BAB V

ANALISIS DAN PEMBAHASAN

5.1. Pemodelan Stuktur

Penelitian ini menggunakan analisis *nonlinier pushover* dengan bantuan program SAP 2000 V15. Pemodelan berupa portal *open frame* 3D, sehingga beban dinding didistribusikan sebagai beban merata pada sisi atas balok. Asumsi-asumsi yang digunakan dalam pemodelan numerik pada gedung kuliah *Twin Building* UMY adalah sebagai berikut ini.

- 1. Balok dan kolom diasumsikan sebagai frame.
- 2. Plat lantai dimodelkan sebagai shell.
- 3. Shear wall dimodelkan sebagai shell.

Detail pemodelan struktur gedung kuliah *Twin Building* UMY dapat dilihat pada Gambar 5.1.

Gambar 5. 1 Pemodelan *open frame* 3D struktur Gedung Kuliah *Twin Building* UMY

5.2. Pembebanan Struktur

Pembebanan struktur pada SAP 2000 meliputi perhitungan beban mati, beban hidup, dan beban gempa berdasarkan SNI 1726-2012. Perhitungan pembebanan dijelaskan sebagai berikut ini.

5.2.1. Beban Mati

Pada saat input pembebanan pada SAP 2000, beban mati sendiri seperti balok, kolom dan pelat akan dihitung otomatis oleh SAP 2000 V15. Elemen yang perlu ditambahkan dalam pembebanan struktur adalah beban mati tambahan. Perhitungan beban mati tambahan dijelaskan sebagai berikut ini.

1. Berat Rangka Atap

a.	Data Teknis Pembebanan	Rangka Atap							
	Berat penutup atap genten	g : 0,4905 kN/m ²							
	Beban plafond	: 0,10791 kN/m ²	: 0,10791 kN/m ²						
	Profil gording	: C 150.50.20 mm → q = 0,0663156 kN							
	Jarak antar gording	: 1,5 m	: 1,5 m						
	Jarak antar kuda-kuda	: 3 m	: 3 m						
b.	Beban Mati								
	Penutup Atap : 3 m x 1,5	6 m x 0,4905 kN/m ²	= 2,20725	kN					
	Gording : 1,5 m x	0,0663156 kN/m	= 0,099473	kN					
	Plafond : 0,10791 l	$xN/m^2 x 1,5 m x 3 m$	= 0,485595	kN					
				+					
		PE	o = 2,792318	kN					
c.	Beban Hidup								
	PL : 0,981 kN/m ²	x 3 m x 1,5 m = 4,4145 kN							
d.	Beban Angin								
	Sudut kuda-kuda (α)	: 35°							
	Tekan tiup angin	: 25 kg/m ² = 0,24525 kN/m ²							
	Koefisien angin tekan	$(0,02 \times 35^\circ) - 0,4 = 0,3$							

Koefisien angin tekan dan angin hisap ditentukan berdasarkan Pasal 4.3 Peraturan Pembebanan Indonesia untuk Gedung 1987. Detail penentuan koefisien angin tekan dan angin hisap dapat dilihat pada Gambar 5.2 berikut ini.

Gambar 5. 2 Koefisien angin

(Sumber: Peraturan Pembebanan Indonesia untuk Gedung 1987)

➢ Angin Tekan (Q_T)

 $W_1 = L_{antar \ gording} \ x \ B_{antar \ kuda-kuda} \ x \ Koef_{tekan} \ x \ q_w$

= 1,5 m x 3 m x 0,3 x 0,24525 kN/m²

= 0,3310875 kN

Beban Angin Vertikal (V _T)	$= W_1 x \cos 35$	= 0,271211 kN
Beban Angin Horizontal (V _H)	$= W_1 x sin 35$	= 0,189904 kN

Angin Hisap (Q_H)

W_2	$= L_{antar \ gording} \ x \ B_{antar \ kuda-kuda} \ x \ Koef_{tekan} \ x \ q_w$							
	= 1,5 m x 3 m x 0,4 x	0,24525 kN/m ²						
	= 0,44145 kN							
Beban	Angin Vertikal (V _T)	= W ₂ x cos 35	= 0,36161467 kN					
Beban	Angin Horizontal (V _H)	= W ₂ x sin 35	= 0,25320532 kN					

Setelah dilakukan perhitungan beban secara manual, reaksi perletakan joint didapatkan dengan melakukan analisis kuda-kuda pada SAP 2000. Langkahlangkah analisis menggunakan program SAP 2000 untuk mencari reaksi perletakan joint berat rangka atap diuraikan sebagai berikut ini.

 Memilih satuan ke KN,m,C. Kemudian memodelkan struktur kuda-kuda secara 3D dengan SAP 2000 V15 . Pemodelan struktur kuda-kuda dapat dilihat pada Gambar 5.3.

Gambar 5. 3 Pemodelan struktur kuda-kuda 3D

 Kemudian menentukan material dengan cara *Define>Materials>Add New Material*. Isi material dengan mutu baja BJ 37, tegangan putus minimum (*fu*) 370 MPa, tegangan leleh minimum (*fy*) 240 MPa. Untuk lebih jelas dapat dilihat pada Gambar 5.4.

Material Name and Display Color	BAJA ATAP
Material Type	Steel
Material Notes	Modify/Show Notes
Weight and Mass	Units
Weight per Unit Volume 7.697	7E-05 N, mm, C 💌
Mass per Unit Volume 7.849	9E-09
Isotropic Property Data	
Modulus of Elasticity, E	199947.98
Poisson's Ratio, U	0.3
Coefficient of Thermal Expansion, A	1.170E-05
Shear Modulus, G	76903.07
Other Properties for Steel Materials	
Minimum Yield Stress, Fy	240.
Minimum Tensile Stress, Fu	370.
Effective Yield Stress, Fye	379.2117
Effective Tensile Stress, Fue	492.9752

Gambar 5. 4 Material property data

 Menentukan profil baja ringan, *Define>Section Properties>Frame Section>* Add New Property. Pada analisis ini menggunakan jenis Steel IWF 250.150.9.6. Untuk lebih jelas dapat dilihat pada Gambar 5.5.

Section Name	BAJA	WF 250
Section Notes		Modify/Show Notes
Properties 6	Property Modifiers-	Material
Section Properties	Set Modifiers	+ BAJA ATAP 💌
Dimensions		
Outside height (t3)	0.25	
Top flange width (t2)	0.15	
Top flange thickness(tf)	9.000E-03	3
Web thickness (tw)	6.000E-03	
Bottom flange width(t2b)	0.15	
Bottom flange thickness(tfb)	9.000E-03	Display Color

Gambar 5. 5 Frame properties

4). Memberi tumpuan pada *frame* dengan cara klik joint-joint yang dimodelkan sebagai tumpuan, kemudian *Assign>Joint>Restraint>*Pilih

Ass	sign Joint Restraints
Restraints in Joint Local	Directions
✓ Translation 1	Rotation about 1
✓ Translation 2	Rotation about 2
✓ Translation 3	Rotation about 3
ОК	Close Apply

Gambar 5. 6 Joint restraints

 Menentukan jenis beban dengan *Define>Load Patterns* kemudian tentukan bebannya yaitu beban mati, beban hidup, dan beban angin. Pilih faktor pengali 1 untuk beban mati pada *Self Weight Multiplier*.

.oad Patterns				10000		Click To:
Load Pattern Name	Туре		Self Weight Multiplier	Load Pattern		Add New Load Pattern
WIND	LIVE	~ [)	~		Modify Load Pattern
DEAD LIVE	DEAD LIVE		1 D			Modify Lateral Load Pattern
WIND	LIVE		0			Delete Load Pattern
					•	Show Load Pattern Notes

Gambar 5.7 Define load patterns

6). Karena hanya akan mencari reaksi tumpuan pada *joint*, maka tidak diperlukan *Load Combination*. Langkah selanjutnya adalah memasukkan nilai beban mati, hidup, dan angin yang sebelumnya telah dihitung. Sebagai contoh pada beban mati didapat 2,7923184 kN, klik pada joint-joint yang akan diberi beban kemudian *Assign > Joint Loads > Forces*. Masukkan beban sesuai dengan

	Joint Forces	
Load Pattern Name + DEAD Loads	.	Units KN, m, C Coordinate System
Force Global X	0.	GLOBAL
Force Global Z	2.7923184	Options O Add to Existing Loads
Moment about Global X	0.	Replace Existing Loads
Moment about Global Y	0.	O Delete Existing Loads
Moment about Global Z	0.	OK Cancel

Load Pattern Name > Dead pada arah Z. untuk lebih jelas dapat dilihat pada Gambar 5.8.

Gambar 5. 8 Joint forces

7). Setelah input semua beban kemudian dilakukan analisis model struktur. Pertama dilakukan *Frame Releases* dengan cara pilih semua *frame*, kemudian *Assign > Frame > Releases/Partial Fixity*. Centang *Moment 33* seperti pada Gambar 5.9, kemudian klik OK. Model struktur akan menjadi seperti pada Gambar 5.10.

	Rele	ease		Frame Parti	al Fixity Springs	
	Start	End	Start		End	
kial Load						
near Force 2 (<mark>M</mark> ajor)						
hear Force 3 (Minor)						
orsion						
1oment 22 (Minor)						
Aoment 33 (Major)			0	kN-m/rad	0	kN-m/rad

Gambar 5.9 Frame releases

Gambar 5. 10 Frame setelah di release

Menentukan acuan perencanaan yang akan digunakan dengan cara *Design* > *Steel Frame Design* > *View/Revise Preferences*. Pada struktur ini mengacu pada AISC-LRFD93. Untuk lebih jelas dapat dilihat pada Gambar 5.11.

