BAB IV METODE PENELITIAN

4.1 Tinjauan Penelitian

Pada penelitian kali ini oenulis melakukan penelitian proyek trans tol Palembang – Indralaya Sta. 1+675. Pada proyek jalan tol ini penulis terfokus melakukan analisis stabiltas lereng menggunakan geotekstil dan tanpa menggunakan geotekstil menggunakan metode elemn hingga *software Plaxis V.8.2. Plaxis* merupakan salah satu *software* geoteknik yang dapat menganalisi stabilitas lereng. Dari hasil analisis yang akan didapat nantinya diharpkan dapat mengatasi permasalah-permasalah yang terjadi pada lereng proyek jalan trans tol Palembang-Indralaya ini dan menjadi acuan dalam perencanaan di lapangan yang kemungkinan mirip atau setipikal pada lereng Sta. 1+675 ini.

Adapun dalam penelitian ini dibagi dalam beberapa tahapan, diantaranya adalah sebagai berikut ini.

- Pada tahap pertama ialah pengumpulan data, data yang dimuat meliputi data tanah (data tanah uji laboraturium dan lapangan) yang didapat dari Laporan proyek jalan Tol Palembang-Indralaya.
- 2. Tahap kedua, analisi dan pengolahan data yang telah diambil lalu di analisi stabilitas timbunan pada badan jalan menggunakan program *Plaxis V8.2*. Pada tinggi timbunan 2 m sampai 6 m dengan variasi permodelan yaitu kondisi tanah asli, timbunan tanah asli *Replacement*, timbunan tanah asli dengan geotekstil, dan timbunan tanah asli *Replacement* dengan geotekstil. Permodelan dilakukan dalam kondisi eksisting dan konstruksi yang mana akan diolah sebagai koreksi untuk ditindak lanjuti dari tahapan hasil program *Plaxis V8.2*.
- 3. Tahapn terkahir pembahasan dan penarikan kesimpulan yang diindak lanjuti dalam penulisan laporan. Yang dimana berisi hasil-hasil yang telah di analisi melalui metode-metode dan tahapan-tahapan anlisis kemudia akan dihasilkan solusi dari masalah-masalah yang timbul dan diambil kesimpulan berdasarkan

teori yang digunakan untuk menyelesaiakan masalah tersebut demi kepentingan penyelesaian masalah pada suatu proyek tersebut juga memberikan manfaat baik untuk semua pembaca.

1.2 Objek Dan Subjek Penelitian

Objek dalam penelitian ini adalah untuk mengetahui stabilitas lereng yang sudah ditentukan. Sedangkan subjek pada penletian ini adalah pada lereng proyek jalan trans tol Palembang – Indralaya Sta. 1+675 pada sisi kiri dan sisi kanan.

1.3 Data Pendukung Penelitian

Data-data yang diperlukan untuk mendukung melakukan penelitian ini adalah data skunder, yang meliputi sebagai berikut:

- 1. Data tanah (Soil Investigation),
- 2. Peta lokasi,
- 3. Beban kendaraan,
- 4. Beban gempa,
- 5. Profil lereng, dan
- 6. Gambar penampang melintang jalan.

1.4 Analisis Data

Setelah mendapat data yang didapatkan kemudia kita menganalisi dengan metode analisis data yang mana metode ini dapat digunakan untuk menyerderhanakan dan mempermudah dalam memahami data yang kita dapat. Berikut data yang sudah diperoleh.

4.4.1 Data Parameter Tanah

Pada penelitian ini didapatkan parameter tanah yaitu data tanah pada saat konstruksi. Adapun data parameter dapat diliat pada Tabel 4.1, sebagai berikut ini.

	Compacted fill material	Silty Clay	Clayey Silt	Clayey Sand	Satuan
Model	МС	MC	MC	MC	-
Туре	Undrained	Undrained	Undrained	Undrained	-
$\gamma_{\rm sat}$	19.75	16.470	17.347	19.457	kN/m ³
$\gamma_{ m unsat}$	16.75	14.470	15.347	16.457	kN/m ³
K _x	0.0000264	0.0000432	0.00000864	0.00000864	m/day
K_y	0.0000264	0.0000432	0.00000864	0.00000864	m/day
Ε	2500	3000	2000	5000	kN/m ²
V	0.35	0.35	0.3	0.3	-
С	25	6.1	20	13	kN/m ²
Φ	8.42	8.503	23	27	0
Ψ	0	0	0	0	0

Tabel 4.1 Data Parameter Tanah Saat Konstruksi

(sumber: PT. Promisco Sinergi Indoensia, 2015)

1.4.2 Data Beban

Pada penelitian ini beban yang bekerja adalah bebean perkerasan dan beban gempa yang dimana akan ditinaju pada penelitian ini. Beban perkerasan untuk penelitian ini didapat dari data sekunder yaitu sebesar 10 kN/m². Untuk beban lalu lintas sendiri didapat dari peraturan pekerjaan umum tahun 2009 sebesar 15 kN/m² dapat dilihat berdasarkan fungsi dan jaringan jalan pada Tabel 4.2 berikut ini.

