TUGAS AKHIR

PERPUSTAKAAN FTSP UH HADIAH/BELI

TGL TERIMA : _______

PENGARUH BAHAN TAMBAH SURERPLASTICIZER (SIKAMENT-NN) TERHADAP KUAT DESAK BETON fe 20 MPa DENGAN VARIASI PENGURANGAN AIR

Diajukan Kepada Universitas Islam Indonesia Jogjakarta Untuk Memenuhi Persyaratan Memperoleh Derajat Sarjana Strata Satu (S1) Teknik Sipil

JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN UNIVERSITAS ISLAM INDONESIA YOGYAKARTA

2007

MILIK PERPUSTAKAAN FAKULTAS TEKNIK SIPIL DAN PEREKCANAAN UN YOGYAKARTA

TUGAS AKHIR

PENGARUH BAHAN TAMBAH SUPERPLASTICIZER (SIKAMENT-NN) TERHADAP KUAT DESAK BETON fc 20 MPa DENGAN VARIASI PENGURANGAN AIR

Diajukan Kepada Universitas Islam Indonesia Jogjakarta Untuk Memenuhi Persyaratan Memperoleh Derajat Sarjana Strata Satu (S1) Teknik Sipil

Disetujui:

Pembimbing:

Ir. Helmy Akbar Bale, MT.

Tanggal:

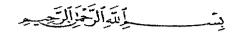
Ir. Suharvatmo.MT.

Tanggal:

MOTTO

Perduli

Pinter aja mung minteri sesama
Ning pinter ngawicaksanani ing kabehe insani
Sugih aja mung sugihing bandha
Ning sugiha kaselehing ati
Bagus aja mung bagusing sadermo
Ning kasampurnan dikancani kaperduli
Ayu aja mung ayuning rupa
Ning ayu kalengkap padhanging nurani
Kasyukur sedaya ditampi gusti


Ngayogyakarta, Juni 2007

PERSEMBAHAN

Karya ini kupersembahkan tidak untuk siapa-siapa....

KATA PENGANTAR

Assalamu'alaikum warohmatullahi wabarokatuh

Segala puji hanya bagi Alloh, kami memujiNya, memohon pertolongan dan ampunan kepadaNya. Dengan pertolonganNyalah kami dapat menyelesaikan Tugas Akhir dengan judul "PENGARUH PENAMBAHAN SUPERPLASTICIZER TERHADAP KUAT DESAK BETON DENGAN MUTU Fc 20 MPa DENGAN VARIASI PENGURANGAN AIR".

Sholawat serta salam tidak lupa kita haturkan pada Nabi Muhammad Sholallohu'alaihi wasallam, keluarga, sahabat dan orang-orang yang istiqomah mengikutinya sampai akhir zaman.

Tugas Akhir merupakan independent study project yang harus dikerjakan oleh mahasiswa sebagai syarat untuk memperoleh gelar sarjana dari almamaternya. Salah satu mata kuliah ini bertujuan untuk memberikan kesempatan kepada mahasiswa untuk dapat mempelajari dengan lebih mendalam topik yang mereka dapatkan di bangku kuliah, di bawah bimbingan supervisor yang memiliki pengetahuan di bidang tersebut.

Kelancaran dalam pembuatan Tugas Akhir ini tidak terlepas dari bantuan berbagai pihak, baik secara langsung maupun tidak langsung. Pada kesempatan ini kami mengucapkan terima kasih kepada:

- Alloh 'Azza wa Jalla dan Rosululloh Sholallohu'alaihi wa sallam yang menunjukkan jalan terbaik bagi manusia, yaitu thariqoh ilal jannah.
- Kedua orang tua kami, Mulyono dan Titiek M, adik-adik kami, Ajar M dan Danik P yang senantiasa memberikan dukungan moril dan materiil.
- 3. Bapak DR. Ade Ilham rohimahulloh selaku dosen pembimbing pertama dan Bapak Ir. Helmy Akbar Bale, MT dan Ir. Suharyatmo yang merupakan dosen pembimbing yang menggantikan Bapak DR Ade Ilham rohimahulloh yang telah memberikan bimbingan dalam pembuatan dan

penyusunan Tugas Akhir ini. Terima kasih untuk segala motivasi dan bantuannya.

