BAB II

TINJAUAN PUSTAKA

2.1 Daya Dukung Lingkungan

Konsep daya dukung tercantum pada hukum perencanaan tata ruang Indonesia dimana sebagian besar isinya berhubungan dengan isu lingkungan. Konsep daya dukung lingkungan ini dibagi menjadi dua yaitu daya dukung dan daya tampung. (Purbo, 2008 dalam Rahadi, *et al*, 2015)

Dalam Undang-Undang Nomor 32 Tahun 2009 tentang Perlindungan dan Pengelolaan Lingkungan Hidup dijelaskan mengenai Daya Dukung Lingkungan dan Daya Tampung Lingkungan. Menurut UU no 32 tahun 2009, daya dukung lingkungan hidup adalah kemampuan lingkungan hidup untuk mendukung perikehidupan manusia, makhluk hidup lain, dan keseimbangan antar keduanya. Daya tampung lingkungan hidup adalah kemampuan lingkungan hidup untuk menyerap zat, energi, dan/atau komponen lain yang masuk atau dimasukkan ke dalamnya.

Sedangkan dalam Peraturan Menteri Lingkungan Hidup No 17 Tahun 2009, ruang lingkup dalam penentuan daya dukung lingkungan hidup dalam penataan ruang meliputi 3 aspek, yaitu:

- 1. Penentuan kemampuan lahan untuk alokasi pemanfaatan ruang.
- 2. Perbandingan antara ketersediaan dan kebutuhan lahan.
- 3. Perbandingan antara kebutuhan dan ketersediaan air.

Penentuan status daya dukung lingkungan berdasarkan rasio dapat ditentukan setelah diketahui besarnya ketersedian air dan kebutuhan air pada lokasi studi. Kriteria status daya dukung lingkungan berbasis neraca air tidak cukup dinyatakan dengan surplus atau defisit saja. Namun untuk menunjukan besaran relatif, perlu juga dinyatakan dengan nilai *supply/demand*. *Supply* menunjukkan jumlah ketersediaan air di wilayah tersebut yaitu berupa jumlah ketersediaan air dari volume curah hujan rerata kawasan dan debit aliran sungai dengan keandalan 80%, sedangkan *demand* menunjukkan

jumlah kebutuhan air berdasarkan faktor penentu kebutuhan air pada lokasi studi Pulau Belitung. (Admadhani et al. (2013) menyatakan untuk rasio *supply* dan *demand* > 2 maka status daya dukung lingkungan termasuk dalam kategori aman, sedangkan untuk rasio bernilai antara 1 - 2 termasuk dalam kategori aman bersyarat, dan untuk rasio bernilai < 1 termasuk dalam kategori tidak aman (daya dukung lingkungan telah terlampaui). Kriteria penetapan status daya dukung lingkungan tersebut terlihat pada Tabel 2.1 (Prastowo, 2010).

Tabel 2. 1 Kriteria Penetapan Status DDL-air

Kriteria	Status DDL-air		
Rasio supply / demand > 2	Daya dukung lingkungan aman (sustain)		
Rasio supply / demand 1 – 2	Daya dukung lingkungan aman (conditional sustain)		
Rasio supply / demand < 1	Daya dukung lingkungan telah terlampaui (<i>overshoot</i>)		

Sumber: Prastowo (2010)

Hubungan konsep daya dukung lingkungan dengan pembangunan berkelanjutan (sustainability) sesuai dengan konsep yang dikemukakan United Nations dalam (Klarin, 2018) menyatakan bahwa dalam pembangunan dilaksanakan dengan memperhatikan factor lingkungan. Dengan kata lain, pembangunan berkelanjutan adalah suatu proses pembangunan yang pemanfaatan sumber dayanya, arah invesinya, orientasi pengembangan teknologinya dan perubahan kelembagaannya dilakukan secara harmonis dan dengan amat memperhatikan potensi pada saat ini dan masa depan dalam pemenuhan kebutuhan dan aspirasi masyarakat

2.2 Neraca Air

Neraca air atau *water balance* merupakan bagian dari keilmuan hidrogeometeorologi yang menggambarkan hubungan antara *inflow* (aliran masuk) dengan *outflow* (aliran keluar) pada suatu wilayah selama periode tertentu. Dalam perhitungannya, neraca air dapat menggambarkan curah hujan yang tertampung dalam daerah *recharge*, penguapan kembali sebagai

evapotranspirasi, air yang megalir di permukaan sebagai surface *direct run off* maupun infiltrasi air tanah (Lestari & Widyatusti, 2017).