Fungsi	Sistem Jaringan	Lalu Lintas Harian Rata- Rata (LHR)	Beban Lalu Lintas (kN/m ²)			
	Arteri	Semua	15			
Primer	Kolektor	>10.000	15			
	Rolektor	<10.000	12			
	Arteri	>20.000	15			
		<20.000	12			
Sekunder	Kolektor	>6.000	15 12 15 12 12 12 10			
Sekunder		<6.000	15 15 12 15 12 12 12 10 10 10			
	Lokal	>500	Lintas (kN/m ²) 15 15 12 12 12 12 12 10 10 10 10			
	2011	<500	10			

 Tabel 4.2 Data Parameter Beban Lalu Lintas

(Sumber: Panduan Geoteknik 4 No. Pt T-10-2002-B (2002))

1. Beban Gempa

Dalam penelitian ini beban gempa yang dianlisi adalah beban gempa dinamik yang dimana durasi waktu gempa data dimasukan pada *software PLAXIS* dikumpulkan dari USGS (*U.S. Geological Sruvey*). Grafik hbungan anatara waktu dan percepatan gempa yang ada di dalam *Plaxis* berdasarkan peta zona gempa yang dikelurkan oleh Badan Standarisasi Nasional yang diterbitkan pada tahun 2012, yaitu SNI 1726:2012. Pada wilayah Palembang memiliki zona gempa dengan percepatan puncak gempa (PGA) sebesar 0.15-0.2g. data yang tepat untuk kawan ini adalah dari data kawasan *Whitter Narrows, CaliforniaI* pada tahun 1987 yang dimana memilik percepatan puncak sebesar 0.191g dan waktu inteval yang diinput pada *Plaxis* sebesar 13 detik anggapan telah melewatii percepatan puncak. Grafik respom spectrum dapat diliat pada Gambar 4.1.

Gambar 4.1 Grafik Hubungan Antara Percepatan dan Waktu (sumber: www.usgs.gov, 2017)

1.4.3 Data Geotekstil

Data geotekstil yang didapatkan dari data sekunder adalah geotekstil berjenis woven atau geotekstil teranyam yang dimana berasal dari PT. Terasa Geosinindo. Nilai geotekstil sebagai *input* pada program *Plaxis* berupa nilai *normal stiffness* (*EA*) dengan menggunakan persamaan sebagai berikut.

$$EA = \frac{F_g}{\Delta l/l} \tag{4.1}$$

Dengan :

 $F_g = kuat tarik ijin geotekstil (kN/m), dan$

 Δl_{l} = regangan pada geotekstil

Geotekstil yang digunakan produksi dari PT. Terasa Geosinindo adalah jenis woven HRX 300 dapat dilihat pada Lampiran 3. Adapun datageotekstil dapat dilihat pada Tabel 4.3 berikut ini.

Parameter	Notasi	Nilai	Satuan
Kuat Tarik Ijin	Та	55	KN/m
Regangan	Е	0.14	-
Kekakuan Normal	EA	392.86	KN/m

Tabel 4.3 Data Parameter Geotekstil Woven

1.4.4 Input Plaxis

1. Buka program Plaxis

Dengan cara *double-click* pada icon *1 input Plaxis* maka akan muncul sebuah kotak dialog *new project/exsiting project*, lalu pilih *new project* untuk memulai permodelan lalu klik *OK* seperti pada Gambar 4.2 berikut.

Create/Open project	×
Open • New projecti • Existing project	
<<< More files >>> C:\TA\PERMODELAN\TA5.plx C:\TA\PERMODELAN\TA4.plx C:\TA\PERMODELAN\TA 7.plx C:\TA\PERMODELAN\TA6 (mini pile).plx	
OK Cancel Help	

Gambar 4.2 Dialog Create/Open project

2. General setting

Pada tab dialog dalam pengaturan global (*general setting*) terdapat dua, yaitu tab *project* dan *dimensions*. Lembar tab *project*, masukkan nama proyek yang akan dimodelkan pada kotak dialog *title*. Pada pilihan kotak *general* pilih analisis model *plane strain* (regangan bidang) dan pilih jenis elemen dasar *15-Node* untuk analisis dengan menghasilkan tegangan dan beban runtuh yang akurat.