- 4. Bapak DR. Ir. Ruzardi, MT selaku Dekan Fakultas Teknik Sipil dan Perencanaan Universitas Islam Indonesia. Terima kasih atas kerjasamanya. Mohon maaf bila ada kesalahan
- 5. Semua pihak yang telah membantu kami dalam penyusunan tugas akhir ini.

Kami menyadari bahwa Tugas Akhir ini masih jauh dari sempurna baik dari segi kualitas maupun kuantitas. Oleh karena itu, saran dan kritik yang membangun dari rekan-rekan mahasiswa, dosen dan berbagai pihak sangat diharapkan. Semoga Tugas Akhir ini dapat berguna bagi kita semua, amin.

Assalamu'alaikum Wr. Wb.

Jogjakarta, Maret 2007 Penyusun

Agung Fajar M

ABSTRAKS

Berdasarkan komposisi campurannya, beton normal masih mungkin untuk ditingkatkan lagi kinerjanya dengan mengurangkan kandungan air dan menambah superplasticizer. Kinerja yang dapat ditingkatkan adalah kelecakan dan kuat tekannya. Pengurangan kandungan air dan penambahan superplasticizerdengan interval 0-30% dari kondisi normal dengan mempertahankan slump lebih besar 150 mm, tanpa terjadi bleeding dan segregation. Mutu beton yang direncanakan 20 MPa yang diuji pada umur 3,7,14 dan 28 hari. Hasil penelitian memperlihatkan bahwa pengurangan air dan penambahan superplasticizer, nilai slump lebih besar dari 150 mm dapat tercapai tanpa terjadi bleeding dan segregasi. Kuat tekan maksimum sebesar 49,8138 MPa untuk kuat tekan rencana 20 MPa diperoleh pada pengurangan kandungan air 30% dan penambahan superplasticizer 2,3947 % dari berat semen. Beton dengan pengurangan air dan penambahan superplasticizer mempunyai peningkatan kuat tekan awal yang lebih tinggi apabila dibanding dengan beton normal menurut PBBI 1971. Peningkatan kuat tekan terlihat jelas pada umur 3 hari menuju umur 7 hari. Beton dengan kuat tekan tinggi akan mempunyai modulus elastis yang tinggi pula, kuat tekan tertinggi pada beton dengan pengurangan air 30% dengan kuat tekan sebesar 49,8138 MPa dengan moduls elastis sebesar 32619,3543 MPa.

Kata kunci: kandungan air, superplasticizer, kelecakan, kuat tekan beton.

DAFTAR ISI

HALAMA	AN JUDUL	
LEMBAR	PENGESAHAN	
MOTTO .		i
	BAHAN	ii
	NGANTAR	
	KSI	
DAFTAR	ISI	
DAFTAR	SIMBOL	ix
	TABEL	
DAFTAR	GAMBAR	
DAFTAR	LAMPIRAN	
		70
BAB I	PENDAHULUAN	1
	1.1. Latar Belakang	-
	1.2. Rumusan Masalah	2
	1.3. Tujuan Penelitian	3
	1.4 Batasan Masalah	
	1.5 Manfaat Penelitian	5
		,
BAB II	TINJAUAN PUSTAKA	6
		U
BAB III	LANDASAN TEORI	6
	3.1 Umum	6
	3.2. Materi Penyusun Beton	10
	3.2.1 Semen Portland	10
	3.2.2 Air	10
	3.2.3 Agregat	12
	3.2.4 Superplasticizer	12

