Rear Spar, dan Rib	Manual Alat Nut	4,500	О					VA
Tail Unit Assy N219	Memposisikan mur/baut pada Front Spar,	Plate, Rivet, Sekrup dan	3 500	О					VA
	Rear Spar, dan Rib Memasang kembali upper & lower skin serta memasang rivet	Deburring Alat Rivet dan Cleco Alat Clamp,	3,500 3, 5 00	0					VA
	Pensettingan Elevator Closing Rib	Trace, Rivet, dan Deburring	7,101	Ο					VA
	Memasang Elevator Trim (kabel trim)	Alat Clamp dan Sekrup	0,750	О					VA
	Penginstalan lower skin pada Rib, Front	Alat Rivet	0,167	O					VA

Prosess	Aktivitas	Mesin/Alat	Waktu			Aktiv	vitas		VA/NVA/NNVA
1108688	Aktivitas	Wiesiii/Alat	(Hour)	0	T	I	\mathbf{S}	D	VA/INVA/ININVA
	Spar, Rear Spar dengan paku keling (dikencangkan)								
		Alat Baut,							
		Pin, Rivet,		O					VA
	Pensettingan Elevator	dan Sekrup Alat	0,167	O					VA
	Menginstal Elevator Torque Tube	Deburring	3,50	U					VA
	Membuat lubang pilot dengan menggunakan	46	7						
	bor guna memasang tabung torsi lift serta	Alat Baut	1,250	O					VA
	memeriksa dan melepaskan <i>elevator</i> pada JIG	dan Pin		Ü					,,,
	Pengecekkan yang dilakukan oleh pihak QA	Manual	0,080			I			NNVA
	Pengecekkan yang dilakukan oleh pihak QA	Manual	0,080			I			NNVA
	Pengecekkan yang dilakukan oleh pihak QA	Manual	0,080			I			NNVA
	Pengecekkan yang dilakukan oleh pihak QA	Manual	0,080			I			NNVA
	Pengecekkan yang dilakukan oleh pihak QA	Manual	0,080			I			NNVA
	Pengecekkan yang dilakukan oleh pihak QA	Manual	0,080			I			NNVA
T	Pengecekkan yang dilakukan oleh pihak QA	Manual	0,080			I			NNVA
Inspaction Structure	Pengecekkan yang dilakukan oleh pihak QA	Manual	0,080			I			NNVA
Siruciure	Pengecekkan yang dilakukan oleh pihak QA	// Manual/ //	 0,080//			I			NNVA
	Pengecekkan yang dilakukan oleh pihak QA	Manual	0,080			I			NNVA
	Pengecekkan yang dilakukan oleh pihak QA	Manual	0,080			I			NNVA
	Pengecekkan yang dilakukan oleh pihak QA	Manual	0,080			I			NNVA
	Pengecekkan yang dilakukan oleh pihak QA	Manual	0,080			I			NNVA
	Pengecekkan yang dilakukan oleh pihak QA	Manual	0,080			I			NNVA
	Pengecekkan yang dilakukan oleh pihak QA	Manual	0,080			I			NNVA

Dwogogo	Alutinita	Magin/Ala4	Waktu			Aktiv	vitas		T/A /NIX/A /NINIX/A
Prosess	Aktivitas	Mesin/Alat	(Hour)	0	T	I	\mathbf{S}	D	VA/NVA/NNVA
	Pengecekkan yang dilakukan oleh pihak QA	Manual	0,080			I			NNVA
	Pengecekkan yang dilakukan oleh pihak QA	Manual	0,080			I			NNVA
	Material di transfer ke proses selanjutnya untuk dilakukan proses <i>Sealant</i>	Manual	0,250		T				NVA
g 1 , g1	Dilakukan pensealant-an agar riyet atau paku keling menyatu dengan skin	Alat Sealant	0,220	O					VA
Sealant Shop	Menunggu Sealant kering	Manual	12 jam					D	NNVA
	Dilakukan <i>Fillet Sealant</i> agar tiap <i>part</i> menyatu	Alat Fillet Sealant	2,850	О					VA
	Menunggu Sealant kering	Manual	12 jam					D	NNVA
	Material di transfer ke proses selanjutnya untuk dilakukan proses <i>Painting</i>	Manual	0,168		T				NVA
Painting	Melakukan pencampuran dan pengenceran cat	Alat Cat Primer	0,661	О					VA
Shop	Melakukan <i>Repass</i> pada area internal upper/lower skin dan semua Rib, serta kepala keling	Alat Cat Primer	2,850	O					VA
	Menunggu cat kering	Manual	24 jam					D	NNVA
Final Inspaction	Mengidentifikasi <i>Process Number</i> , <i>JID NO</i> , dan bobot sesuai dengan <i>process sheet</i>	Manual	0,264			I			VA
	Final Inspection	Manual	0,080			I			NNVA