			Item Description
	ltem	Value	
1	Design Code	AISC-LRFD93	
2	Time History Design	Envelopes	
3	Framing Type	Moment Frame	
4	Phi (Bending)	0.9	
5	Phi (Compression)	0.85	
6	Phi (Tension)	0.9	
7	Phi (Shear)	0.9	
8	Phi (Compression, Angle)	0.9	
9	Consider Deflection?	No	
10	DL Limit, L /	120.	
11	Super DL+LL Limit, L /	120.	
12	Live Load Limit, L 7	360.	
13	Total Limit, L/	240.	
14	TotalCamber Limit, L/	240.	
15	Pattern Live Load Factor	0.75	
16	Demand/Capacity Ratio Limit	0.95	
et To	o Default Values	Reset To Previous Values	Explanation of Color Coding for Values Blue: Default Value Black: Not a Default Value Ref: Value that has shareed during
	All Items Selected Items	All Items Selected Items	the current session

Gambar 5. 11 Steel frame design berdasarkan AISC-LRFD93

9). Selanjutnya melakukan analisis dengan, *Analyze>Run Analysis>Do Not Run Case MODAL>Run Now*. Untuk lebih jelas dapat dilihat pada Gambar 5.12.

Take Name	Тире	Status	Action	
	Linear Statia	Not Due	Bun	Run/Do Not Run Case
	Modal	Not Bun	Do not Bun	Show Case
LIVE WIND	Linear Static Linear Static	Not Run Not Run	Run Run	Delete Results for Case
				Run/Do Not Run All
				Delete All Results
				Show Load Case Tree
alysis Monitor O	ptions			Model-Alive
Always Show				Bup Now
Always Show				Run Now

Gambar 5. 12 Set load cases to run

10). Pembacaan reaksi struktur dengan klik pada [™] pilih *Joint*. Kemudian pilih *Case DEAD, LIVE*, atau *WIND* pada *Joint Reaction Forces* untuk mengetahui reaksi tumpuan. Selanjutnya beban-beban tersebut akan digunakan sebagai berat sendiri kuda-kuda yang dimodelkan sebagai beban titik arah horizontal dan arah vertikal pada ring balok atap dalam analisis struktur Gedung Kuliah *Twin Building* UMY. Hasil reaksi perletakan joint untuk berat sendiri kuda-kuda Tabel 5.1.

BEBAN		K	51	K	K2		K3		K4		K5	
		Ka	Ki									
DEAD	V (kN)	20.81	20.81	11.24	11.24	20.12	20.12	20.64	20.64	20.7	20.7	
	H (kN)	17.51	17.51	8.86	8.86	23.43	23.43	19.31	19.31	17.8	17.8	
LIVE	V (kN)	19	19	10.99	10.99	18.45	18.45	18.98	18.98	18.94	18.94	
	H (kN)	13.55	13.55	7.15	7.15	18.88	18.88	15.39	15.39	13.89	13.89	
WIND	V (kN)	0.18	0.18	0.44	0.44	0.62	0.62	0.29	0.29	0.03	0.03	
WIND	H (kN)	2.45	2.45	0.65	0.65	0.48	0.48	1.46	1.46	2.03	2.03	

Tabel 5. 1 Reaksi perletakan joint untuk berat sendiri kuda-kuda

2. Pelat

a. Pelat Lantai

Pelat beton	$= 0,12 \text{ m x } 23,544 \text{ kN/m}^3$	$= 2,82528 \text{ kN/m}^2$
Pasir	= 0,03 m × 13,7340 kN/m ³	$= 0,41202 \text{ kN/m}^2$
Spesi	= 0,02 m × 19,1295 kN/m ³	$= 0,3826 \text{ kN/m}^2$
Keramik	$= 0,1716 \text{ kN/m}^2$	$= 0,1716 \text{ kN/m}^2$
Plafon Asbes	$= 0,10791 \text{ kN/m}^2$	$= 0,10791 \text{ kN/m}^2$
Penggantung	$= 0,06867 \text{ kN/m}^2$	$= 0,06867 \text{ kN/m}^2$
Ducting AC	$= 0,1962 \text{ kN/m}^2$	$= 0,1962 \text{ kN/m}^2$

 $Q_d \ lantai$ = 4,1643 kN/ m² $Q_d \ lantai$ (SAP) = 1,3391 kN/ m²

------ +

b. Pelat Atap (Finishing lantai atap)

Pelat beton $= 0,12 \text{ m x } 23,544 \text{ kN/m}^3$ $= 2,82528 \text{ kN/m}^2$ Waterproofing (3 cm) $= 0,02 \text{ m} \times 18,6390 \text{ kN/m}^3 = 0,37278 \text{ kN/m}^2$ Plafon Asbes $= 0,10791 \text{ kN/m}^2$ $= 0,10791 \text{ kN/m}^2$

$$-----+ Q_{d \ atap} = 3,30597 \text{ kN/ m}^2$$

$$Q_{d \ atap} (\text{SAP}) = 0,48069 \text{ kN/ m}^2$$

3. Dinding

Digunakan pasangan bata merah setengah batu, $Q_t = 250 \text{ kg/m}^2$ dengan contoh perhitungan lantai 2 sebagai berikut.

Tinggi tembok = tinggi lantai – tinggi balok

Perhitungan beban dinding pada lantai 1 sampai 5 terdapat pada Tabel 5.2.

Lantai	Berat Vol (kN/m ³)	Tinggi Dinding (m)	Tebal Dinding (m)	Q _{dinding} (kN/m)
Lantai 5	16,677	2,9	0,15	7,254495
Lantai 4	16,677	3,3	0,15	8,255115
Lantai 3	16,677	3,3	0,15	8,255115
Lantai 2	16,677	3,3	0,15	8,255115
Lantai 1	16,677	3,3	0,15	8,255115
Lantai dasar	16,677	2,5	0,15	6,253875
	∑ Beban Dindin	g		49,03038

Tabel 5. 2 Beban dinding

5.2.2. Beban Hidup

Fungsi bangunan sebagai ruang kuliah, sehingga didapat beban hidup sebagai berikut ini.

a. Beban hidup pada lantai

 $Q_L = 250 \text{ kg/m}^2 = 2,4525 \text{ kN/m}^2$

- b. Beban hidup plat bordes $Q_L = 300 \text{ kg/m}^2 = 2,943 \text{ kN/m}^2$
- c. Beban hidup pelat atap $Q_L = 100 \text{ kg/m}^2 = 0,981 \text{ kN/m}^2$
- d. Beban hidup reaksi perletakan joint untuk berat sendiri kuda-kuda dapat dilihat pada Tabel 5.1

5.2.3. Beban Gempa SNI 03-1726-2012

Diketahui lokasi bangunan berada di daerah Yogyakarta dengan jenis tanah sedang. Tinggi bangunan 25,5 m, dan bangunan direncanakan dengan tingkat daktilitas penuh. Analisis beban gempa pada struktur bangunan gedung ini menggunakan statik ekuivalen.

1. Perhitungan Berat Total Bangunan (Wt)

Besarnya beban gempa sangat dipengaruhi oleh berat dari struktur bangunan, sehingga perlu dihitung berat dari masing-masing lantai bangunan. Pada penelitian ini berat bangunan didapat dari perhitungan manual. Hasil perhitungan dapat dilihat pada Tabel 5.3.

Tingkat	Wi (kN)	H (m)
Lantai atap	10165,2368	25,5
Lantai 5	20261,4161	20
Lantai 4	21880,8986	16
Lantai 3	21880,8986	12
Lantai 2	21880,8986	8
Lantai 1	21880,8986	4
Jumlah	119595,8846	

Tabel 5. 3 Berat bangunan perlantai

2. Parameter Percepatan Gempa

Berdasarkan hasil penyelidikan tanah, gedung ini berdiri diatas tanah sedang. Pada penelitian ini, untuk menentukan parameter gempa seperti Ss, Fa, S1, Fv, Crs 0,2 dtk, dan Crs 1 detik digunakan aplikasi spektra yang dapat diakses di puskim.go.id berdasarkan SNI 1726-2012. Dalam aplikasi ini, diperlukan data koordinat untuk wilayah yang akan ditinjau seperti pada Gambar 5.13.

Gambar 5. 13 Desain spektra Gedung Kuliah *Twin Building* UMY (Sumber : puskim.pu.go.id)

Setelah memasukan koordinat Gedung Kuliah *Twin Building* UMY, aplikasi desain spektra ini akan memberikan hasil berupa parameter-parameter yang digunakan untuk perencanaan pembebanan gempa, seperti yang dihasilkan pada Gambar 5.14.

Gambar 5. 14 Hasil perhitungan desain spektra gedung *Twin Building* UMY (Sumber : puskim.pu.go.id)

Dari hasil perhitungan pada Gambar 5.14, dapat di export kedalam format Microsoft excel dan didapatkan hasil yang dapat dilihat pada Tabel 5.4.

Variabel	Nilai	Variabel	Nilai
PGA (g)	0,462	PSA (g)	0,48
SS (g)	1,042	SMS (g)	1,129
S1 (g)	0,397	SM1 (g)	0,637
CRS	0,946	SDS (g)	0,753
CR1	0	SD1 (g)	0,425
FPGA	1,038	T0 (detik)	0,113
FA	1,083	TS (detik)	0,565
FV	1,606		

Tabel 5. 4 Parameter desain spektra

(Sumber : puskim.pu.go.id)

3. Periode Fundamental Struktur

Waktu Getar Struktur (T) didapatkan dari hasil analisis modal pada program SAP2000. Prosedur yang digunakan akan dijelaskan sebagai berikut.

- a. Beban mati tambahan dan beban hidup yang telah dihitung pada subbab sebelumnya kemudian diinput pada program SAP2000 sebagai beban merata pada sisi atas komponen balok.
- b. Langkah selanjutnya adalah pendefinisian sumber massa pada analisis. Sumber massa pada penelitian ini adalah dari beban sendiri struktur, beban mati tambahan dan beban hidup. Pendefinisian sumber massa dapat dilakukan dengan cara klik tab *Define → Mass Source*, kemudian pilih *From Element and Additional Masses and Loads* kemudian tambahkan beban mati (*DEAD*) dan beban hidup (*LIVE*) dengan faktor pengali 1. Untuk lebih jelas dapat dilihat pada Gambar 5.15 berikut ini.