	3.3 Faktor air semen (f.a.s)	16
	3.4 Slump	17
	3.5 Workability	
	3.6 Ketentuan Pembuatan Benda Uji	
	3.7 Perencanaan Campuran Beton	
	3.8 Kuat Desak	30
	3.9 Tegangan Regangan	30
	3.10 Hipotesis	31
BAB IV	METODE PENELITIAN	32
	METODE PENELITIAN	32
	4.2. Persiapan Bahan dan Alat	32
	4.2.1 Pengadaan Bahan	32
	4.2.2.Peralatan Penelitian	32
	4.3 Pemeriksaan Material Yang Akan Digunakan	33
	4.3.1 Pemeriksaan Agregat Halus	33
	4.3.2 Pemeriksaan Agregat Kasar	35
	4.4 Perencanaan Mix Design	37
	4.5 Pembuatan dan Perawatan Benda Uji	37
	4.6 Pengujian Kuat Desak Benda Uji	38
	4.7 Model dan Jumlah Benda Uji	39
	4.8 Pengolahan Data	40
	4.8.1 Kuat Tekan	40
	4.8.2 Modulus Elastis	40
	4.10 Langkah-langkah Penelitian	42
BAB V	HASIL PENELITIAN DAN PEMBAHSAN	22
	5.1 Umum	22
	5.2 Hasil Uji Laboratorium	43
	5.2.1 Data Awal Perencanaan	43
	5.2.2 Perencanaan Campuran	44

	5.3 Pengaruh Pengurangan air dan Penambahan
	Superplasticizer terhadap workabilitas
	5.4 Pengaruh pengurangan air terhadap Kuat Tekan
	5.5 Hubungan Kuat Tekan dengan Umur Beton
	5.6 Analisis Hubungan Tegangan-Regangan 71
	5.7 Modulus Elastisitas 80
BAB VI	KESIMPULAN DAN SARAN
	6.1 Umum
	6.2 Kesimpulan
	6.3 Saran-Saran 84
DAFTAR PU	
LAMPIRAN	
	5-1-20 110 -11 4 11 10 11

DAFTAR SIMBOL

A = Luas

D = Diameter

fc = Kuat Desak Beton

fcr = Kuat Desak Beton rata-rata

k = Konstanta (1,64)

L = Panjang Silinder

m = Nilai Tambah (Margin)

n = Jumlah Data

P = Beban

Sd = Standar Deviasi

FAS = Faktor Air Semen

Wa = Berat Air

Ws = Berat Semen

 ε = Regangan

 σ = Tegangan

Ec = Modulus Elastisitas

A_h = Jumlah air yang dibutuhkan menurut agregat halusnya

 A_k = Jumlah air yang dibutuhkan menurut agregat kasarnya

Bj = Berat Jenis

V = Volume

W = Berat

DAFTAR TABEL

Tabel 1.1	5
Tabel 3.1	11
Tabel 3.2	18
Tabel 3.3	19
Tabel 3.4	19
Tabel 3.5	22
Tabel 3.6	24
Tabel 3.7	25
Tabel 3.8	26
Tabel 3.9	
Tabel 4.1	27
Tabel 5.1	39
Tabel 5.2	46
Tabel 5.3	50
Tabel 5.4	53
Tabel 5.5	54
Tobal 5.6	55
Tabel 5.7	57
<i>j-2</i> ; <i>j-2</i> ;	59
Tabel 5.8	61
Tabel 5.9	62
Tabel 5.10	71
Tabel 5.11	01

DAFTAR GAMBAR

Gambar 3.1	20
Gambar 3.2	22
Gambar 3.3	23
Gambar 3.4	
Gambar 4.1	29
Gambar 5.1	39
Combox 5.2	48
Gambar 5.3	50
Gamber 5.4	52
Gambar 5.5	53
Gambar 5.6.	56
Gambar 5.7	57
Gambar 5.8	59
Gambar 5.9	60
Gambar 5.10	62
Gambar 5.11	64
Compar 5 12	65
Gambar 5.13	66
Gambar 5.14.	67
Gambar 5.15	68
Gambar 5.16	69
Gambar 5.17	70
Gambar 5.18	72
Gambar 5.19	73
Gambar 5.20	74
Gambar 5.21	75
Gambar 5.22	76
Gambar 5.22	77
Gambar 5.23	78
	80

DAFTAR LAMPIRAN

Lampiran 1	Konsultasi Tugas Akhir
Lampiran 2	Perencanaan Kebutuhan Beton
Lampiran 3	Data Kuat Tekan
Lampiran 4	Foto Dokumentasi
	Foto Dokumentasi

BAB I

PENDAHULUAN

Pada bab ini berisi tentang latar belakang masalah, rumusan masalah, tujuan penelitian, batasan masalah, dan manfaat penelitian. Penjelasan mengenai hal-hal tersebut diatas akan diuraikan sebagai berikut ini.