Berdasarkan tabel 4.4 diketahui waktu yang termasuk *Value Added* adalah sebesar 44,520 jam, *Non-Value Added* sebesar 0,418 jam, dan *Necessary Non-Value Added* sebesar 49,520 jam.

4.2.2 Perhitungan Takt Time

Sesuai dengan data yang diperoleh dari PT. Dirgantara Indonesia, dimana waktu kerja efektif dalam setahun ialah 248 hari dan waktu kerja efektif untuk 1 *elevator* ialah 14 hari, jadi perhitungan *takt time* pada produksi *elevator* sebagai berikut.

Adapun jumlah cycle time berdasarkan current VSM pada elevator yang telah dibuat adalah sebesar 46,040 jam dari perhitungan takt time dan perhitungan current VSM dapat diketahui jika proses cycle time berada di atas takt time maka menunjukkan bahwa proses produksi dilakukan berjalan lebih lambat dari yang seharusnya. Sehingga selanjutnya akan diberikan rekomendasi perbaikan agar proses ini dapat berjalan lebih baik lagi.

4.2.3 Perhitungan Waste Finding Checklist

Langkah pertama dalam perhitungan waste finding checklist adalah dengan melakukan identifikasi waste menggunakan checklist pada formulir yang telah disediakan. Formulir tersebut diisi berdasarkan pengamatan langsung dengan berdiskusi bersama expert yaitu staff divisi component and assembly (CA) khusus untuk pembuatan elevator pesawat N219. Berikut ini adalah hasil dari formulir waste finding checklist.

Tabel 4.5 Formulir Waste Finding Checklist

No	Proses Produksi	D	0	W	N	T	I	M	
	1					Z			
						$\overline{-}$			
200	Tail Unit Assy n219	-			, -	\overline{V}	-	-	-
300	Tail Unit Assy n219		-	-			-	V	-
400	Inspection Structure	-			9 -	\cup	-	-	-
500	Tail Unit Assy n219				_	7	-	V	-
600	Inspection Structure	-	-	-	-	4	-	-	-
700	Tail Unit Assy n219	-	7-0	0.7	-	T-I	-	-	V
800	Inspection Structure	-	- 1	-	-	7	-	-	-
900	Tail Unit Assy n219	-	- 1	V	-	(J-)	-	V	-
1000	Inspection Structure	-	- 1	-	-	_	-	-	-
1100	Tail Unit Assy n219	-	- 17 /	V	-		-	V	-
1200	Inspection Structure	-		1.1	-	-	-	V	-
1300	Tail Unit Assy n219		. .	V	11 4	- , ,	-	V	-
1400	Inspection Structure	3/- ((16.3	2	((x)	$\ln \omega$	-	-	-
1500	Tail Unit Assy N219	" -	N-	V			-	V	-
1600	Inspection Structure	J-J1	人"	11/	11	31	-	-	-
1700	Electric Installation	2	-	V	-	• /	-	-	-
1800	Inspection Structure	-	-	-	-	-	-	-	-
1900	Tail Unit Assy N219	-	-	V	-	-	-	V	-
2000	Inspection Structure	-	-	-	-	-	-	-	-
2100	Tail Unit Assy N219	-	-	V	-	-	-	V	-
2200	Inspection Structure	-	-	-	-	-	-	V	-
2300	Tail Unit Assy N219	-	-	-	-	-	-	V	-
2400	Inspection Structure	-	-	-	-	-	-	V	-
2500	Tail Unit Assy N219	-	-	-	-	-	-	V	-
2600	Inspection Structure	-	-	-	-	-	-	V	-