Define Mass Source
Mass Definition From Element and Additional Masses From Loads From Element and Additional Masses and Loads Define Mass Multiplier for Loads Load Multiplier DEAD 1. Add LIVE 1. Delete
Cancel

Gambar 5. 15 Define Mass Source

c. Langkah selanjutnya adalah pendefinisian Load Case Data – Modal.
 Pendefinisian dilakukan dengan cara klik tab Define → Load Cases → Modal
 → Modify/Show Load Case. Kemudian akan muncul Form Load Case Data –

Modal. Pada kolom Stiffnes to Use, pilih Zero Initial Condition – Unstressed State. Pada kolom Load Case Type pilih Modal, dan Type of Modes Eigen Vectors. Dan terakhir pada kolom Number of Modes input 2 pada Maximum Number of Modes dan 1 untuk Minimum Number of Modes. Kemudian klik OK. Untuk lebih jelas dapat dilihat pada Gambar 5.16 berikut ini.

Load Cas	se Data - Modal
Load Case Name Notes	s Load Case Type Design
Stiffness to Use	Type of Modes
Stiffness at End of Nonlinear Case Important Note: Loads from the Nonlinear Case are in the current case	C Ritz Vectors
Number of Modes Maximum Number of Modes Minimum Number of Modes 1	
Loads Applied	
Other Parameters Frequency Shift (Center)	
Cutoff Frequency (Radius) 0. Convergence Tolerance 1.0	000E-09
Allow Automatic Frequency Shifting	

Gambar 5. 16 Load Case Data – Modal

- d. Langkah terakhir adalah *Run Analysis* dengan cara klik *Analyze* → *Run Analysis* → hanya *Run Load case Modal* → *Run Now*.
- e. Setelah analisis selesai didapatkan nilai Waktu getar alami (T) sebesar 0,9773 detik. Seperti dapat dilihat pada Gambar 5.17.

Fil	e E	dit Viev	v Defi	ne [Draw	Select	Assig	jn .	Analyze	e D	isplay	D	esigr	n	Opti	ons	То	ols	Hel	р
	2	8	96	/	8	▶ 0	<u>۵</u>	۹ (e e	Q	*	30	ху	xz	yz	nv	ø	69	✿	4
		Deform	ed Shap	e (MOE	DAL) -	Mode 1	- T = 0.	.9773	0; f = 1	1.023	23]							•	
14																				
•																				
1																				
1																				
XX																				
∇					-		•	•												
6																				
-																				

-‡∢					•	•	•	•	•	•										
I																				
×					•	•	•	•												
- 4																				
M							•	•												
····																				
all		,																		
₽S [₽]		1	, → Y																	

Gambar 5. 17 Hasil analisis modal

4. Perhitungan Koefisien Respons Seismik

- a. Tingkat Daktilitas Struktur, R = 4
- b. Faktor Keutamaan Struktur. I = 1,5

$$C_{S} = \frac{S_{D_{S}}}{\left(\frac{R}{I_{e}}\right)}$$
(3.11)
$$= \frac{0.753}{\left(\frac{4}{1,5}\right)}$$
$$= 0.2821$$

Nilai C_S yang dihitung menurut persamaan diatas tidak perlu melebihi,

$$C_{S} \text{ maks} = \frac{S_{D1}}{T\left(\frac{R}{I_{e}}\right)}$$

$$= \frac{0.425}{0.9773\left(\frac{4}{1.5}\right)}$$

$$= 0.1631$$
(3.12)

 C_S harus tidak kurang dari,

$$C_{S}Min = 0,044.S_{Ds}.Ie \ge 0,01$$

$$= 0,044 \times 0,753 \times 1,5$$

$$= 0,0497 \ge 0,01$$
(3.13)

Jadi, nilai Cs yang digunakan adalah 0,1631

5. Gaya Geser Dasar

Perhitungan gaya geser dasar seismik dengan menggunakan persamaan sebagai berikut ini.

$$V = C_s \cdot W_t$$

= 0,1631 × 117950,2473
= 19237,4283 kN

6. Gaya Horizontal Gempa Ekivalen Statik (Fi)

Gaya gempa lateral yang terdapat pada setiap tingkat dtentukan dengan persamaan berikut ini.

$$F_i = C_{V}.V \tag{3.14}$$

dengan,

$$C_V = \frac{W_i H_i^{\ k}}{\sum W_i H_i^{\ k}} \tag{3.15}$$

Keterangan :

 F_i = Gaya horizontal gempa (ton)

 W_i = Berat struktur tiap tingkat *i* (ton)

 H_i = Tinggi tiap tingkat *i* (m)

k = Eksponen yang terkait dengan perioda struktur

Nilai *k* merupakan eksponen terkait dengan periode struktur. Untuk struktur yang mempunyai periode 0,5 detik atau kurang, k = 1. Untuk struktur yang mempunyai periode 2,5 detik atau lebih, k = 2. Sedangkan untuk struktur yang mempunyai periode antara 0,5 – 2,5 detik, k = hasil interpolasi. Maka nilai *k* yang digunakan untuk T = 0,9773 detik dicari menggunakan interpolasi adalah sebagai berikut ini.

= 1 + 0,2387 = 1,2387

k

Perhitungan distribusi gaya lateral pada tiap lantai berdasarkan beban gempa SNI 1726-2012 dapat dilihat pada Tabel 5.5.

Lantai ke	Wi (KN)	H (m)	\mathbf{H}^{k}	W.H ^k	Cvx (%)	Fi (KN)
Lantai atap	10165,2368	25,5	55,2346	561472,5061	19,02%	3658,0363
Lantai 5	20261,4161	20	40,8809	828305,6050	28,05%	5396,4744
Lantai 4	21880,8986	16	31,0087	678497,6845	22,98%	4420,4643
Lantai 3	21880,8986	12	21,7134	475108,7226	16,09%	3095,3697
Lantai 2	21880,8986	8	13,1405	287526,2934	9,74%	1873,2558
Lantai 1	21880,8986	4	5,5685	121844,7333	4,13%	793,8278
Jumlah	117950,2473	0		2952755,5449	100,00%	19237,4283

 Tabel 5. 5 Perhitungan distribusi gaya horizontal gempa SNI 1726-2012

Kontrol $V = \sum F_i$ 19237,4283 = 19237,4283 \rightarrow OK

Beban gempa pada setiap lantai yang sudah didapat, kemudian diinput kedalam SAP2000 sebagai beban lateral arah x dan arah y pada titik pusat massa masing-masing lantai. Sebagai contoh, letak titik pusat massa dan arah beban lateral pada lantai 2 struktur Gedung Kuliah *Twin Building* UMY dapat dilihat pada Gambar 5.18.

Gambar 5. 18 Letak titik pusat massa dan arah beban lateral lantai 2

5.3. Analisis statik linier

Analisis statik linier dilakukan untuk mengetahui kekuatan struktur pada kondisi linier. Hasil dari analisis statik linier adalah berupa *storey-drift ratio* dan *demand capacity ratio*. Beban-beban yang bekerja yaitu beban mati, beban hidup dan beban gempa di input kedalam struktur bangunan yang telah dimodelkan pada SAP 2000. Beban mati dan beban hidup di distribusikan sebagai beban merata pada sisi atas balok, sedangkan untuk beban gempa di distribusikan sebagai beban horizontal pada titik pusat massa masing-masing lantai. Koordinat titik pusat massa masing-masing lantai dari analisis SAP 2000 dapat dilihat pada Tabel 5.6.

Lantai	Koordi	nat awal
Lantai	X	Y
Lantai atap	36,39990	13,6687
Lantai 5	36,39995	13,1974
Lantai 4	36,39995	13,1277
Lantai 3	36,39995	13,1277
Lantai 2	36,49230	13,0248
Lantai 1	36,77838	13,0110
Lantai dasar	36,54283	12,8900

Tabel 5. 6 Titik pusat massa tiap lantai

5.3.1. Rasio Simpangan Tingkat (Storey-drift ratio)

Rasio simpangan tingkat adalah persentase perbandingan selisih *displacement* antar tingkat dan tinggi lantai. Hasil perhitungan rasio simpangan tingkat Gedung Kuliah *Twin Building* UMY dapat dilihat pada Tabel 5.7.

Lantai	H (m)	Displa	cement	DR	. (%)
L'antai	11 (111)	X	Y	X	Y
Lantai atap	5,5	0.01916	0.01213	0.03247	0.02776
Lantai 5	4	0.01738	0.0106	0.06195	0.04075
Lantai 4	4	0.0149	0.00897	0.08368	0.05025
Lantai 3	4	0.01155	0.00696	0.09823	0.05563
Lantai 2	4	0.00762	0.00474	0.1016	0.0567
Lantai 1	4	0.00356	0.00247	0.08893	0.06175
Lantai dasar	0	0	0	0	0

Tabel 5. 7 Nilai storey-drift ratio pada masing masing tingkat

Kurva *displacement* dan kurva *storey-drift ratio* pada masing-masing lantai dapat dilihat pada Gambar 5.19 dan Gambar 5.20.

Gambar 5. 19 Displacement pada masing-masing tingkat

Gambar 5. 20 Storey-drift ratio pada masing-masing tingkat

Berdasarkan panjang bentang secara keseluruhan seperti dapat dilihat pada Gambar 5.21, nilai *storey-drift ratio* arah x seharusnya lebih kecil dari arah y. Tetapi dari hasil analisis statik linier yang dapat dilihat pada Gambar 5.20 didapatkan rasio simpangan tingkat maksimum pada arah X adalah sebesar 0.1016% pada lantai 2, dan pada arah Y sebesar 0.06175% pada lantai 1. Hal ini dapat disebabkan oleh panjang setiap bentang pada struktur yang tidak simetris, yang tentunya akan mempengaruhi kekakuan struktur. Pada Gambar 5.21 dapat dilihat pada arah x terdapat bentangan antar kolom sepanjang 21,6 m, sementara pada arah y panjang bentangan antar kolom yang paling besar hanya sepanjang 9,6 m. Bentangan antar kolom yang paling dapat dipengaruhi oleh adanya dinding geser lift yang memanjang searah sumbu y yang juga dapat dilihat pada Gambar 5.21.