1.1. Latar Belakang

Perkembangan teknologi di bidang konstruksi terutama bangunan yang menggunakan beton tidak lepas dari upaya penciptaan alternatif teknologi yang cukup inovatif untuk memperbaiki mutu beton. Beton merupakan salah satu material struktur bangunan yang banyak digunakan, karena beton mempunyai kelebihan antara lain; kuat desak yang tinggi, tahan terhadap panas, dan lain-lain. Namun masalah yang perlu mendapat perhatian adalah terbatasnya kinerja beton tersebut dalam hal kelecakan (workability), kekuatan (strength) dan keawetan (durability). Kinerja kelecakan beton normal yang ada sekarang dirasa masih belum maksimal. Peningkatan kelecakan sangat tergantung kepada jumlah air, semakin tinggi jumlah air, nilai slump juga semakin tinggi, tetapi di sisi lain kandungan semen juga meningkat tinggi, hal ini menyebabkan harga beton menjadi tinggi.

Bahan penyusun beton yang paling umum digunakan di Indonesia adalah semen , pasir, air dan batu pecah (agregat kasar). Dalam campuran beton sedikitnya dibutuhkan air sebanyak 25% dari berat semen dalam proses hidrasi dan selebihnya air dalam campuran beton digunakan sebagai pembentuk fisik beton, yakni dalam hal kelecakan. Semakin banyak air pada campuran beton akan mengakibatkan beton lebih lecak dan mudah dikerjakan. Disisi lain kelebihan jumlah air pada campuran beton akan menghasilkan tingkat porositas tinggi sehingga mengakibatkan kekuatan beton rendah. Dengan asumsi ini maka kekuatan beton dapat ditingkatkan dengan cara pengurangan kandungan air pada

beton. Dengan pengurangan kandungan air ini maka perbandingan berat air dan semen (fas) akan menurun. Dengan turunnya nilai fas memungkinkan beton akan lebih padat, porositas pada beton akan terkurangi sehingga kekuatan beton akan naik. Namun disisi lain dengan turunnya nilai fas pada beton mengakibatkan beton akan sulit dikerjakan, dengan kata lain tingkat workabilitas dan kelecakan beton akan turun.

Melihat kajian ini menunjukkan bahwa beton normal masih dapat ditingkatkan kinerjanya dengan memperbaiki kelemahannya, yaitu meningkatkan kelecakan dan kekuatannya. Dengan demikian untuk memperbaiki kinerja beton tersebut, konsep disain/perancangan campuran beton yang ada saat ini dapat dimodifikasi pada salah satu parameter bahannya, yaitu mengurangi jumlah air sekaligus menambahkan bahan tambah kimia yang berfungsi untuk tetap menjaga kelecakan beton.

Bahan tambah adalah bahan selain unsur pokok beton yakni air, semen, dan agregat yang digunakan pada adukan beton, sebelum, segera, atau selama pengadukan beton, tujuannnya adalah untuk mengubah satu atau lebih sifat-sifat beton sewaktu masih dalam kedaan segar atau mengeras. (Kardiyono 1992)

Dalam penelitian ini bahan tambah kimia (chemical admixture) yang digunakan adalah superplasticizer (SP). Dengan mengunakan bahan tambah superplasticizer (SP) sebagai bahan campur diharapkan mampu mengatasi rendahnya kelecakan. Superplasticizer merupakan bahan tambah yang diberikan pada beton baik sebelum pengadukan maupun selama proses pengadukan untuk mendapat beton segar yang lebih workable dan bersifat mengalir. Superplasticizer sering juga disebut bahan tambah pengurang air dosis tinggi (high rang water reducer).