No	Proses Produksi	D	О	W	N	T	Ι	M	E
2700	Sealant Shop	-	-	-	-	-	-	-	-
2800	Inspection Sealant	-	-	-	-	-	-	V	-
2900	Sealant Shop	-	-	V	-	-	-	-	-
3000	Inspaction Sealant	-	-	-	-	-	-	V	-
3100	Painting Shop	-	-	-	-	-	-	-	-
3200	Inspection Painting	-	-	-	-	-	-	V	-
3300	Painting Shop	-	-	V	-		-	-	-
3400	Inspaction Painting	15	/	^- \	A -	-	-	V	-
3500	Tail Unit Assy N219	-	<u>'</u> — /		_	-	-	-	-
3600	Inspection Structure	-	-	-	-	-	-	-	_
3700	Final Inspection Structure	-	-	-	-	Z	-	-	-

Berdasarkan tabel 4.5 diatas, maka dapat dilihat bahwa setiap proses terdapat waste namun ada juga proses yang tidak terjadi waste, mulai dari waste defect sampai waste excess process. Tanda checklist pada waste pada masing-masing proses menandakan adanya waste pada proses tersebut. Semakin banyak tanda checklist pada proses tersebut, maka semakin banyak pula waste yang terjadi pada proses tersebut.

Tabel 4.6 Identifikasi Waste Tiap Proses

No	Aktivitas	D	0	W	N	T	I	M	E
200	Mengecek identifikasi dan kondisi tiap part	-	-	-	-	-	-	-	-
300	Mengatur JIG untuk proses	-	-	-	-	-	-	Operator	-
	assembly Front Spar, Rear Spar, dan Rib			ISLA	$\overline{\mathcal{M}}$			kejauhan dalam melihat papan	
			(1)		., , ,			drawing	
400	Pengecekkan yang	-	- /	-	-	7	-	-	-
5 00	dilakukan oleh pihak QA					4			
500	Mengatur Ribs Leanding	-	(-				-	Operator	-
	Edge seperti Front Spar pada JIG		10					kejauhan dalam melihat papan	
	pada HG							drawing	
600	Pengecekkan yang	_		Y		Z	-	-	_
	dilakukan oleh pihak QA		山山						
700	Pada <i>Rib</i> , dilakukan	-	->	-)	-	171	-	-	Intruksi dari
	pengecekkan kondisi <i>upper</i>			- 111		S			divisi DPM
	& lower skin			- 111					sekian tapi di
						D			process sheet sekian
800	Pengecekkan yang	_			((=)		_	_	sekian -
000	dilakukan oleh pihak QA		4.W	3(((6:3)	1 ((1)	DAL			
900	Pengerjaan Front Spar,	_	"-	Operator			-	Operator	-
	Rear Spar, dan Rib			menunggu	ムノ	21		mengambil	
				pengambilan				selant ke rotary	
				sealant				wings	
				datang					
1000	Pengecekkan yang	-	-	-	-	-	-	-	-
1100	dilakukan oleh pihak QA			Omenator				Omerator	
1100	Memposisikan mur/baut	-	-	Operator	-	-	-	Operator	-

No	Aktivitas	D	0	W	N	T	I	M	E
	pada <i>Front Spar, Rear</i> <i>Spar</i> , dan <i>Rib</i>			menunggu pengambilan <i>sealant</i> datang				mengambil selant ke rotary wings	
1200	Pengecekkan yang dilakukan oleh pihak QA	-	_	ISLA	<u>-</u>		-	Tools yang diperlukan suka tidak tersedia di tempat tools	-
1300	Memasang kembali <i>upper</i> & <i>lower skin</i> serta memasang rivet	-	SITAS	Operator menunggu pengambilan sealant datang		Z D	-	Operator mengambil selant ke rotary wings	-
1400	Pengecekkan yang dilakukan oleh pihak QA	-	A S	- United States		9	-	-	-
1500	Pensettingan Elevator Closing Rib	-		Operator menunggu pengambilan sealant datang		ESI	-	Operator mengambil selant ke rotary wings	-
1600	Pengecekkan yang dilakukan oleh pihak QA	-			-		-	-	-
1700	Memasang Elevator Trim (kabel trim)	-	التي	Menunggu operator dari bagian electrical datang		الخوا	-	-	-
1800	Pengecekkan yang dilakukan oleh pihak QA	-	-	-	-	-	-	-	-
1900	Penginstalan <i>lower skin</i> pada <i>Rib, Front Spar, Rear</i>	-	-	Operator menunggu	-	-	-	Operator mengambil	-