Daya dukung lingkungan berbasis neraca air suatu wilayah dapat diketahui dengan menghitung kapasitas ketersediaan air pada wilayah tersebut, yang besarnya sangat tergantung pada kemampuan menjaga dan mempertahankan dinamika siklus hidrologi pada daerah hulu Daerah Aliran Sungai (DAS). Upaya mempertahankan siklus hidrologi secara buatan sangat ditentukan oleh kemampuan meningkatkan kapasitas simpan air, baik penyimpanan secara "alami" melalui upaya rehabilitasi dan konservasi wilayah hulu DAS, maupun secara "struktur buatan" seperti pembangunan waduk/bendungan, embung, dan lainnya. (Prastowo, 2010)

Secara umum, persamaan neraca air menurut para ahli adalah:

$$Input = Output$$

Pada analisis DDL berdasarkan neraca air, nilai input merupakan berbagai parameter yang terkait dengan ketersediaan air, sedangkan output meliputi parameter yang terkait dengan kebutuhan air.

2.3 Ketersediaan Air

Air adalah semua air yang terdapat pada, diatas, ataupun dibawah permukaan tanah, termasuk dalam pengertian ini air permukaan, air tanah, air hujan dan air laut yang berada di darat dapat dilihat pada Undang-Undang Tentang Sumber Daya Air No.7 Tahun 2004 Pasal 1 menurut Kodoatie, 2005 dalam (Rayyan Dasir Fuad Halim, Kawet, & Jasin, 2014). Walaupun jumlah air di bumi ini selalu tetap, tetapi karena siklus hidrologi serta kondisi tiap wilayah yang berbeda mengakibatkan jumlah air yang ada di suatu tempat pada waktu tertentu tidak merata, sehingga manusia yang membutuhkan air pada tempat dan waktu tertentu ini pun kadangkala mengalami kekurangan air untuk kebutuhannya. Manusia kemudian mencari berbagai macam cara untuk menanggulangi masalah kekurangan tersebut, khususnya akan kebutuhan air bersih. Maka manusia berpikir untuk membuat suatu sistem penyediaan air bersih yang mampu memenuhi kebutuhannya setiap saat.

2.4 Kebutuhan Air

Kebutuhan air adalah sejumlah air yang digunakan untuk berbagai peruntukkan atau kegiatan masyarakat dalam wilayah tersebut. Dalam kasus ini kebutuhan air yang diperhitungkan yaitu kebutuhan air untuk peruntukan kegiatan rumah tangga (domestik), fasilitas umum meliputi perkantoran, pendidikan (non domestik), irigasi, peternakan, industri, serta untuk pemeliharaan/penggelontoran sungai. (Admadhani et al., 2013)

Menurut Dirjen Pekerjaan Umum Cipta Karya (1996), kebutuhan air domestik dihitung berdasarkan jumlah penduduk yang ada di Pulau Belitung dan mengalikannya dengan standar kebutuhan air (ditentukan berdasarkan jumlah penduduk dalam Pulau Belitung), kemudian kebutuhan air perkotaan dapat diketahui dari perkalian prosentase standart kebutuhan air non domestik dengan kebutuhan air domestik yang telah diperhitungkan, dimana standart kebutuhan air non domestik untuk kota besar yaitu 40% dari kebutuhan air domestik

Kebutuhan air domestik penduduk merupakan kebutuhan air rumah tangga sehari-hari yang digunakan untuk minum, masak, wudhu, mandi dan mencuci. Pada dasarnya kebutuhan air setiap individu berbeda-beda, baik di setiap tempat maupun waktu. Kebutuhan air domestik sangat dipengaruhi oleh berbagai faktor baik internal maupun eksternal (Manik, 2003).

Kebutuhan air non-domestik adalah kebutuhan air bersih untuk sarana dan prasarana daerah yang teridentifikasi ada atau bakal ada berdasarkan rencana tata ruang. Sarana dan prasarana berupa kepentingan sosial/umum seperti untuk pendidikan, tempat ibadah, kesehatan, dan juga untuk keperluan komersil seperti untuk perhotelan, kantor, restoran dan lain-lain. Selain itu juga keperluan industri, pariwisata, pelabuhan, perhubungan dan lain-lain. (Kimpraswil, 2002)

2.5 Studi Terdahulu

Tabel 2. 2 Referensi Studi Terdahulu

No	Peneliti	Judul Penelitian	Tujuan	Parameter Analisis	Hasil Penelitian
				DDL	
1	(Rahma, 2014)	Kajian Daya	Menganalisis 4		Status daya dukung lingkungan pada
		Dukung	(empat) hirarki Daya		Kabupaten Serang terdapat beberapa
		Lingkungan	Dukung Lingkungan		kondisi. Pada bulan Desember –
		berbasis neraca	(DDL) berbasis		Januari status aman (sustain),
		Air di Kabupaten	neraca air di		sedangkan untuk bulan Februari –
		Serang, Banten	Kabupaten Serang,		April dan bulan November
			Banten		dikatagorikan aman bersyarat
					(conditional sustain), sementara dari
					bulan Mei hingga Oktober kondisi
					telah terlampaui (overshoot).
					Sementara untuk status daya dukung
					lingkungan di Kabupaten Serang
					dalam satu tahun dengan angka rasio
					sebesar 1.15 termasuk kategori aman
					bersyarat (conditional sustain).