1.2. Rumusan Masalah

Permasalahan yang menjadi penyebab setiap perubahan kandungan air selalu diikuti perubahan kandungan semen adalah penggunaan fas. Fas memiliki kelemahan dengan sistem perbandingan berat air dan berat semen yang menyebabkan peningkatan air sebanding dengan peningkatan berat semen. Hal ini yang menyebabkan semen tinggi, terutama jika nilai fas rendah dan kandungan air tinggi. Sementara itu untuk meningkatkan kuat tekan bertentangan dengan peningkatan kelecakannya. Jika fas dikurangi (mengurangi jumlah air) untuk mendapatkan kuat tekan yang lebih tinggi, maka kelecakannya akan berkurang drastis. Hal ini yang akan menjadi kajian dalam penelitian ini. Untuk itu perlu mendapat jawaban dari beberapa permasalahan di bawah ini,

- bagaimana menghasilkan beton normal berkinerja tinggi berdasarkan pada metode perancangan yang telah ada,
- seberapa besar pengurangan jumlah air dan penambahan superplasticizer pada campuran beton normal agar dapat menghasilkan kuat tekan yang paling tinggi dengan mempertahankan kelecakan beton segar yang tinggi,
- 3. seberapa besar penambahan *superplasticizer* untuk menghasilkan kelecakan beton segar lebih besar dari 150 mm tanpa terjadi *bleeding* dan segregasi,
- seberapa besar penambahan superplasticizer untuk menghasilkan kepadatan beton maksimum sehingga menghasilkan kuat tekan maksimum,
- bagaimana hubungan antara jumlah air, superplasticizer, dan kuat tekan beton setelah campuran dimodifikasi.

1.3. Tujuan Penelitian

Perkembangan teknologi beton pada masa depan menuntut kinerja yang tinggi, mudah dalam penanganan, memiliki kekuatan yang diperlukan, dan memiliki tingkat keawetan terhadap berbagai serangan bahan-bahan perusak. Berkaitan dengan hal tersebut, penelitian ini akan melakukan modifikasi terhadap salah satu bahan susun, yaitu air yang diperoleh dari perancangan campuran cara DOE (Development of Environental) dengan tujuan sebagai berikut:

- meningkatkan kekuatan beton yang berkaitan dengan pengurangan air dengan tetap menjaga tingkat workabilitasnya,
- mengetahui kuat tekan beton normal dengan mengurangi jumlah air sampai 30% pengurangan dan menambahkan superplasticizer pada kuat tekan 20 MPa dengan beberapa variasi terhadap umur beton 3, 7, 14, dan 28 hari.
- 3. mengetahui grafik hubungan tegangan regangan beton setelah dilakukan pengurangan air dan penambahan superplasticizer,
- 4. mengetahui nilai modulus elastis beton setelah dilakukan pengurangan air dan penambahan *superplasticizer*.

1.4. Batasan Masalah

Untuk membatasi permasalahan agar tidak terlalu melebar baik pada saat pelaksanaan penelitian maupun pembahasan, maka perlu batasan sebagai berikut:

- 1. metode disain yang akan dimodifikasi adalah metode DOE (Department of Environment),
- 2. benda uji mempunyai kuat tekan rencana (f'c) 20 Mpa,
- nilai slump asal 0 60 mm (sebelum dimodifikasi) akan ditingkatkan menjadi ≥ 150 mm tanpa terjadi bleeding dan segregasi,
- 4. pengurangan air dilakukan secara gradual mulai 5, 10, 15, 20, 25, 30%
- 5. menggunakan semen jenis I (Standar ASTM)
- 6. ukuran maksimum agregat kasar 20 mm dari Celereng, Kulonprogo,
- menggunakan superplasticizer (SP) SIKAMENT NN,
- penambahan SP dilakukan sedikit demi sedikit sampai dicapai slump ≥
 150 mm tanpa terjadi bleeding dan segregasi,
- air yang digunakan berasal dari Laboratorium Bahan Konstruksi Teknik, Universitas Islam Indonesia,
- 10. penelitian dibatasi pada kuat desak dan grafik tegangan regangan,
- 11. benda uji berbentuk silinder dengan diameter 15 cm dan tinggi 30 cm,

- 12. pengujian sampel silinder dilakukan pada umur beton 3, 7, 14, dan 28 hari, perawatan benda uji silinder dilakukan dengan cara merendam dalam bak air, dengan cara itu diharapkan hidrasi semen dapat berlangsung dengan baik,
- pembuatan benda uji dan pengujian sampel dilakukan di Laboratorium Bahan Konstruksi Teknik, Universitas Islam Indonesia.