Gambar 5. 21 Detail bentangan arah x dan arah y

5.3.2. Demand Capacity Ratio (DCR)

Menurut FEMA 356 (2000), *Demand Capacity Ratio* (DCR) elemen balok dan kolom untuk hasil analisis beban elastik statik ekivalen dapat dihitung dengan Persamaan 3.17. Nilai DCR tersebut selanjutnya akan dibandingkan dengan nilai DCR ijin yang disyaratkan oleh FEMA 356 (2000) untuk prosedur linier, yaitu sebesar 2,0. Sebagai contoh perhitungan nilai DCR, akan dijelaskan perhitungan pada balok B1-L1-1 sebagai berikut ini.

1. Data penampang balok

В	= 400 mm
Н	= 700 mm
$M_{u}{}^{+}$	= 276,487 kN (Hasil SAP 2000)
M_u^-	= 392,427 kN (Hasil SAP 2000)
\mathbf{V}_{n}	= 120,289 kN (Hasil SAP 2000)
f'c	= 25 MPa
fy	= 400 MPa
Es	= 23500 MPa
β	= 0,85
23	= 0,003
d_p	= 25 mm
ds	= 10 mm
n _{tarik}	= 10
n _{tekan}	= 5
sb	= 40 mm
Ad	$= \frac{1}{4} \cdot \pi \cdot d_p^2 = \frac{1}{4} \cdot \pi \cdot 25^2 = 490,625 \text{ mm}^2$
As	$= n_{tarik}$. Ad = 10 x 490,625 = 4906,25 mm ²
As	$= n_{tarik}$. Ad = 5 x 490,625 = 2453,125 mm ²
εу	$=\frac{fy}{Es}=\frac{400}{23500}=0,0170213$
d	$= sb + d_s + d_p + (d_p/2) = 40 + 10 + 25 + (25/2) = 87,5 mm$
d'	= sb + d _s + (d _p /2) = 40+10+(25/2) = 62,5 mm
h	= H – d = 700-87,5 = 612,5 mm

h'
$$= H - d' = 700-62,5 = 637,5 \text{ mm}$$

- 2. Momen nominal negatif
- Keseimbangan gaya-gaya horizontal As . fy = (0,85 x f'c x a x b) + (As'x $\frac{a - (\beta.d')}{a}$ x εc x Es) $4906,25 \times 400 = (0,85x25 \times a \times 400) + (2453,125 \times \frac{a - (0,85 \times 62,5)}{a} \times 0,003 \times 23500)$ $1962500 = 8500a + (2453, 125 \times 0,003 \times 23500) - (\frac{2453, 125 \times 0,85 \times 62,5 \times 0,003 \times 23500}{a})$ { 1962500 = 8500a + 172945,3125 - $\left(\frac{937147412,1}{a}\right)$ } × a $1962500a = 8500a^2 + 172945,3125a - 937147412,1$ $0 = 8500a^2 - 1789554.688a - 9187719.727$ a = 215.5504 mm $c = \frac{a}{a} = \frac{215,5504}{0.85} = 253,5888 \text{ mm}$ $\varepsilon s = \frac{c-d}{c} \times \varepsilon c = \frac{253,5888-62,5}{253,5888} \times 0.003 = 0,00226$ $fs = \varepsilon s$. $Es = 0.00226 \times 23500 = 53.1244$ MPa Momen nominal negatif $M_1 = 0.85 \times f'c \times a \times b \times (h - \frac{a}{2})$ $=0,85\times25\times215.5504\times400\times(612,5-\frac{215,5504}{2})$ = 924746167,1 Nmm $M_2 = As' \times fs \times (h - d')$ $= 2453, 125 \times 53, 1244 \times (612, 5 - 62, 5)$ = 71676477,41 Nmm $M_n = M_1 + M_2$ = 924746167.1 + 71676477.41= 996422644,51 Nmm = 996.42264451 kNm
- 3. Momen nominal positif
- Keseimbangan gaya-gaya horizontal

As' × fy = (0,85×f'c×a×b) + (As×
$$\frac{a-(\beta \times d)}{a}$$
×εc×Es)
2453,125×400=(0,85×25×a×400)+(4906,25× $\frac{a-(0,85\times87,5)}{a}$ ×0,003×23500)
981250=8500a+(4906,25×0,003×23500) - ($\frac{4906,25\times0,85\times87,5\times0,003\times23500}{a}$)
{ 981250 = 8500a + 345890,625 - ($\frac{25725615,23}{a}$) }×a
981250a = 8500a² + 345890,625a - 25725615,23
0 = 8500a² - 635359,375a - 25725615,23
a = 103,8825 mm
c = $\frac{a}{\beta} = \frac{103,8825}{0,85} = 122,2147$ mm
εs = $\frac{c-d}{c}$ ×εc = $\frac{122,2147-87,5}{122,2147}$ ×0,003 = 0,00085214
fs = εs . Es = 0,00085214×23500 = 20,02528 MPa

- Momen nominal positif

$$\begin{split} M_1 &= 0,85 \times f^{\circ}c \times a \times b \times (h^{\circ} - \frac{a}{2}) \\ &= 0,85 \times 25 \times 103,8825 \times 400 \times (637,5 - \frac{103,8825}{2}) \\ &= 517048940,3 \text{ Nmm} \\ M_2 &= As \times fs \times (h^{\circ} - d) \\ &= 4906,25 \times 20,02528 \times (637,5 - 87,5) \\ &= 54036985,52 \text{ Nmm} \\ M_n^+ &= M_1 + M_2 \end{split}$$

$$= 924746167, 1 + 54036985, 52$$

- = 571085925,82 Nmm
- = 571,0859 kNm
- 4. Kapasitas geser nominal

-
$$A_v = \frac{1}{4} \times \pi \times 10^2 = 78,57143 \text{ mm}^2$$

-
$$V_{cn} = (\frac{\sqrt{f'c}}{6}) \times b \times h$$

= $(\frac{\sqrt{25}}{6}) \times 400 \times 612,5$
= 204166,67 N

= 204,1667 kN
-
$$V_{sn} = \frac{Av \times fy \times h}{s}$$

= $\frac{78,5714 \times 400 \times 612,5}{100}$
= 115500 N
= 115,5 kN
- $V_n = V_{cn} + V_{sn}$
= 204,1667 + 115,5
= 319,6667 kN

- 5. Nilai DCR balok B1-L1-1
- Momen negatif DCR $= \frac{Mu}{\Phi Mn} = \frac{392,427}{0.8 \times 996,42264451} = 0,4923$ (Elastik) - Momen positif DCR $= \frac{Mu}{\Phi Mn} = \frac{276,487}{0.8 \times 571,0859} = 0,60518$ (Elastik) - Gaya geser DCR $= \frac{Vu}{\Phi Vn} = \frac{120,289}{0,8 \times 319,6667} = 0,6271585$ (Elastik)

Hasil tabel perhitungan DCR untuk momen dan gaya geser pada elemen balok dan kolom lantai 1 ditampilkan secara rinci dalam Lampiran 3. Dari perhitungan nilai DCR hasil analisis beban gempa statik ekivalen, diperoleh bahwa terdapat elemen balok dengan nilai DCR yang lebih besar dari 1 dan 2 yang menunjukkan bahwa elemen tersebut sudah berada kedalam kondisi inelastik. Hal ini menunjukan bahwa diperlukanya evaluasi ke tahap selanjutnya, yaitu analisis nonlinier. Untuk lebih jelas dapat dilihat diagram DCR beberapa elemen balok lantai 1 pada Gambar 5.22.

Gambar 5. 22 Nilai DCR gaya geser pada beberapa balok lantai 1

5.4. Analisis Pushover

5.4.1. Pendefenisian Sendi Plastis

Pendefenisian sendi plastis elemen struktur diperoleh dari momen rotasi (*momen-curvature*) yang mengambarkan kemampuan deformasi dari elemen struktur. Dalam penelitian ini *momen curvature* yang digunakan secara auto pada program SAP 2000 V15 berdasarkan ketentuan FEMA 356 (2000).

1. Pendefenisian Sendi Plastis pada Balok.

Penempatan sendi plastis pada balok pada SAP 2000 V15 *licency* dilakukan dengan cara mengklik balok-balok pada bangunan yang sudah dimodelkan sebelumnya, lalu klik menu *Assign – Frame – Hinges*. Pada kotak dialog *Frame Hinges Assingnments* buat 2 sendi plastis untuk *Relative Distance* 0 dan 1. Klik add untuk *Relative Distance* 0 – *Auto Hinge Type* pilih "FEMA 356" – *Select a FEMA 356 Table* pilih "*Table 6-7 (Concrate Beams-Flexure) Item i*" – *Degree of Freedom* pilih M3 – Ok. Lakukan hal yang sama untuk *Relative Distance* 1. Hal ini dimaksudkan bahwa sendi plastis diletakkan pada setiap ujung elemen struktur. Pendefenisian *Hinge* dapat dilihat pada Gambar 5.23.