No	Aktivitas	D	0	W	N	T	I	M	E
	Spar dengan paku keling (dikencangkan)			pengambilan sealant datang				selant ke rotary wings	
2000	Pengecekkan yang dilakukan oleh pihak QA	-	-	-	-	-	-	-	-
2100	Pensettingan <i>Elevator</i>	-	57	Operator menunggu pengambilan sealant datang	M	7	-	Operator mengambil selant ke rotary wings	-
2200	Pengecekkan yang dilakukan oleh pihak QA	-	SITA			DO	-	Tools yang diperlukan suka tidak tersedia di tempat tools	-
2300	Menginstal <i>Elevator Torque</i> Tube	-	UNIVER			NESIA	-	Tidak ada pelabelan pada tools serta masih terdapat tools yang berserakan	-
2400	Pengecekkan yang dilakukan oleh pihak QA	-	الماتية الماتية			2 M	-	Tools yang diperlukan suka tidak tersedia di tempat tools	-
2500	Membuat lubang pilot dengan menggunakan bor guna memasang tabung torsilift serta memeriksa dan melepaskan elevator	-	-	-	-	-	-	Tidak ada pelabelan pada tools serta masih terdapat tools yang	-

No	Aktivitas	D	0	W	N	T	I	M	E
2600	pada JIG Pengecekkan yang dilakukan oleh pihak QA	-	-	-	-	-	-	berserakan <i>Tools</i> yang diperlukan suka tidak tersedia di	-
2700	Dilakukan pensealant-an agar rivet atau paku keling menyatu dengan <i>skin</i>	-		Menunggu antrian untuk di	M		-	tempat <i>tools</i> -	-
2800	Pengecekkan yang dilakukan oleh pihak QA	-	ITA	sealant Menunggu sealant kering	5	Z	-	Tools yang diperlukan suka tidak tersedia di	-
2900	Dilakukan Fillet Sealant agar tiap part menyatu	-	ERS S	Menunggu antrian untuk di			-	tempat <i>tools</i> -	-
3000	Pengecekkan yang dilakukan oleh pihak QA	-		fillet sealant Menunggu fillet sealant kering	-	N N	-	Tools yang diperlukan suka tidak tersedia di tempat tools	-
3100 3200	Melakukan pencampuran dan pengenceran cat Pengecekkan yang dilakukan oleh pihak QA	-	المراث			24	-	Tools yang diperlukan suka tidak tersedia di	-
3300	Melakukan <i>Repass</i> pada area internal upper/lower skin dan semua Rib, serta kepala keeling (<i>Painting</i>)	-	-	Menunggu pengecatan kering	-	-	-	tempat <i>tools</i> -	-

No	Aktivitas	D	0	W	N	T	I	M	E
3400	Pengecekkan yang dilakukan oleh pihak QA	-	-	-	-	-	-	Tools yang diperlukan suka tidak tersedia di tempat tools	-
3500	Mengidentifikasi <i>Process</i> <i>Number</i> , <i>JID NO</i> , dan bobot sesuai dengan <i>process sheet</i>	-	-	- S /	-		-	-	-
3600	Pengecekkan yang dilakukan oleh pihak QA	-	S		4/V <u>1</u>	_	-	-	-
3700	Final Inspection Structure	-	14	-4	-	21	-	-	-

Pada tabel 4.6 diatas menggambarkan *waste* yang terjadi berdasarkan hasil *checklist* yang telah dilakukan dengan menggunakan *formulir* waste finding checklist. Dengan adanya penjabaran waste yang terjadi pada masing-masing proses maka dapat diketahui usulan perbaikan yang akan dilakukan untuk mengurangi tingkat waste pada lantai produksi.