14. Jumlah sampel benda uji

Tabel 1.1. Jumlah sampel beton dengan variasi pengurangan air dan penambahan superplasticizer

Variasi Pengurangan		Uji desak	pada umu		Uji tegangan-
air	3 hari	7 hari	14 hari	28 hari	regangan 28 hari
0%	3	3	3 /	5	1
5%	3	3	3	5	1
10%	3	3	3	5	1
15%	3	3	3	5	1
20%	3	3	3	5	1
25%	3	3	3	5	1
30%	3	3	3	5	<u> </u>
Jumlah 111	21	21	21	35	<u>l</u>

Catatan: Penambahan superplasticizer dilakukan dengan metode coba-coba himgga mencapai nilai slump lebih besar dari 150 mm

1.5 Manfaat Penelitian

Sesuai dengan tujuan penelitian ini, maka akan diperoleh beberapa manfaat yang akan dihasilkan dari penelitian ini, yaitu:

- 1. memperoleh campuran beton yang lebih lecak, lebih tinggi kuat tekannya,
- memberikan informasi tentang karakteristik beton akibat pengurangan air setiap 5% dan penambahan superplasticizer pada beton dengan umur 3, 7, 14 dan 28 hari,
- 3. mendapatkan nilai-nilai modulus elasis beton.
- 4. menjadi bahan kajian selanjutnya untuk mengembangkan beton normal kinerja tinggi.

BAB II TINJAUAN PUSTAKA

Pada bab ini menerangkan tentang penelitian-penelitian terdahulu yang pernah dilakukan, yang akan dijabarkan sebagai berikut ini.

2.1. Umum

Beton terbuat dari bahan semen Portland semen, air, agregat (agregat kasar dan halus) dalam proporsi perbandinagn tertentu dengan atau tanpa bahan tanmbah pembentuk massa padat. (SK-SNI T-15-03, 1991).

2.2. Tinjauan Pemakaian Superplasticizer Pada Beton Mutu Tinggi Terhadap Kuat Desak Beton (Fitria Hariny dan Asna Luthfiah, 2003).

Dalam penelitian ini terdapat hubungan yang cukup signifikan antara penambahan superpalsticizer dan kuat desak beton. Pada penambahan superplasticizer sampai pada dosis 1,2 % kuat desaknya semakin meningkat dengan presentase peningkatan sebesar 35,16 % kemudian mengalami penurunan kuat desak pada penambahan superpalsticizer pada dosis 1,4 % sebesar 34,414 %. Dan pada peneltian ini juga didapat kadar optimum pemakaian superpalsticizer peda perencanaan campuran adukan beton mutu K-500 yaitu sebesar 1,219 %.(Fitria Hariny dan Asna Luthfiah, 2003).

2.3. Pengaruh Bahan-bahan Pemercepat Pengerasan Terhadap Workabilitas dan Kuat Tekan Beton (Eko Yuwono, 1997).

Dalam penelitian ini dipilih empat macam admixture dari empat pabrik yang berbeda, yaitu Sikament-NN, Bestmitted, BV special dan Superplastet F dengan fas 0,5 pada dosis minimum masing-masing admixture sesai brosur pabrik berturut-turut yaitu 0,8%; 0,2%; 0,3%. Slump ditentukan pada slump beton normal minimum 50 mm. Material yang dipakai adlah semen Type I dari pabrik semen Gresik, pasir dan kerikil dri sungai Krasak Sleman. Beda uji berupa

silinder beton yang berjumlah 80 buah yang dibuat dari 20 adukan dan tiap adukan dibuat 4 benda uji pada umur 3, 7, 14 dan 28 hari.