Hinge Prr	inerty	Relative		
Auto	•	1		
Auto M3		0		
Auto M3		1	Add Hinge	
			Modify/Show Auto Hinge]
			Delete Hinge]
Current Hinge Ir Type: From Tab Table: Table 6-7 DOF: M3	iformation les In FEMA : ' (Concrete B	356 eams - Flexure) Item		
Current Hinge Ir Type: From Tab Table: Table 6-7 DOF: M3	formation les In FEMA : (Concrete B	356 eams - Flexure) Item		
Current Hinge Ir Type: From Tab Table: Table 6-7 DOF: M3 ptions O Add Specifie	iformation les In FEMA : ' (Concrete B d Hinge Assi	356 eams - Flexure) Item gns to Existing Hinge	i Assigns	
Current Hinge Ir Type: From Tab Table: Table 6-7 DOF: M3 ptions O Add Specifie Replace Exis	<u>iformation</u> les In FEMA : ' (Concrete B d Hinge Assi ting Hinge A:	356 eams - Flexure) Item gns to Existing Hinge ssigns with Specified I	i Assigns Hinge Assigns	
Current Hinge Ir Type: From Tab Table: Table 6-7 DOF: M3 of Add Specifie Replace Exis Existing Hinge A Jumpher of A	formation les In FEMA : (Concrete B d Hinge Assi ting Hinge A ssignments of	356 eams - Flexure) Item gns to Existing Hinge ssigns with Specified on Currently Selected	i Assigns Hinge Assigns Frame Objects	
Current Hinge II Type: From Tab Table: Table 6-7 DOF: M3 ptions O Add Specifie O Replace Exis Existing Hinge A Number of Sele Total Number o	formation les In FEMA : (Concrete B d Hinge Assi ting Hinge Assi ssignments : tted Frame C F Hinges on A	gns to Existing Hinge ssigns with Specified I on Currently Selected NJI Selected Frame Ob	i Assigns Hinge Assigns <u>Frame Objects</u> jects: 0	
Current Hinge Ir Type: From Tab Table: Table 6-T DOF: M3 ptions Add Specifie Replace Exis Existing Hinge A Number of Sele Total Number o	formation les In FEMA : (Concrete B d Hinge Assi ing Hinge A ssignments (ted Frame C Hinges on A	356 eams - Flexure) Item gns to Existing Hinge ssigns with Specified I on <u>Currently Selected</u> bjects: 868 NJ Selected Frame Ob	Assigns Hinge Assigns Frame Objects jects: 0	

Gambar 5. 23 Pendefinisian hinge pada balok

Untuk mengetahui dan meng-*edit* properti sendi plastis pada balok dapat dilakukan dengan cara klik menu *Define – Section Properties – Hinge Properties – Show Hinge Details*. Pilih sendi plastis yang akan dilihat propertinya, klik *Modify/show property – Modify/Show Hinge Property* untuk melihat hasil properti sendi plastis seperti yang ditunjukkan pada Gambar 5.24.

Gambar 5. 24 *Hinge property* pada balok

2. Pendefenisian Sendi Plastis pada Kolom

Penempatan sendi plastis pada kolom sama seperti cara pada balok. Namun untuk *Degree of Freedom* nya menggunakan P-M2-M3 yang artinya kolom menerima gaya aksial dan momen arah 2 dan 3. Properti sendi plastis kolom dapat dilihat pada menu *Define – Section Properties – Hinge Properties*. Pilih Sendi plastis yang akan dilihat, klik *Modify/show property – Modify/Show Hinge Property*. Klik opsi *Modify/Show Moment Rotation Curve Data* untuk melihat data-data momen rotasi, dan klik opsi *Modify/Show P-M2-M3 Interaction Surface Data* untuk melihat kurva interaksi P-M2-M3. Untuk lebih jelas dapat dilihat pada Gambar 5.25 dan Gambar 5.26.

Gambar 5. 25 Moment rotation data kolom

Gambar 5. 26 P-M2-M3 Interaction surface pada kolom

5.4.2. Pembebanan Analisis Pushover di SAP 2000

1. Pembebanan Gravitasi

Pembebanan gravitasi dilakukan melalui menu *Define – Load Case*, kemudian pilih opsi *Add New Load Case. Load Case Name* beri nama GRAV, untuk *Initial Condition* dipilih *Zero Initial Condition* yaitu pembebanan dilakukan pada saat kondisi awal sebelum menerima beban. Pada opsi *Analysis Type* pilih *Nonlinear* karena akan dilakukan analisis nonlinear. Pada *load applied*, beban yang bekerja yaitu beban gravitasi digunakan 2 macam yaitu beban mati (*Dead Load*) dan beban hidup (*Live Load*). Untuk beban mati pada *scale factor* diberi 1 dan untuk beban hidup diberi 1. Pada kotak dialog *Load Aplication* dipilih opsi *Full Load*. Parameter *Result Saved* diambil opsi *Final State Only*, untuk lebih jelas dapat dilihat pada Gambar 5.27. Kemudian pada *Nonlinear Parameters*, klik *Modify/Show*. Nilai parameter pada *Solution Control* diubah seperti yang terlihat pada Gambar 5.28.

Load Case Data - Nonlinear Static								
Load Case Name Notes GRAV Set Def Name Initial Conditions Modify/Show Initial Conditions Analysis Type Continue from State at End of Nonlinear Case Important Note: Important Note: Loads from this previous case are included in the current case ModelLand Case Construction								
Modal Load Case All Modal Loads Applied Use Modes from Case Loads Applied Load Type Load Name Scale Factor Load Pattern DEAD Load Pattern Delete	Geometric Nonlinearity Parameters None P-Delta P-Delta plus Large Displacements							
Other Parameters Load Application Full Load Modify/Show Results Saved Final State Only Modify/Show Nonlinear Parameters User Defined Modify/Show	Cancel							

Gambar 5. 27 Load case data

Gambar 5. 28 Nonlinear parameters beban gravitasi

2. Pembebanan Lateral

Setelah mendefenisikan beban gravitasi, langkah berikutnya adalah mendefenisikan beban lateral sebagai beban *pushover*. Pada analisis ini dibuat 2 pembebanan arah lateral. Masih pada *Load Case*, buat *Case* baru dengan mengklik *Add New Case. Load Case Name* diberi nama PUSH X untuk pembebanan arah X dan PUSH Y untuk pembebanan arah Y. Pada *Analysis Type* dipilih opsi *Nonlinear*. Pada *Initial Condition* dipilih opsi *Continue Form State at End of Nonlinear Case* : GRAV. Kemudian memasukkan beban PUSH X untuk beban pushover dari arah X di dalam *Load Applied* dengan *Scale Factor* = 1. Pada kotak dialog *Load Applied* dipilih opsi *Displacement Control* dan *Use Monitored Displacement* dengan *Monitored Displacement* sebesar 2% dari tinggi bangunan. Lalu *monitored Displacement* dipilih U1 untuk arah x pada join titik pusat atap. Pada parameter *Result Saved diambil* opsi *Multiple States* dengan *Monitorear Parameters*, klik

Gambar 5. 29 Nonlinear parameters beban lateral

Untuk beban lateral arah y di buat dengan cara yang sama dan di beri nama PUSH Y.

5.4.3. Hasil Analisis Statik Nonlinear (Pushover)

Hasil analisis *pushover* adalah kurva kapasitas bangunan. Untuk melihat kurva kapasitas, klik menu *Display – Show Static Pushover Curve*. Kurva kapasitas adalah kurva yang menunjukkan hubungan antara perpindahan yang tertangkap (*Monitored Displacement*) dan gaya geser resultan (*Resultan Base Shear*) yang diakibatkan oleh beban statik sampai pada kondisi ultimit bangunan atau *target displacement* yang telah ditentukan. Kurva berbentuk nonlinear akibat peningkatan beban yang mengakibatkan elemen struktur bangunan berubah dari kondisi elastik menjadi kondisi plastis. Bentuk kurva kapasitas hasil analisis pushover arah x dan arah y dapat dilihat pada Gambar 5.30 dan Gambar 5.31.

Gambar 5. 30 Kurva kapasitas arah x Gedung Kuliah Twin Building UMY

Gambar 5. 31 Kurva kapasitas arah y Gedung Kuliah Twin Building UMY

Hasil analisis *pushover* non-linier arah x Gedung Kuliah *Twin Building* UMY menunjukan nilai *displacement* dan nilai *base reaction* sebesar 0,220037 m dan 60320,78 kN, sedangkan pada arah y nilai *displacement* dan *base reaction* yang dicapai adalah sebesar 0,263347 m dan 161227,1 kN. Nilai perpindahan dan gaya geser dasar dapat diketahui dari data kurva kapasitas yang ditampilkan dalam Tabel 5.8 dan Tabel 5.9.

Step	Displace-	Base Force	AtoB	B to	IO to	LS to	CP to	C to	D to	Beyond	Total
_	ment (m)	(KN)		10	LS	CP	С	D	Ε	E	
0	0,00E+00	0	9152	0	0	0	0	0	0	0	9152
1	0,010079	5542,607	9152	0	0	0	0	0	0	0	9152
2	0,019885	10934,61	9150	2	0	0	0	0	0	0	9152
3	0,030024	16435,70	9129	23	0	0	0	0	0	0	9152
4	0,040724	21991,37	9080	72	0	0	0	0	0	0	9152
5	0,051332	26888,97	8886	266	0	0	0	0	0	0	9152
6	0,061779	30888,84	8777	375	0	0	0	0	0	0	9152
7	0,073819	34946,84	8698	454	0	0	0	0	0	0	9152
8	0,084347	38269,40	8595	553	4	0	0	0	0	0	9152
9	0,094449	41029,15	8398	743	11	0	0	0	0	0	9152
10	0,105258	43486,43	8260	876	16	0	0	0	0	0	9152
11	0,11565	45627,23	8171	957	24	0	0	0	0	0	9152
12	0,126049	47588,15	8050	1068	34	0	0	0	0	0	9152
13	0,136571	49346,85	7947	1165	40	0	0	0	0	0	9152
14	0,147041	50886,81	7885	1212	55	0	0	0	0	0	9152
15	0,15723	52315,71	7826	1264	62	0	0	0	0	0	9152
16	0,168466	53834,15	7758	1323	71	0	0	0	0	0	9152
17	0,179345	55257,79	7687	1383	82	0	0	0	0	0	9152
18	0,189943	56607,91	7627	1429	96	0	0	0	0	0	9152
19	0,202543	58183,15	7578	1461	110	3	0	0	0	0	9152
20	0,212684	59431,96	7522	1505	118	7	0	0	0	0	9152
21	0,220037	60320,78	7494	1525	124	8	0	1	0	0	9152
22	0,216898	58722,25	7494	1525	122	9	0	2	0	0	9152