Tabel 4.7 Perhitungan Waste Finding Checklist

No	Proses Produksi	D	0	W	N	T	I	M	E	Jumlah
200	Tail Unit Assy n219	0	0	0	0	0	0	0	0	0
300	Tail Unit Assy n220	0	0	0	0	0	0	2	0	2
400	Inspection Structure	0	0	0	0	0	0	0	0	0
500	Tail Unit Assy n219	0	0	0	0	0	0	2	0	2
600	Inspection Structure	0	0	0	0	0	0	0	0	0
700	Tail Unit Assy n219	0	0	0	0	0	0	0	2	2
800	Inspection Structure	0	0	0	0	0	0	0	0	0
900	Tail Unit Assy n219	0	0	3	0	0	0	3	0	6
1000	Inspection Structure	0	0	0	0	0	0	0	0	0
1100	Tail Unit Assy n219	0	0	3	0	0	0	3	0	6
1200	Inspection Structure	0	0	0	0	0	0	2	0	2
1300	Tail Unit Assy n219	0	0	3	0	0	0	3	0	6
1400	Inspection Structure	0	0	0	0	0	0	0	0	0
1500	Tail Unit Assy N219	0	0	3	0	0	0	3	0	6
1600	Inspection Structure	0	0	0	0	0	0	0	0	0
1700	Electric Installation	0	0	2	0	0	(0)	0	0	2
1800	Inspection Structure	0	0	0	0	0	0	0	0	0
1900	Tail Unit Assy N219	0	0	3	0	0	0	3	0	6
2000	Inspection Structure	0	0	0	0	0	0	0	0	0
2100	Tail Unit Assy N219	0	0	3	0	0	0	3	0	6
2200	Inspection Structure	0	0	0	0	0	0	2	0	2
2300	Tail Unit Assy N219	0	0	0	0	0	(0)	3	0	3
2400	Inspection Structure	0	0	0	0	0	0	2	0	2
2500	Tail Unit Assy N219	0	0	0	0	0	0	3	0	3
2600	Inspection Structure	0	0	0	0	0	0	2	0	2
2700	Sealant Shop	0	0	0	0	0	0	0	0	0
2800	Inspection Sealant	0	0	0	0	0	0	2	0	2
2900	Sealant Shop	0	0	25	0	0	0	0	0	2
3000	Inspaction Sealant	0	0	0	0	0 -	0	2	0	2
3100	Painting Shop	0	0	0**	0	0	0	0	0	0
3200	Inspection Painting	0	0	0	0	0	0	2	0	2
3300	Painting Shop	0	0	2	0	0	0	0	0	2
3400	Inspaction Painting	0	0	0	0	0	0	2	0	2
3500	Tail Unit Assy N219	0	0	0	0	0	0	0	0	0
3600	Inspection Structure	0	0	0	0	0	0	0	0	0
3700	Final Inspection	0	0	0	0	0	0	0	0	0
	Structure									
	Jumlah	0	0	24	0	0	0	44	2	70

- 0 = tidak ada pemborosan ditemukan
- 1 = sangat sekidit pemborosan
- 2 = sedikit pemborosan
- 3 = banyak pemborosan
- 4 = sangat banyak pemborosan

Pada tabel 4.7 diatas, merupakan tahap pemberian skor untuk masing-masing checklist yang telah dilakukan sebelumnya berdasarkan sedikit atau banyaknya waste yang terjadi. Nilai tertinggi ada pada proses motion dengan skor 44, kemudian tertinggi kedua ada pada waste waiting dengan skor 24. Setalah mengetahi total skor pada masing-masing proses produksi, maka waste terbesar terjadi pada waste motion dengan total skor 44 yang terjadi pada 18 aktivitas produksi, sehingga waste ini akan menjadi perhatian utama dalam penyelesaian masalah. Proses dengan nilai tertinggi inilah yang akan dilakukan perbaikan terlebih dahulu dibandingkan proses yang lainnya yang lebih rendah.