⁽sumber: P.T Terasa Geosinindo)

neral settings Project Dimensions	;
Project Filename <noname> Directory Title NoName></noname>	General Model Plane strain Elements 15-Node
Comments	Acceleration Gravity angle : $-90 \circ 1.0 \text{ G}$ x-acceleration : $0.000 \rightleftharpoons \text{G}$ y-acceleration : $0.000 \clubsuit \text{G}$ Earth gravity : $9.800 \clubsuit \text{m/s}^2$
Set as <u>d</u> efault	
N	ext <u>Q</u> K <u>C</u> ancel <u>H</u> elp

Gambar 4.3 Project dari Jendela General Setting

Pada bar *dimension* terdapat beberapa yang harus di perhatikan seperti pada kolom *Units* yang mana pada kolom tersebut berfungsi sebagai mengatur dimensi satuan yang kita gunakan dalam permodelan kita pada penelitain ini digunakan satuan-satuan pra-pilih dalam kotak *unit* (*Length* = m, *Force* = kN, *Time* = day). Pada bar *geometry dimension* berfungsi untuk mengatur jarak permodelan kita agar mempermudah dalam pengerjaan pada penelitain ini dimasukan masihng-masing pada kita isian *left, right, bottom,* dan *top* adalah masing bernilai 0.0, 50.0, 0.0, 25.0, dan terakhir pada bar *grid* berfungsi sebagai sepasi antara titik (*node*) agar memudahkan penggambaran karena semakin kecil sepasi (*spacing*) dan *number of interval* maka penggambaran akan semakin detail. Pada penelitian ini dimasukan nilai *Spacing* 1.0 m dan *number of interval* 1.0.

Units Length m \checkmark Force kN \checkmark Time day \checkmark Stress kN/m^2 Weights kN/m^3 Weights kN/m^3 Set as default	Project Dimensions	
Length m \checkmark Force kN \checkmark Time day \checkmark Stress $kN_{/m}^{2}$ Weights $kN_{/m}^{3}$ Left: 0.000 \diamondsuit m Bottom: 0.000 \diamondsuit m Top: 25.000 \diamondsuit m Grid Spacing 1.000 \diamondsuit m Number of intervals 1 \checkmark	Units	Geometry dimensions
Force kN \checkmark Time day \checkmark Stress kN/m^2 Weights kN/m^3 Weights kN/m^3 Number of intervals 1 \diamondsuit Set as default	Length m 💌	Left: 0.000 🚖 m
Time day ▼ Bottom : 0.000 ★ m Top : 25.000 ★ m Stress kN,m ² Grid Spacing 1.000 ★ m Weights kN,m ³ Number of intervals 1 ★ m	Force kN 💌	Right : 50.000 🚖 m
Top: 25.000 ♀ m Grid Grid Spacing 1.000 ♀ m Number of intervals 1 Set ar default 1	Time day 💌	Bottom : 0.000 🚖 m
Grid Stress kN,m ² Weights kN,m ³ Spacing 1.000 ★ m Number of intervals 1 ★		Top: 25.000 🚖 m
) Secus deradic	Stress kN/m ² Weights kN/m ³	Grid Spacing 1.000 🚖 m Number of intervals 1
		Next OK Cancel Help

Gambar 4.4 Tab bar Dimension (General Setting)

3. Permodelan

Permodelan geometri dilakukan dengan langkah langkah berikut ini.

- a. Pilih pada bar *Geometry line* (telah diaktifkan) arahkan kursor pada koordinat 0.0;0.0 sebagai titik awal setelah itu gambar geometri sesuai koordinat yang telah ditentukan atau dengan cara menggetikan 0;0 untuk megambarkan kordina 0.0..
- b. Klik 🔲 ıbol *standard fixities* pada toolbar

Permodelan geometri dapat dilihat pada Gambar 4.5 berikut ini.

Gambar 4. 5 Permodelan Geomteri

4. Input matrial pada Plaxis

Untuk memasukan data metrial dapat dilakukan dengan meneken pada *tool bar* yang ber-*icon material sets*, *input* parameter dari masing-masing material seperti pada gambar 4.6, dan untuk meng-*input* material bisa dengan cara *drag* dan seret pada lapis tanah yang ingin di isi dengan matrial yang sudah kita buat. Maka material sudah masuk dengan tanda ada perubahan warna. Seperti pada gambar 4.5 sebelumnya.