Hasil penelitian menunjukkan bahwa kandungan yang ditambahkan seperti yag tertera diatas. Menujukkan bahwa Sikament NN palinhg tinggi nilai slumpnya dibanding ketiga merk lain. Pengujian kuat tekan memperlihatkan Bestmittel, BV Special dan Superplastet F memberi percepatan pengerasan sejak hari ketiga dan mencapai kuat tekan beton normal (± 25 Mpa) pada umur beton 14 hari. Peningkatan kuat tekan ketiga admixture pada umur beton 28 hari sebesar ± 20% dari beton normal, sedang pada Sikament Nnterjadi keenceran yang terlalu tinggi sehingga kuat tidak meningkat dibanding beton normal 25 Mpa. Pada penelitian ini terlihat bahwa Sikament NN lebih berfungsi sebagai superplastisticizer (meningkatkan slump310,7% terhadap slump beton normal), sedangakan Bestmittel, BV Special dan Superplastet F sebagai plasticizer (meningkatkan slump menjadi 191,1% dan 221,4% terhadap beton normal) dan mempercepat pengerasan beton. Dalam penelitan kali ini penulis tidak meneliti berapa nilai slump yang terjadi tetapi kami sudah menentukan nilai slump sebelumnya. (Eko Yuwono 1997).

2.4. Pengaruh Pemakain Bahan Tambah "Superplasticizer" Terhadap Kuat Desak Beton (Muzamil dan Budiono, 1997).

Bahan pembentuk beton yang digunakan dalam penelitian ini memenuhi syarat yang telah ditetapkan, terbukti dari kuat tekan yang dihasilkan bahkan lebih besar. Pemakai bahan tambah merk Merguss FB dapat mengurangi kadar air, namun mempermudah pengerjaan beton karena kelecekan tinggi dan mutu beton semakin tinggi, tetapi bahan tambah ini dapat memperlambat pengerasan terutama pada pemekaian bahan tambah yang prosentasenya besar, sehingga pemakaian bahan tambah ini cocok untuk pekerjaan pengecoran yang campurannya tidak dibuat ditempat atau menggunakan "Mixer".

Menurut perbandingan antara PBI 1971 dan hasil pengujian laboratorium dengan menggunakan bahan tambah merk Merguss FB ini didapat kesimpulan antara 0,7% sampai 2,5% pada umur 3, 7, 14 dan 28 hari memenuhi syarat yang

ditetapkan PBI 1971 dan dapat digunakan dilapangan, sedangkan bahan tambah melebihi 2,5% tidak memenuhi syarat yang telah ditetapkan PBI 1971 atau tidak dapat digunakan dilapangan.(Muzamil dan Budiono, 1997)

2.5 Pengaruh Pengurangan Kandungan Air dan Penambahan Superplasticizer Pada Komposisi Campuran Beton Kuat Tekan 30 dan 40 Mpa. (M. Syarifruddin P.N dan Hastoro P.S, 2005)

Dari penelitian dapat diambil kesimpulan bahwa kuat tekan rata-rata tertinggi sebesar 54 Mpa dicapai oleh kombinasi pengurangan air 30 % dan penambahan SP 1,83 % untuk kuat tekan rencana 30 Mpa. Pada kuat tekan 30 Mpa dan 40 Mpa pengurangan kandungan air 30 % mencapai kuat tekan rata-rata maksimal sebesar 54,7 Mpa dan 51,25 Mpa. Penambahan superplasticizer untuk kuat tekan maksimal pada kuattekan rencana 30 Mpa dan 40 Mpa sebesar 1,83 % dan 1,26 % dari berat semen. Peningkatan kuat tekan rata-rata dari umur 7 hari sampai 28 hari pada kuat tekan rencana 30 Mpa sebesar 20,53 % dan pada kuat tekan rencana 40 Mpa sebesar 12,5 %.

