BAB IV

PENGOLAHAN DATA

Pada bab ini, akan dipaparkan hasil tes validasi daftar pertanyaan kuesioner, pengambilan data, pengolahan data dan hasil yang dicapai. Langkah awal dilakukan dengan melakukan uji validasi *item* pertanyaan. Selanjutnya dilakukan pengambilan data serta analisisnya yang dimulai dari uji evaluasi model pengukuran (*outer model*), evaluasi model struktural (*inner model*) dan hipotesis.

4.1 Uji Butir Kuesioner

Uji butir kuesioner dilakukan terhadap *item* pertanyaan yang telah dibuat untuk mengetahui validitas pertanyaan yang diberikan kepada responden. Dalam pengujian ini dilakukan terhadap 31 data hasil dari kuesioner. Pada tabel 4.1 menunjukan data yang digunakan

Tabel 4. 1 Rekapitulasi Data

No		Seiri			Seiton			Seiso		Seik	etsu	,	Shitsuk	e		Kinerja	1
NO	SI 1	SI 2	SI3	ST1	ST2	ST3	SS1	SS2	SS3	SK1	SK2	SH1	SH2	SH3	K1	K2	K3
1	5	4	5	5	4	5	5	5	5	4	4	5	5	5	4	5	5
2	4	4	4	4	4	3	4	3	3	5	4	5	5	3	4	5	5
3	5	5	5	4	4	4	4	5	4	4	4	4	4	5	4	5	5
4	5	5	5	5	5	5	5	4	4	5	4	5	4	5	5	5	5
5	4	4	4	4	4	5	4	5	5	5	4	5	4	4	4	4	4
6	4	4	4	4	5	4	3	3	5	4	4	3	4	4	4	4	4
7	4	4	5	4	5	3	4	4	3	3	3	3	3	4	3	5	4
8	4	4	4	4	4	3	3	3	3	3	4	3	3	3	5	5	4
9	4	5	3	4	4	4	5	5	5	3	4	4	4	3	3	4	5
10	4	4	3	3	4	4	3	4	4	3	3	3	4	4	3	4	4
11	4	5	5	4	5	4	5	5	4	4	3	3	4	3	3	4	4
12	5	4	3	4	5	3	3	3	5	5	3	3	4	3	4	5	5
13	4	5	4	4	4	5	5	5	5	5	4	4	5	5	5	4	4
14	4	5	5	5	5	3	4	4	3	5	4	4	3	5	3	5	5
15	4	4	4	3	4	4	4	3	3	3	3	3	3	4	3	3	3
16	5	5	5	4	5	5	4	5	5	5	5	4	4	5	4	4	4
17	5	5	3	4	4	4	4	3	4	3	3	3	4	3	3	4	3

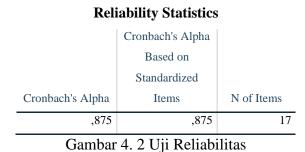
18	5	3	5	4	5	5	4	3	4	4	4	3	4	4	3	5	5
19	4	3	4	3	5	4	5	5	3	3	3	3	4	4	3	3	4
20	5	5	5	5	5	5	5	5	3	3	4	3	3	4	4	4	4
21	4	4	4	3	4	4	5	4	4	3	3	4	4	4	3	4	4
22	4	4	4	5	5	5	5	4	4	3	3	4	4	4	3	4	5
23	4	5	5	5	5	5	4	5	5	5	4	4	5	4	5	5	5
24	5	5	3	3	4	4	4	4	4	5	4	4	4	5	4	4	4
25	4	5	3	3	4	4	3	3	3	4	3	3	3	4	3	4	4
26	4	3	4	4	4	3	3	3	3	4	3	3	3	3	3	4	4
27	4	5	4	4	5	4	5	4	3	5	4	4	5	4	4	4	5
28	5	5	5	5	5	5	5	5	5	5	5	5	5	5	3	4	4
29	4	4	4	4	4	4	4	4	4	4	3	3	3	3	4	4	5
30	4	5	4	4	4	3	3	3	5	5	5	4	4	4	4	4	4
31	5	5	5	5	5	4	5	5	4	4	4	4	4	4	4	4	4

Dari data yang diperoleh kemudian dilakukan uji validitas pada tiap item pertanyaan.