Global >>> Project Database Set type: Soi & Interfaces Group order: None Caleysend Clayeysit SiltyClay timbunan New Edit Copy Del QK Apply Help	Material sets
Project Database Set type: Soil & Interfaces Group order: None Caleysend Clayeysit SityClay timbunan New Edit Copy Del QK Apply Help	Global >>>
Set type: Soil & Interfaces Group order: None Caleysend Clayeysilt SityClay timbunan New Edit Copy Del QK Apply Help	Project Database
Group order: None Caleysend Caleysult SiltyClay timbunan New Edit Copy Del QK Apply Help	Set type: Soil & Interfaces
Caleysend Clayeysilt SiltyClay timbunan New Edit Copy Del	Group order: None
New Edit Copy Del QK Apply Help	Caleysend Clayeysilt SiltyClay timbunan
OK Apply Help	New Edit Copy Del
	QK Apply Help

Gambar 4.6 Bar Jendela Material Sets

5. Pembebanan

Untuk melakukan pembebanan struktur dapat di lakukan dengan cara mengklik *Distributed load-load system* A pada *toolbar*, lalu klik daerah yang ingin di bebani seperti pada Gambar 4.5. Setelah penggambaran pembebanan dilanjutkan dengan cara pemberian beban dengan cara *double-click* pada garis yang sudah kita gambar lalu masukan beban merata struktur sebesar 10 kN/m² masing-masing diberi nilai -10 kN/m² pada *Geometry point 3* dan *Geometry pont 4* lalu kilik OK seperti pada Gambar 4.7 sebagai berikut ini.

Distributed lo	oad - static load	system A				×
Geometry p	point 3		Geometry p	oint 4		
X-Value :	0.000 🜩	kN/m ²	X-Value :	0.000	♦ kN/m ²	
Y-Value :	-10.000	kN/m ²	Y-Value :	-10.000	♦ kN/m ²	
					Perpendicula	ar
			<u>о</u> к	<u>C</u> ancel	Help	

Gambar 4.7 Bar Distributed load-load system A

6. General meshing

Klik *icon* untuk melakukan *Generate mesh*, setelah mengklik *generate mesh* maka akan muncul jendela baru yang mana menggambarkan jaringan elemen hingga seperti pada gambar 4.8 berikut ini.

Gambar 4.8 Jaringan Elemen Hingga

7. Initial Conditions

Pada *ToolBar* pilihan klik *icon* \Rightarrow Initial conditions lalu akan muncul jendela untuk menunjukan nila pra-pilih dari berat isi air yaitu 10kN/m³ dan klik OK untuk menerima nila tersebut. Selanjutnya terdapat dua modus yang berbeda yaitu modus *generate water pressures* dan modus *generate initial stresses* \bigcirc lakukan perpindahan kedua modus tersebut dengan cara menggklik. Pada modus *generate water pressures* arahkan kursor untuk membuat elevasi muka air tanah dengan cara klik tombol *icon* $\stackrel{++}{+}$ maka akan muncul jendela hasil tekanan air seperti pada gambar 4.9. Langkah selanjutnya mengklik *icon intial stresses* $\ddagger + \ddagger$ akan muncul kotak dialog Ko-procedure masukan nilai faktor pengali total untuk berat tanah sebesar 1.0 klik tombol OK maka akan muncul jendel tgangan awal seperti pada gamabar 4.10 berikut.

Gambar 4.9 Jaringan Tekanan Air Pori

Gambar 4.10 Tegangan Awal

8. *Calculation* (perhitungan)

Untuk memulai *calculation* dengan cara mengklik tombol Calculate maka akan muncul jendela baru yaitu jendela *calculation* pada jendela trs terdapat empat *toolbar* yaitu general, parameters, multiplier dan preview. Pada bar general terdapat *calculation type* pilih *consolidation* berfungsi untuk mengetahui penuruan yang terjadi, pada phi/c *reduction* untuk mengetahui pengaruh akibat beban, lalu *plastic analysis* untuk mengetahui besar displacement dari kondisi tinjauaan dan terakhir *dynemic analysis* biasanya digunakan untuk analisi mengunakan gempa dengan cara memasukan nila respons spectrum.