 Tabel 5. 8 Data kurva kapasitas arah x Gedung Kuliah Twin Building UMY

Step	Displace- ment (m)	Base Force (KN)	A to B	B to IO	IO to LS	LS to CP	CP to C	C to D	D to E	Beyond E	Total
0	0,000138	0	9152	0	0	0	0	0	0	0	9152
1	0,010218	11149,50	9152	0	0	0	0	0	0	0	9152
2	0,01793	19679,92	9146	6	0	0	0	0	0	0	9152
3	0,034221	37429,79	9138	14	0	0	0	0	0	0	9152
4	0,044552	48413,10	9063	89	0	0	0	0	0	0	9152
5	0,055028	58420,59	8959	193	0	0	0	0	0	0	9152
6	0,065119	66538,95	8853	299	0	0	0	0	0	0	9152
7	0,075635	73970,08	8747	405	0	0	0	0	0	0	9152
8	0,086121	80664,79	8656	496	0	0	0	0	0	0	9152
9	0,096755	86864,54	8508	644	0	0	0	0	0	0	9152
10	0,107403	92185,25	8364	785	3	0	0	0	0	0	9152
11	0,117785	97214,66	8303	841	8	0	0	0	0	0	9152
12	0,128085	102202,5	8254	880	18	0	0	0	0	0	9152
13	0,138578	107156,8	8213	894	45	0	0	0	0	0	9152
14	0,149581	1122850	8143	902	107	0	0	0	0	0	9152
15	0,161239	117687,4	8068	938	146	0	0	0	0	0	9152
16	0,171449	122391,2	7984	986	182	0	0	0	0	0	9152
17	0,182064	127184,9	7904	1029	219	0	0	0	0	0	9152
18	0,192568	131927,7	7845	1044	262	1	0	0	0	0	9152
19	0,204151	137054,2	7769	1074	307	2	0	0	0	0	9152
20	0,215391	141948,2	7717	1082	351	2	0	0	0	0	9152
21	0,227033	146938,9	7647	1136	363	6	0	0	0	0	9152
22	0,237794	151464,3	7586	1181	376	9	0	0	0	0	9152
23	0,24972	156360,8	7522	1213	406	10	0	1	0	0	9152
24	0,249724	156615,5	7514	1216	411	10	0	0	1	0	9152
25	0,261475	160473,2	7451	1252	432	16	0	0	1	0	9152
26	0,263347	161227,1	7444	1256	434	15	0	2	1	0	9152

 Tabel 5. 9 Data kurva kapasitas arah y Gedung Kuliah Twin Building UMY

5.4.4. Pembahasan Hasil Analisis Statik Nonlinear (Pushover)

Dari kurva kerapuhan arah x pada Gambar 5.30, terlihat adanya penurunan pada nilai *displacement* maupun nilai gaya geser dasar (*base force*) pada step ke 22. Penurunan ini terjadi karena adanya komponen struktur yang mengalami kehancuran. Kesimpulan ini diambil berdasarkan data kurva kapasitas arah x Gedung *Twin Building* UMY yang dapat dilihat pada Tabel 5.8 step ke-22.

Setelah dilakukan identifikasi, komponen struktur yang mengalami kehancuran pada step ke-22 adalah kolom tangga lantai 3. Pada hasil *hinge properties* kolom terlihat bahwa kolom tangga lantai 3 Gedung Kuliah *Twin Building* UMY telah mengalami kehancuran pada step ke-22 yang ditandai dengan *Hinge State* yang berstatus C to D. Hasil analisis *hinge properties* kolom tangga lantai 3 ditampilkan pada Gambar 5.32.

Gambar 5. 32 Hasil analisis hinge properties Kolom tangga lantai 3

Untuk kurva kerapuhan arah y pada Gambar 5.31, terlihat proses analisis terhenti pada step ke 26. Hal ini terjadi karena adanya komponen struktur yang telah mengalami kehancuran. Kesimpulan ini diambil berdasarkan data kurva kapasitas arah y Gedung *Twin Building* UMY yang dapat dilihat pada Tabel 5.9 step ke-26.

Setelah dilakukan identifikasi, komponen struktur yang mengalami kehancuran pada step ke-26 adalah K7-DASAR-1. Pada hasil *hinge properties*

kolom terlihat bahwa kolom K7-DASAR-1 Gedung Kuliah *Twin Building* UMY telah mengalami kehancuran pada step ke-26 yang ditandai dengan *Hinge State* yang berstatus C to D. Hasil analisis *hinge properties* Kolom K7-DASAR-1 ditampilkan pada Gambar 5.33.

Gambar 5. 33 Hasil analisis hinge properties Kolom K7-DASAR-1

5.5. Analisis Kerapuhan Seismik

5.5.1. Parameter Kurva Kerapuhan

Kurva kerapuhan seismik merupakan hubungan antara nilai *spectra displacement* sebagai sumbu horizontal dan nilai probabilitas kegagalan struktur sebagai sumbu vertikal. Nilai probabilitas kegagalan struktur dihitung menggunakan Persamaan 3.26. Parameter-parameter yang dibutuhkan untuk menghitung nilai probabilitas kegagalan struktur antara lain adalah *median spectral displacement point* dan standar deviasi masing-masing *damage state*. Penentuan parameter-parameter tersebut akan dijelaskan sebagai berikut ini.

1. Median spectral displacement point

Untuk mendapatkan nilai parameter *median spectral displacement*, kurva kapasitas harus dikonversi menjadi spektrum kapasitas terlebih dahulu. Konversi dilakukan dengan cara klik menu *Display – Show Static Pushover Curve*, kemudian

ubah kolom *Plot Type* menjadi *ATC-40 Capacity Spectrum*, kemudian klik menu *File – Display Tables*. Nilai *spectral displacement* pada setiap step dapat dilihat pada Tabel 5.10 dan Tabel 5.11.

Step	Teff	Beff	Sd Capacity (m)	Sa Capacity	Sd Demand (m)	Sa Demand	Alpha	PFPhi
0	0,6462	0,0500	0,0000	0,0000	0,0642	0,6190	1,0000	1,0000
1	0,6462	0,0500	0,0083	0,0796	0,0642	0,6190	0,5960	1,2204
2	0,6462	0,0500	0,0163	0,1571	0,0642	0,6190	0,5960	1,2204
3	0,6476	0,0512	0,0246	0,2362	0,0640	0,6140	0,5957	1,2201
4	0,6523	0,0552	0,0334	0,3159	0,0632	0,5981	0,5961	1,2200
5	0,6625	0,0641	0,0421	0,3863	0,0618	0,5664	0,5961	1,2188
6	0,6785	0,0774	0,0508	0,4439	0,0601	0,5255	0,5959	1,2173
7	0,6974	0,0905	0,0607	0,5023	0,0591	0,4890	0,5958	1,2165
8	0,7124	0,0986	0,0694	0,5502	0,0589	0,4668	0,5955	1,2158
9	0,7281	0,1074	0,0777	0,5901	0,0586	0,4450	0,5953	1,2153
10	0,7467	0,1183	0,0867	0,6258	0,0583	0,4211	0,5950	1,2146
11	0,7641	0,1275	0,0952	0,6568	0,0583	0,4018	0,5948	1,2142
12	0,7809	0,1356	0,1038	0,6855	0,0584	0,3853	0,5945	1,2139
13	0,7983	0,1439	0,1125	0,7108	0,0585	0,3695	0,5945	1,2138
14	0,8162	0,1527	0,1211	0,7321	0,0586	0,3542	0,5952	1,2137
15	0,8329	0,1599	0,1295	0,7518	0,0589	0,3415	0,5959	1,2138
16	0,8503	0,1667	0,1388	0,7727	0,0592	0,3297	0,5965	1,2139
17	0,8663	0,1721	0,1477	0,7924	0,0596	0,3199	0,5971	1,2141
18	0,8810	0,1765	0,1564	0,8113	0,0601	0,3118	0,5975	1,2142
19	0,8976	0,1807	0,1668	0,8334	0,0607	0,3034	0,5978	1,2144
20	0,9102	0,1834	0,1751	0,8508	0,0612	0,2976	0,5981	1,2146
21	0,9190	0,1851	0,1811	0,8635	0,0616	0,2937	0,5982	1,2147

Tabel 5. 10 Data spektrum kapasitas arah x Gedung Kuliah Twin Building UMY

Step	Teff	Beff	Sd Capacity (m)	Sa Capacity	Sd Demand (m)	Sa Demand	Alpha	PFPhi
0	0,4593	0,0500	0,0000	0,0000	0,0456	0,8709	1,0000	1,0000
1	0,4593	0,0500	0,0082	0,1563	0,0456	0,8709	0,6109	1,2308
2	0,4593	0,0500	0,0145	0,2758	0,0456	0,8709	0,6109	1,2308
3	0,4608	0,0515	0,0277	0,5249	0,0455	0,8618	0,6106	1,2308
4	0,4623	0,0530	0,0361	0,6795	0,0453	0,8528	0,6101	1,2312
5	0,4673	0,0596	0,0445	0,8200	0,0444	0,8187	0,6100	1,2338
6	0,4764	0,0712	0,0526	0,9331	0,0432	0,7659	0,6106	1,2353
7	0,4874	0,0836	0,0612	1,0365	0,0422	0,7160	0,6111	1,2344
8	0,4981	0,0936	0,0697	1,1313	0,0418	0,6780	0,6106	1,2334
9	0,5082	0,1016	0,0783	1,2205	0,0416	0,6484	0,6094	1,2338
10	0,5184	0,1095	0,0866	1,2976	0,0415	0,6214	0,6083	1,2383
11	0,5286	0,1169	0,0951	1,3697	0,0415	0,5971	0,6077	1,2373
12	0,5379	0,1222	0,1036	1,4418	0,0416	0,5786	0,6070	1,2346
13	0,5465	0,1261	0,1123	1,5133	0,0418	0,5637	0,6063	1,2331
14	0,5547	0,1291	0,1213	1,5873	0,0421	0,5511	0,6057	1,2317
15	0,5627	0,1313	0,1310	1,6659	0,0425	0,5404	0,6049	1,2294
16	0,5693	0,1327	0,1396	1,7342	0,0429	0,5323	0,6043	1,2271
17	0,5755	0,1337	0,1484	1,8037	0,0432	0,5253	0,6038	1,2258
18	0,5814	0,1344	0,1572	1,8720	0,0436	0,5190	0,6034	1,2241
19	0,5874	0,1348	0,1668	1,9463	0,0440	0,5133	0,6029	1,2230
20	0,5927	0,1349	0,1760	2,0171	0,0444	0,5084	0,6026	1,2227
21	0,5980	0,1349	0,1856	2,0897	0,0448	0,5040	0,6021	1,2224
22	0,6026	0,1348	0,1945	2,1561	0,0451	0,5003	0,6015	1,2221
23	0,6074	0,1348	0,2042	2,2276	0,0455	0,4963	0,6010	1,2224
24	0,6088	0,1371	0,2135	2,2889	0,0457	0,4905	0,6008	1,2224
25	0,6128	0,1360	0,2150	2,3000	0,0458	0,4900	0,6003	1,2242
26	0,6111	0,1360	0,2141	2,3085	0,0456	0,4919	0,6014	1,2244

 Tabel 5. 11 Data spektrum kapasitas arah y Gedung Kuliah Twin Building UMY

Tahapan identifikasi kurva spektrum kapasitas untuk memperoleh nilai *median spectral displacement point* menurut (Duan&Pappin, 2008) adalah sebagai berikut ini.