No	Peneliti	Judul Penelitian	Tujuan	Parameter Analisis	Hasil Penelitian
				DDL	
2	(Sabri &	Kajian Imbangan	Menganalisis kondisi		Kebutuhan air di Pulau Bangka adalah
	Hambali, 2013)	Air Pulau	imbangan air di		sebesar 711,75 m3/kapita/tahun,
		Bangka	seluruh wilayah di		dengan nilai terkecil 54,60
			Pulau Bangka		m3/kapita/bulan dan terbesar 60,45
					m3/kapita/bulan
					Air tersedia di Pulau Bangka
					menunjukkan nilai surplus dari tahun
					2013 hingga tahun 2023, dengan nilai
					terkecil di Kota Pangkalpinang dan
					nilai terbesar di Kabupaten Bangka
					Selatan. Namun, jika ditinjau
					distribusi ketersediaannya dalam
					periode bulanan, maka air yang
					tersedia setiap bulan tidak merata.
					Umumnya terjadi 9able9v
					ketersediaan air pada musim kemarau
					(Mei-Oktober) hampir di seluruh

No	Peneliti	Judul Penelitian	Tujuan	Parameter Analisis	Hasil Penelitian
				DDL	
					wilayah di Pulau Bangka.
3	(Ming, 2011)	The Prediction	Memprediksi		WRCC dapat dihitung Chongqing
		and Analysis of	kapasitas sumber		metropolitan, nilainya adalah 8,8 ~ 14
		Water Resource	daya air daerah		juta orang pada 2020. Populasi
		Carrying	(WRCC) melaui		Chongqing metropolitan adalah 5,91
		Capacity in	metode supply dan		juta pada tahun 2007, sehingga sumber
		Chongqing	demand		daya air tidak akan menjadi elemen
		Metropolitan,			pembatas utama di Chongqing
		China			pembangunan ekonomi sosial
					metropolitan dalam waktu yang
					singkat. Jumlah total sumber daya air
					yang tersedia dapat dihitung, nilainya
					adalah 58,845 – 79,154 miliar m ³ .
4	(Widodo B. & et	Analysis of	Menganalisis daya		Daya dukung sumber daya lahan
	al, 2014)	Environmental	dukung lingkungan		permukiman di YUA mencapai 2,89
		Carriying	dari sumber daya		atau secara kondisional-simpan. Selain
		Capacity for the	lahan pemukiman		itu, analisis daya dukung sumber daya

No	Peneliti	Judul Penelitian	Tujuan	Parameter Analisis	Hasil Penelitian
				DDL	
		Development of	dan sumber daya air		air di YUA menunjukkan hasil
		Sustainable	sebagai basis		kondisional-simpan dengan nilai 2,44.
		Settlement in	pengembangan		Daya dukung sumber daya lahan
		Yogyakarta	pemukiman		dianggap aman saat mencapai 22,73%,
		Urban Area	berkelanjutan di		secara kondisional simpan ketika
			Daerah Perkotaan		nilainya 60.60%, dan overshoot ketika
			Yogyakarta (YUA).		mencapai 16.67%. Sementara itu,
					sumber daya air membawa kapasitas
					berhak disimpan jika nilainya 15,15%,
					secara kondisional-hemat jika
					mencapai 74,24%, dan overshoot jika
					mencapai 10,61%.
5	Xie Fuju, et al,	Research	Menganalisis		Hasil penelitian menunjukkan bahwa
	2010	on	daya dukung		jejak ekologis per kapita telah
		Ekologic	lingkungan		meningkat dua kali dari tahun 2001-
		al	menggunakan		2008, yaitu dari 0,1885 hm2 pada

No	Peneliti	Judul Penelitian	Tujuan	Parameter Analisis	Hasil Penelitian
				DDL	
		Environm	model		tahun 2001 menjadi 0,4639 hm2 pada
		ental	ecology		tahun 2008. Keragaman jejak ekologis
		Carrying	footprint		telah sedikit berubah, dan rasio
		Capacity			sumber daya biotik persyaratan
		in Yeloow			terbesar di antara semua jenis lainnya.
		River			Kemampuan pengembangan
		Delta			ekosistem sedikit membaik. Daya
					dukung lingkungan Delta Sungai
					Kuning telah meningkat. Tetapi
					dibandingkan dengan peningkatan
					jejak ekologi, tingkat yang semakin
					meningkat tidak terlihat, dan defisit
					ekologi meningkat secara nyata.