Plaxis 8.2 Calculati	ons - TA4.plx				- 🗆	>
ile Edit View Ca	lculate Help					
Input Output Curves	🗁 🔒		+> Output			
General Multipliers	Preview					
Phase			Calculation	n type		
Number / ID.:	0 Initial ph	ase		-		
Start from phase:	0 - Initial phase			Advanced		
bian en om pridber	Jo much pricae			Tavancea		
Log info			Comments	s		
			<u> </u>			
1			· ·			
				Parameters		
				🖶 Next 🗮 Ins	ert 🖳 🖳 D	elete
Identification	Phase no.	Start from	Calculation	Loading input	Time	Wate
Identification Initial phase	Phase no.	Start from	Calculation	Loading input	Time	Wate 0
Identification Initial phase toosolidasi	Phase no. 0 2	Start from 0 0	Calculation N/A Consolidation	Loading input N/A Staged Construction	Time 0.00 150	Wate 0 0
Identification Initial phase → konsolidasi → sf	Phase no. 0 2 5	Start from 0 0 2	Calculation N/A Consolidation Phi/c reduction	Loading input N/A Staged Construction Incremental multipliers	Time 0.00 150 0.00	Wate 0 0 0
Identification Initial phase → konsolidasi → sf → beban	Phase no. 0 2 5 3	Start from 0 2 2	Calculation N/A Consolidation Phi/c reduction Plastic	Loading input N/A Staged Construction Incremental multipliers Staged construction	Time 0.00 150 0.00 0.00	Wate 0 0 0
Identification Initial phase → konsolidasi → sf → beban → SF	Phase no. 0 2 5 3 4	Start from 0 2 2 3	Calculation N/A Consolidation Phi/c reduction Plastic Phi/c reduction	Loading input N/A Staged Construction Incremental multipliers Staged construction Incremental multipliers	Time 0.00 150 0.00 0.00 0.00 0.00 0.00	Wate 0 0 0 0
Identification Initial phase → konsolidasi → sf → beban → SF	Phase no. 0 2 5 3 4	Start from 0 2 2 3	Calculation N/A Consolidation Phi/c reduction Plastic Phi/c reduction	Loading input N/A Staged Construction Incremental multipliers Staged construction Incremental multipliers	Time 0.00 150 0.00 0.00 0.00	Wate 0 0 0 0

Gambar 4.11 Tampila Jendela Calculation

Setelah menentukan *calculation type* dan membuat indetinfikasi sesuai dengan phase kita inginkan selanjutnya menentukan *point for curves* berfungsi untuk menggambarkan tampilan kurva. Adapun dengan cara mengklik *icon* imaka akan muncul jendela *select point* dengan cara mengklik kita akan menentukan titik kurva kita yang kita butuhkan seusai dengan jumlah klik kita yang mana disusun oleh abjad berurutan sehingga kita dapat membaca kurvanya dan melihat kurvanya dengan rapih seperti pada gambar 4.12 sebagai berikut ini.

Gambar 4.12 Select Point Curves

9. Output

Untuk memulai jendela *output* dengan cara mengklik *icon*

Maka jendela baru akan muncul, menampilkan hasil dari tahap perhitungan. Pada penelitian ini akan ditampilkan hasil *total displacement*, arah pergerakan tanah dan daerah potensi kelongsorannya saja seperti pada gambar 4.13 dan 4.14 berikut ini.

Gambar 4.13 Tampilan Arah Pergerakan Tanah

Gambar 4.14 Tampilan Daerah Potensi Kelongsoran dan *Total Displacement*

Gambar 4.15 Tampilan Kurva Safety Factor

Gambar 4.16 Tampilan Kurva Penurunan

4.5 Tahapan Penelitian

Tahapan dalam penelitian ini dimulai dengan melakukan identifikasi masalah yang terjadi pada proyek jalan tol trans Palembang – Indralaya sumater selatan, kemudian melakukan studi pustaka sebagai pendukung informasi dari berbagai sumber buku, catatan, literatur, hasil laporan penelitian sejenis yang relevan sesuai dengan subjek dan objek yang sedang diteliti. Tahapan selanjutnya setelah dilakukan studi pustaka adalah melakukan pengumpulan data baik data sekunder yang didapatkan dari PT. Hutama Karya. Tahapan selanjutnya setelah pengumpulan data adalah melakukan analisis data yang diperoleh untuk mendapatkan stabilitas lereng yang aman yang akan direncanakan dengan *software Plaxis V 8.2.* Berikut merupakan tahapan penelitian secara rinci yang dapat dilihat sebagai berikut.

Gambar 4.17 Flowchart Alir Tahapan Penelitian

Lanjutan Gambar 4.17 Flowchart Alir Tahapan Penelitian

Lanjutan Gambar 4.17 Flowchart Alir Tahapan Penelitian

Gambar 4.18 Bagan Alir Pengerjaan Plaxis V8.2

Lanjuta Gambar 4.18 Bagan Alir Pengerjaan Plaxis V8.2