- a. Nilai median *spectral displacement* untuk kondisi kerusakan *slight* terletak pada titik dengan nilai S_d sebesar 0,0163 m pada arah x dan 0,014455 m pada arah y.
- b. Nilai median spectral displacement untuk kondisi kerusakan moderate diperoleh dengan cara mengalikan nilai S_d kondisi slight dengan faktor 1,5 sehingga nilai S_d kondisi kerusakan moderate adalah sebesar 0,02444 m pada arah x dan 0,02168 m pada arah y.
- c. Nilai median *spectral displacement* untuk kondisi kerusakan *complete* ditunjukan oleh titik *collapse* dengan nilai S_d sebesar 0,18115 m pada arah x dan 0,1945 m pada arah y.
- d. Nilai median *spectral displacement* untuk kondisi kerusakan *extensive* dapat diketahui dengan menarik garis yang menghubungkan nilai median *spectral displacement* antara kondisi kerusakan *moderate* dan *complete* pada skala log seperti yang diperlihatkan pada Gambar 5.34.

Gambar 5. 34 Letak titik median spectral displacement kondisi kerusakan moderate, extensive, dan complete pada skala log

Dengan cara tersebut dapat diperoleh nilai median *spectral displacement* kondisi kerusakan *extensive* adalah sebesar 0,06654 m pada arah x dan 0,064934 m pada arah y.

2. Standar deviasi

Nilai standar deviasi diperoleh dari tabel HAZUS yang diklasifikasikan berdasarkan jumlah lantai, bahan konstruksi dan sistem struktural yang dimiliki. Gedung Kuliah *Twin Building* UMY merupakan struktur portal beton bertulang, sehingga berdasarkan sistem struktur dan bahan bangunannya termasuk pada kategori *Concrete Moment Frame*. Dengan jumlah lantai sebanyak 5 lantai, maka Gedung Kuliah *Twin Building* UMY tergolong dalam bangunan dengan jumlah lantai sedang (*Mid-rise*). Berdasarkan parameter-parameter tersebut HAZUS menggolongkan struktur bangunan Gedung Kuliah *Twin Building* UMY menjadi tipe C1M. Penentuan klasifikasi bangunan struktur dalam HAZUS dapat dilihat pada Tabel 5.12. Setelah diketahui tipe struktur, langkah selanjutnya adalah menentukan nilai standar deviasi (β_{ds}) yang dapat dilihat pada Tabel 5.13.

				Heig	ht	
No.	Label	Description	Rang	ge	Тур	oical
			Name	Stories	Stories	Feet
1	W1	Wood, Light Frame (≤5,000 sq.ft.)		1-2	1	14
2	W2	Wood, Comercial and Industrial		All	2	24
		(>5,000 sq. ft.)				
3	S1L		Low-Rise	1-3	2	24
4	S1M	Steel Moment Frame	Mid-Rise	4-7	5	60
5	S1H		High-Rise	8+	13	156
6	S2L		Low-Rise	1-3	2	24
7	S2M	Steel Braced Frame	Mid-Rise	4-7	5	60
8	S2H		High-Rise	8+	13	156
9	S 3	Steel Light Frame		All	1	15
10	S4L	Staal Frame with Cost in Diago	Low-Rise	1-3	2	24
11	S4M	Concrete Sheer Wells	Mid-Rise	4-7	5	60
12	S4H	Concrete Shear wans	High-Rise	8+	13	156
13	S5L	Staal Frome with Unneinforced	Low-Rise	1-3	2	24
14	S5M	Steel Frame with Unreinforced	Mid-Rise	4-7	5	60
15	S5H	Masonry Initii wans	High-Rise	8+	13	156
16	C1L		Low-Rise	1-3	2	24
17	C1M	Concrete Moment Frame	Mid-Rise	4-7	5	60
18	C1H		High-Rise	8+	13	156
19	C2L		Low-Rise	1-3	2	24
20	C2M	Concrete Shear Walls	Mid-Rise	4-7	5	60
21	C2H		High-Rise	8+	13	156
22	C3L	Congresse Frame with Unreinforced	Low-Rise	1-3	2	24
23	C3M	Magonry Infill Walls	Mid-Rise	4-7	5	60
24	C3H		High-Rise	8+	13	156
25	PC1	Precast Concrete Tilt-Up Walls		All	1	15
26	PC2L	Precast Concrete Frames with	Low-Rise	1-3	2	24
27	PC2M	Concrete Shear Walls	Mid-Rise	4-7	5	60
28	PC2H	Concrete Shear Walls	High-Rise	8+	13	156
29	RM1L	Reinforced Masonry Bearing Walls	Low-Rise	1-3	2	20
30	RM1M	with Wood or Metal Deck	Mid-Rise	4+	5	50
		Diaphragms				
31	RM1L	Reinforced Masonry Rearing Walls	Low-Rise	1-3	2	24
32	RM1M	with Precast Concrete Diaphragms	Mid-Rise	4-7	5	60
33	RM1H	with Precast Concrete Diaphragins	High-Rise	8+	13	156
34	URML	Unreinforced Masonry Bearing	Low-Rise	1-2	1	15
35	URMM	Walls	Mid-Rise	3+	3	35
36	MH	Mobile Homes		All	1	10

 Tabel 5. 12 Tipe struktur bangunan dalam HAZUS

(Sumber : HAZUS-MH 2.1)

Build	ling Prope	rties		Intersto	ry Drift at		Spectral Displacement (inches)							
Type	Height	(in ches)		Threshold o	fDamage State	1	Sli	ght	Mod	erate	Exten	sive	Comp	plete
	Roof	Modal	Slight	Moderate	Extensive	Complete	Median	Beta	Median	Beta	Median	Beta	Median	Beta
W1	168	126	0.0050	0.0150	0.05 00	0.1250	0.63	0.66	1.89	0.72	6.30	0.72	15.75	0.91
W2	288	216	0.0050	0.0150	0.05 00	0.1250	1.08	0.69	3.24	0.77	10.80	0.89	27.00	0.85
SIL	288	216	0.0075	0.0150	0.0375	0.1000	1.62	0.67	3.24	0.70	8.10	0.71	21.60	0.68
S1 M	720	540	0.0050	0.0100	0.02 50	0.0667	2.70	0.62	5.40	0.62	13.50	0.63	36.00	0.71
S1H	1872	1123	0.0037	0.0075	0.01 88	0.0500	4.21	0.63	8.42	0.62	21.06	0.62	56.16	0.63
S2L	288	216	0.0063	0.0125	0.0375	0.1000	1.35	0.69	2.70	0.80	8.10	0.89	21.60	0.84
S2 M	720	540	0.0042	0.0083	0.02 50	0.0667	2.25	0.62	4.50	0.66	13.50	0.66	36.00	0.71
S2H	1872	1123	0.0031	0.0063	0.01 88	0.0500	3.51	0.62	7.02	0.63	21.06	0.63	56.16	0.66
\$3	180	13.5	0.0050	0.0100	0.03 00	0.0875	0.68	0.66	1.35	0.71	4.05	0.80	11.81	0.90
S4L	288	216	0.0050	0.0100	0.03 00	0.0875	1.08	0.77	2.16	0.82	6.48	0.92	18.90	0.91
S4M	720	540	0.0033	0.0067	0.02 00	0.0583	1.80	0.69	3.60	0.67	10.80	0.68	31.50	0.82
S4H	1872	1123	0.0025	0.0050	0.01 50	0.0438	2.81	0.62	5.62	0.63	16.85	0.65	49.14	0.73
S5L														
S5 M														
S5H														
CIL	240	180	0.0063	0.0125	0.0375	0.1000	1.13	0.69	2.25	0.74	6.75	0.82	18.00	0.81
C1M	600	450	0.0042	0.0083	0.02 50	0.0667	1.87	0.63	3.75	0.65	11.25	0.66	30.00	0.71
ClH	1440	864	0.0031	0.0063	0.01 88	0.0500	2.70	0.63	5.40	0.63	16.20	0.63	43.20	0.69
C2L	240	180	0.0050	0.0125	0.0375	0.1000	0.90	0.69	2.25	0.72	6.75	0.82	18.00	0.95
C2M	600	450	0.0033	0.0083	0.02 50	0.0667	1.50	0.65	3.75	0.69	11.25	0.66	30.00	0.70
C2H	1440	864	0.0025	0.0063	0.0188	0.0500	2.16	0.62	5.40	0.63	16.20	0.64	43.20	0.69
C3L														
C3M														
COH	100	12.5	0.005.0	0.0100	0.02.00	0.007.5	0.68	0.62	1.25	0.74	4.05	0.70	11.01	0.06
PCI	180	155	0.0050	0.0100	0.03.00	0.0875	0.08	0.05	1.55	0.74	4.05	0.79	11.81	0.90
PC2L	240	180	0.0050	0.0100	0.03 00	0.0875	0.90	0.76	1.80	0.80	5.40	0.87	15.75	0.97
PC2M	600	450	0.003 3	0.0067	0.0200	0.0583	1.50	0.66	3.00	0.73	9.00	0.72	26.25	0.73
PC2H	1440	864	0.0025	0.0050	0.0150	0.0438	2.16	0.62	4.32	0.64	12.96	0.65	37.80	0.74
RMIL	240	180	0.003.0	0.0100	0.03.00	0.08/5	0.90	0.70	1,80	0.74	5.40	0.70	15.75	0.98
KMI M	600	450	0.0053	0.0067	0.02.00	0.0583	1.30	0.65	3.00	0.68	9.00	0.70	20.25	0.70
RM2L	240	180	0.0050	0.0100	0.03 00	0.0875	0.90	0.66	1.80	0.70	5.40	0.76	15.75	0.97
RM2M RM2H	1440	450	0.0033	0.0067	0.0200	0.0583	2.16	0.63	5.00	0.70	9.00	0.69	20.20	0.65
LIPAC	1440	004	0.002.5	0.0050	0.01.50	0.043.8	2.10	0.05	4.32	0.03	12.90	0.05	37.00	0.05
URML														
NI	120	120	0.005.0	0.0100	0.02.00	0.0975	0.60	0.01	1.20	0.90	2.60	0.07	10.50	10.951
MH	120	120	0.0050	0.0100	0.05 00	0.0875	0.00	0.81	1.20	0.89	3.00	0.97	<u></u>	AT 0.80/\/