4.1.1 Uji Validitas Kuesioner

Uji validitas dilakukan untuk melihat valid atau tidaknya item pertanyaan pada kuesioner. Pada penelitian ini uji validitas dilakukan dengan menggunakan *Software* SPSS. Jika ada pertanyaan yang tidak valid, maka akan dilakukan perbaikan dengan cara menghilangkan pertanyaan atau mengganti pertanyaan kuesioner. Dibawah ini merupakan hasil uji validitas yang telah dilakukan:

Item-Total Statistics

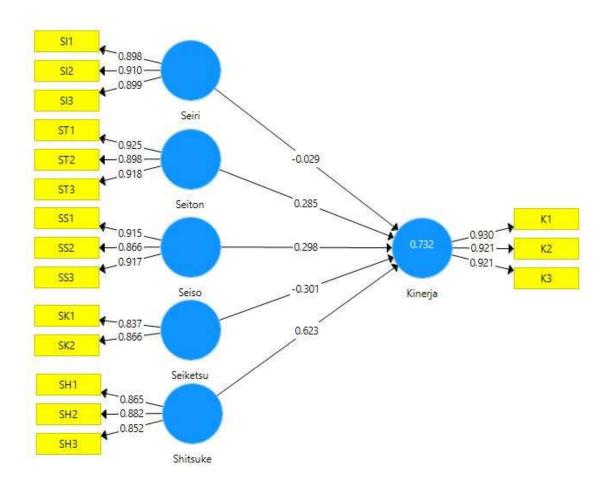

		Scale	Corrected	Squared	Cronbach's
	Scale Mean if	Variance if	Item-Total	Multiple	Alpha if Item
	Item Deleted	Item Deleted	Correlation	Correlation	Deleted
SI1	65,0000	45,133	,398	,413	,872
SI2	64,9355	43,462	,458	,625	,870
SI3	65,1613	42,406	,513	,760	,867
ST1	65,2903	41,880	,639	,728	,862
ST2	64,9677	44,366	,443	,771	,870
ST3	65,2581	42,265	,531	,753	,867
SS1	65,1935	42,895	,438	,772	,871
SS2	65,2903	41,213	,550	,725	,866
SS3	65,3548	42,503	,451	,605	,871
SK1	65,2903	41,613	,511	,693	,868
SK2	65,6452	42,103	,654	,708	,862
SH1	65,6452	40,837	,697	,791	,859
SH2	65,4194	42,518	,563	,631	,866
SH3	65,3548	42,237	,548	,598	,866
K1	65,6774	43,426	,438	,614	,870
K2	65,1613	44,473	,391	,730	,872
K3	65,0323	44,699	,363	,453	,873

Gambar 4. 1 Uji Validitas

Dari gambar 4.1 dapat diketahui bahwa nilai R hitung pada kolom *Corrected Item-Total Correlation* harus melebihi dari 0,3550. Nilai 0,3550 didapatkan dari *R-table* dengan rumus DF=N-2 dengan probabilitas 0,05. Dari tabel tersebut didapatkan bahwa R hitung > R tabel, sehingga dapat disimpulkan bahwa semua item pernyataan valid.

4.1.2 Uji Reliabilitas Kuesioner

Setelah dilakukan uji validitas kuesioner, selanjutnya yaitu uji reliabilitas kuesioner. Uji reliabilitas dilakukan untuk mengetahui konsistensi hasil pengukuran. Jika pengukuran yang dilakukan menghasilkan data yang konsisten maka dikatakan reliabel namun apabila pengukuran yang dilakukan menghasilkan data yang berbeda, maka pengukuran tersebut dikatakan tidak reliabel. Berikut merupakan hasil dari uji reliabilitas yang telah dilakukan:


4.2 Hasil Pengolahan Data

Data yang digunakan adalah hasil rekapitulasi kuesioner yang telah valid. Pengolahan data dilakukan dengan menggunakan *software* SmartPLS 3.0. Pengujian dilakukan dilakukan terhadap 61 data hasil kuesioner untuk mengetahui kelayakan model yang diajukan. Tahap pertama adalah pengujian outer model dan disusul dengan inner model sebagai berikut:

4.2.1 Hasil Outer Model

a. Validasi Konvergen

Langkah pertama yaitu mencari nilai *loading factor* untuk masing-masing variabel. Gambar 4.3 akan menunjukan model yang di bentuk sedangkan nilai loading factor ditunjukan pada Tabel 4.2

Gambar 4. 3 Model SEM-PLS

Tabel 4. 2 Loading Factor

Indikator	Loading factor
SI1	0.898
SI2	0.910
SI3	0.899
ST1	0.925
ST2	0.898
ST3	0.918
SS1	0.915
SS2	0.866
SS3	0.917
SK1	0.837
SK2	0.866
SH1	0.865
SH2	0.882
SH3	0.852
K1	0.930
K2	0.921
K3	0.921

Tabel diatas menunjukan bahwa seluruh indikator telah valid karena memiliki nilai *loading* factor >0,7. Oleh karena itu tidak perlu dilakukan eliminasi indikator. Langkah kedua dengan mencari nilai Average Variance Extracted (AVE). Tabel 4.3 akan menunjukan nilai AVE.

Tabel 4. 3 Nilai *AVE*

Variabel	(AVE)
Kinerja	0.854
Seiketsu	0.726
Seiri	0.814
Seiso	0.809
Seiton	0.835
Shitsuke	0.751

(AVE) adalah persentase rata-rata variasi dijelaskan oleh item dalam sebuah konstruksi. Nilai AVE yang tinggi mengindikasikan bahwa indikator telah mewakili secara baik variabel bentukan yang dikembangkan (Ghozali, 2005). Tabel 4.3 menunjukan bahwa seluruh nilai AVE >0,5 sehingga dapat dikatakan valid. Hasil tersebut menunjukan bahwa syarat validasi konverjen telah terpenuhi sehingga model yang diajukan telah sesuai dan layak digunakan.

b. Validasi Deskriminan

Setelah melakukan validasi konvergen, tahap selanjutnya yaitu validasi deskriminan. Validasi deskriminan dilakukan dengan melihat nilai *cross loading*. Jika nilai cross loading untuk setiap variabel lebih dari 0,7 maka dinyatakan valid (Ghozali & Latan, 2015). Tabel 4.4 akan menunjukan nilai *cross loading*.

Tabel 4. 4 Nilai Cross Loading

	Kinerja	Seiketsu	Seiri	Seiso	Seiton	Shitsuke
K1	0,930	0,579	0,685	0,655	0,741	0,759
K2	0,921	0,473	0,641	0,699	0,666	0,686
К3	0,921	0,541	0,646	0,702	0.705	0,720
SH1	0,577	0,799	0,624	0,496	0,616	0,865
SH2	0,561	0,769	0,575	0,576	0,591	0,882
SH3	0,823	0,587	0,630	0,696	0,711	0,852
SI1	0,691	0,589	0,898	0,683	0,856	0,669
SI2	0,568	0,565	0,910	0,745	0,784	0,550
SI3	0,652	0,583	0,899	0,664	0,836	0,684
SK1	0,467	0,837	0,563	0,700	0,629	0,627
SK2	0,512	0,866	0,535	0,433	0,527	0,750
SS1	0,662	0,514	0,646	0,915	0,694	0,567
SS2	0,556	0,656	0,640	0,866	0,660	0,547
SS3	0,758	0,616	0,799	0,917	0,791	0,743
ST1	0,736	0,593	0,850	0,652	0,925	0,727
ST2	0,637	0,596	0,851	0,743	0,898	0,668
ST3	0,710	0,663	0,819	0,803	0,918	0,661

Berdasarkan Tabel 4.4 dapat dilihat bahwa setiap variabel memiliki nilai >0,7. Oleh karena itu syarat validasi deskriminan telah dipenuhi. Ini menunjukan bahwa model yang diajukan telah valid dan layak digunakan.