 Tabel 5. 13 Building structural fragility (High-code seismik design level)

(Sumber : HAZUS-MH 2.1)

Berdasarkan Tabel 5.13 dapat diketahui nilai standar deviasi untuk setiap kondisi kerusakan pada tipe struktur C1M. Rangkuman nilai standar deviasi dan median *spectral displacement* pada setiap jenis kerusakan dapat dilihat pada tabel 5.14.

Demage state	Sd	(m)	β_{ds}				
Demage since	Arah x	Arah y	Arah x	Arah y			
Slight	0,016300	0,014455	0,63	0,63			
Moderate	0,024440	0,021682	0,65	0,65			
Extensive	0,066540	0,064934	0,66	0,66			
Complete	0,181150	0,194463	0,71	0,71			

Tabel 5. 14 Nilai Sd dan β_{ds} untuk berbagai jenis kerusakan pada struktur GedungKuliah Twin Building UMY

5.5.2. Hasil Analisis Kerapuhan Seismik

Dengan menggunakan persamaan 3.26, nilai parameter *spectral displacement* (S_d) divariasikan secara acak hingga diperoleh nilai-nilai P yang mewakili probabilitas 0 sampai 1 dan mampu menghasilkan bentuk kurva yang baik. Hasil perhitungan nilai P pada berbagai kategori *damage state* dapat dilihat pada Tabel 5.15.

Domago stato	Sd	(m)	<u>P</u>		
Demuge sinte	arah x	arah y	arah x	arah y	
	0,0010	0,0010	0,0000	0,0000	
	0,0040	0,0040	0,0129	0,0207	
	0,0073	0,0064	0,1001	0,1000	
	0,0096	0,0085	0,2000	0,2001	
	0,0117	0,0104	0,3001	0,3001	
	0,0139	0,0123	0,4000	0,4000	
Slight	0,0163	0,0145	0,5000	0,5000	
	0,0191	0,0170	0,6000	0,6000	
	0,0227	0,0201	0,7000	0,7000	
	0,0277	0,0246	0,8001	0,8000	
	0,0365	0,0324	0,9000	0,9001	
	0,0650	0,0600	0,9860	0,9881	
	0,8000	0,7000	1,0000	1,0000	
	0,0010	0,0010	0,0000	0,0000	
	0,0060	0,0050	0,0154	0,0120	
	0,0106	0,0094	0,1001	0,1000	
	0,0141	0,0125	0,2001	0,2000	
	0,0174	0,0154	0,3000	0,3000	
	0,0207	0,0184	0,4000	0,4001	
Moderate	0,0244	0,0217	0,5000	0,5000	
	0,0288	0,0256	0,6000	0,6000	
	0,0344	0,0305	0,7000	0,7000	
	0,0423	0,0375	0,8001	0,8000	
	0,0562	0,0499	0,9001	0,9001	
	0,1000	0,0900	0,9849	0,9857	
	0,9000	0,6000	1,0000	1,0000	

Tabel 5. 15 Hasil perhitungan propabilitas kerusakan struktur untuk berbagaikategori *damage state* pada struktur Gedung Kuliah *Twin Building* UMY

Demonstrates	Sd	(m)]	P
Demage state	arah x	arah y	arah x	arah y
	0,0010	0,0010	0,0000	0,0000
	0,0150	0,0150	0,0120	0,0132
	0,0286	0,0279	0,1001	0,1001
	0,0382	0,0373	0,2001	0,2000
	0,0471	0,0459	0,3001	0,3000
	0,0563	0,0549	0,4001	0,4000
Extensive	0,0665	0,0649	0,5000	0,5000
	0,0787	0,0768	0,6001	0,6001
	0,0941	0,0918	0,7000	0,7001
	0,1160	0,1132	0,8001	0,8001
	0,1551	0,1513	0,9000	0,9000
	0,3000	0,3000	0,9887	0,9898
	2,3000	1,7000	1,0000	1,0000
	0,0010	0,0010	0,0000	0,0000
	0,0350	0,0400	0,0103	0,0130
	0,0730	0,0783	0,1003	0,1000
	0,0997	0,1070	0,2001	0,2001
	0,1249	0,1340	0,3001	0,3001
	0,1513	0,1625	0,4001	0,4000
Complete	0,1811	0,1945	0,5000	0,5000
	0,2169	0,2328	0,6001	0,6000
	0,2629	0,2822	0,7001	0,7000
	0,3293	0,3535	0,8000	0,8000
	0,4500	0,4832	0,9000	0,9001
	0,8000	0,9000	0,9818	0,9845
	8,0000	6,3000	1,0000	1,0000

Lanjutan **Tabel 5.15** Hasil perhitungan propabilitas kerusakan struktur untuk berbagai kategori *damage state* pada struktur Gedung Kuliah *Twin Building*

Hasil perhitungan probabilitas pada berbagai *damage state* diplotkan ke dalam skala log sampai didapat kurva kerapuhan pada arah x dan arah y. Kurva kerapuhan Gedung Kuliah *Twin Building* UMY dapat dilihat pada Gambar 5.35 dan Gambar 5.36.

UMY.

Gambar 5. 35 Kurva kerapuhan arah x Gedung Kuliah Twin Building UMY

Gambar 5. 36 Kurva kerapuhan arah y Gedung Kuliah Twin Building UMY

5.5.3. Pembahasan Hasil Analisis Kerapuhan Seismik

Pada Gambar 5.33 dan Gambar 5.34 dapat dilihat bahwa bentuk kurva kerapuhan hasil analisis kerapuhan seismik Gedung Kuliah *Twin Building* UMY telah sesuai dengan bentuk kurva yang telah dicontohkan dalam HAZUS. Rentang nilai *spectral dispalacement* (S_d) pada kurva kerapuhan seismik arah x Gedung Kuliah *Twin Buiding* UMY dimulai dari S_d = 0,001 m sampai S_d = 0,8 m untuk kondisi *slight*, S_d = 0,001 m sampai S_d = 0,9 m untuk kondisi *moderate*, S_d = 0,001 m sampai S_d = 8 m untuk kondisi *complete*. Sedangkan untuk arah y dimulai dari S_d = 0,6 m untuk kondisi *slight*, S_d = 0,001 m sampai S_d = 1,7 m untuk kondisi *extensive*, dan S_d = 0,6 m untuk kondisi *moderate*, S_d = 0,001 m sampai S_d = 1,7 m untuk kondisi *extensive*, dan S_d = 0,001 m sampai S_d =

Dengan mengacu pada kurva kerapuhan yang sudah dibentuk, dapat dilakukan perhitungan nilai probabilitas kegagalan struktur Gedung Kuliah *Twin Building* UMY. Berdasarkan peta zonasi gempa SNI 1726-2012, kemungkinan terjadi percepatan tanah maksimum untuk daerah Yogyakarta adalah sebesar 0,7523 g. Berdasarkan data spektrum kapasitas yang diinterpolasi, didapatkan nilai S_d untuk arah x dan arah y masing-masing sebesar 0,12976 m dan 0,040435. Nilai S_d yang sudah didapatkan kemudian diplot pada kurva kerapuhan hingga didapatkan nilai probabilitas pada berbagai kondisi kerusakan. Hasil perhitungan probabilitas pada berbagai kondisi kerusakan Gedung Kuliah *Twin Building* UMY dapat dilihat pada Tabel 5.16.

Demage state	Ar	ah	Arah (%)			
Demage state	Х	У	X	У		
Slight	0,99950	0,94874	99,9505	94,8743		
Moderate	0,99489	0,83116	99,4889	83,1158		
Extensive	0,84421	0,23647	84,4207	23,6472		
Complete	0,31921	0,01348	31,9208	1,34819		

 Tabel 5. 16 Nilai probabilitas pada berbagai kondisi kerusakan Gedung Kuliah

 Twin Building UMY bedasarkan percepatan tanah maksimum daerah Yogyakarta

Hasil perhitungan nilai probabilitas kerusakan struktur Gedung Kuliah *Twin Building* UMY akibat gempa maksimum daerah Yogyakarta (Sa= 0,7523 g) arah x kondisi *slight* adalah sebesar 99,9 %, pada kondisi *moderate* sebesar 99,4 %, pada kondisi *extensive* sebesar 84,42 %, dan pada kondisi *complete* sebesar 31,92 %. Sedangkan untuk arah y kondisi *slight* adalah sebesar 94,87 %, pada kondisi *moderate* sebesar 83,12 %, pada kondisi *extensive* sebesar 23,64 %, dan pada kondisi *complete* sebesar 1,35 %. Apabila terjadi gempa maksimum daerah Yogyakarta (Sa = 0,7523 g), maka kondisi kerusakan yang dapat menjadi acuan dalam menanggulangi risiko akibat bencana adalah kondisi *extensive* untuk arah x, dan kondisi *moderate* untuk arah y. Acuan tersebut diambil berdasarkan tingkat kerusakan yang lebih parah dan melebihi persentase 50%.