a. Reliabilitas

Tahapan terakhir adalah reliabilitas dengan mengetahui nilai *Cronbach's Alpha* dan *Composite Relibility*. Dengan menggunakan menu *construct reliability* dan *validity* dalam SmartPLS 3.0 akan ditemukan nilai *Cronbach's Alpha* dan *Composite Reliability* sebagaimana ditunjukan dalam tabel 4.5

Tabel 4. 5 Nilai Cronbach's Alpha dan Composite Relibility.

	Cornbach's Alpha	Composite Reliability
Kinerja	0,914	0,946
Seiketsu	0,623	0,841
Seiri	0,886	0,929
Seiso	0,883	0,927
Seiton	0,901	0,938
Shitsuke	0,839	0,9

Dari Tabel 4.5 diatas dapat diketahui *Cronbach's Alpha* dan *Composite Relibility* lebih dari 0,7 dengan demikian dapat disimpulkan bahwa model pengukuran samua variabel memiliki reliabilitas yang baik. Dengan demikian maka estimasi model memenuhi kriteria *outer model*.

4.2.2 Hasil inner model

a. Koefisien Determinan (*R-Square*)

Untuk mengetahui besarnya hubungan antara variabel bebas terhadap variabel terikat dapat melihat nilai koefisien determinan (*R-Square*). Tabel 4.6 akan menunjukan nilai *R-square*.

Tabel 4. 6 R-Square

	R	R
		Square
	Square	Adjusted
Kinerja	0,732	0,708

Untuk menganalisa model dengan variabel bebas lebih dari dua, maka digunakan R-square adjusted (Santoso, 2001). Tabel 4.6 menunjukan bahwa 73,2% variabel terikat dipengaruhi oleh model yang diajukan (variabel bebas). Sedangkan nilai sisanya dimiliki oleh variabel yang berada diluar model.

a. Predictive Relevance (Q-square)

Nilai diperoleh dengan menggunakan persamaan 3.4. Berikut adalah hasil perhitungannya:

$$Q^2 = 1 - (1 - R1^2)$$

 $Q^2 = 1 - (1 - 0.732)$
 $Q^2 = 0.732$

Berdasarkan perhitungan diatas dapat disimpulkan bahwa model yang diajukan preditif karena memiliki nila >0

b. Goodness of Fit (GoF)

Perhitungan nilai GoF dilakukan secara manual menggunakan persamaan 3.5 berikut adalah hasil yang didapatkan :

$$GoF = \sqrt{\overline{AVE} x \overline{R^2}}$$

$$GoF = \sqrt{0.798x0.732}$$

 $GoF = 0.764$

Perhitungan diatas menunjukan nilai sebesar 0,764. Berdasarkan nilai tersebut dapat dikatakan bahwa model sangat baik dan masuk akal karena bernilai > 0,36.

4.2.3 Uji Hipotesis

Dalam pengujian ini dilakukan untuk mengetahui apakah hipotesis dalam penelitian yang digunakan terdapat hubungan yang signifikan atau tidak signifikan. Uji signifikansi ini menggunakan fitur *bootstrapping* pada *software* SEM PLS 3.0. untuk mengetahui p *value* dari masing-masing hipotesis Tabel 4.7 menunjukan nilai p *value* masing-masing variabel.

Tabel 4. 7 Nilai t hitung

	t hitung	p values
Seiketsu	2,046	0,021
Seiri	0,142	0,444
Seiso	1,999	0,023
Seiton	1,307	0,096
Shitsuke	4,288	0

Tabel 4.7 merupakan hasil uji *bootstrapping*, dari hasil tersebut didapatkan bahwa terdapat tiga variabel dengan nilai p *value* <0,05 yang berarti ketiga hipotesis yang terbentuk berpengaruh signifikan dan terdapat dua variabel dengan p value >0,05 yang berarti kedua hipotesis yang terbentuk tidak berpengaruh signifikan terhadap kinerja.