Karakteristik beton segar dapat diketahui workabilitasnya dengan melihat parameter nilai slump dan aliran slump. Ni;ai slu,p rencana lebih besar dari 180 mm tercapai dan nilai aliran slump diatas 30 mm. Penambahan *superlasticizer* dengan merk dagang "Sikament-NN" sebesar 3,62 % pada pengurangan air 40 % menyebabkan kuat tekan beton menurun walaupun workabilitasnya tinggi dapat tercapai. Pengurangan air lebih besar dari 30 %, kuat tekan beton cenderung menurun. (M. Syarifruddin P.N dan Hastoro P.S, 2005)

BAB III LANDASAN TEORI

Pada bab ini berisikan tentang penjelasan-penjelasan mengenai teori-teori yang digunakan, materi penyusun beton, penghitungan kuat desak dan hipotesis.

2.1. Umum

Salah satu material yang banyak digunakan untuk struktur teknik sipil adalah beton. Beton didapat dari campuran semen portland, air dan agregat pada perbandingan tertentu. Sifat-sifat beton tergantung pada sifat-sifat bahan penyusunnya, cara pengadukan, penuangan, pemadatan dan perawatan beton selama proses pengerasannya. Sejalan dengan perkembangan teknologi dan kebutuhan masyarakat, diupayakan oleh para ahli untuk meningkatkan sifat-sifat beton antara lain: workability, placebility, strenght, durability, permeability dan corrosivity.

Menurut SK SNI T-15-1991-03, berdasarkan berat volumenya beton dapat digolongkan menjadi tiga golongan sebagai berikut ini.

1. Beton Ringan.

Beton ringan adalah beton yang mempunyai berat volume kurang dari 1900 Kg/m³.

2. Beton Normal.

Beton normal adalah beton yang mempunyai berat volume antara 2200 kg/m³ sampai dengan 2500 kg/m³.

3. Beton Berat

Beton berat adalah beton yang mempunyai berat volume lebih besar dari 2500 kg/m^3 .

Beton merupakan fungsi dari bahan penyusunnya yang terdiri dari bahan semen hidrolik (portland cement), agregat kasar, agregat halus, air dan bahan tambah (admixture atau additive). Untuk mengetahui dan mempelajari perilaku

elemen gabungan (bahan-bahan penyusun beton), kita perlu mengetahui karakteristik masing-masing komponen.(Nawy. 1985:8).

Untuk memhami karakteristik bahan penyusun campuran beton sebagai dasar perencanaan beton, Departemen Pekerjaan Umum malalui LPMB banyak mempublikasikan standar-standar yang berlaku. DPU-LPMB memberikan definisi tentang beton sebagai campuran antara semen portland atau semen hidrolik yang lainya, agregat halus, agregat kasar dan air, dengan atau tanpa bahan campuran tambahan membentuk massa padat (SK.SNI T-15-1990-03:1)

2.2. Materi Penyusun Beton

Beton adalah suatu bahan elemen struktur yang memiliki karakteristik spesifik yaitu kuat desaknya yang tinggi yang terdiri dari beberapa bahan penyusun sebagai berikut ini.

2.2.1. Semen Portland

Semen Portland adalah bahan konstruksi yang paling banyak digunakan dalam pekerjaan beton. Semen Portland dibuat dari serbuk halus mineral kristalin yang komposisi utamanya adalah kalsium dan aluminium silikat. Penambahan air pada mineral ini menghasilkan suatu pasta yang jika mengering akan mempunyai kekuatan seperti batu. (Nawy. 1985: 9).

Bagian utama bahan pembentuk semen dan merupakan unsur terpenting dalam menentukan kekutan beton adalah:

1. dikalsium silikat (C₂S)

2 CaO. SiO2.

2. trikalsium silikat (C₃S)

3 CaO. SiO2.

3. trikalsium aluminat (C₃A)

3 CaO. Al₂O₃, dan

4. tetrakalsium aluminatferit (C₄AF)

4 CaO. Al₂O₃ Fe₂O₃.

Peraturan Beton 1989 dalam ulasannya dihalaman 1, membagi semen portland menjadi 5 jenis.(SK.SNI T-1990-03:2) yaitu:

1. Jenis I : Semen F

: Semen Portland untuk penggunaannya umum yang tidak

memerlukan persyaratan khusus seperti jenis-jenis lainya.

2. Jenis II

: Semen Portland dalam penggunaannya memerlukan

ketahanan sulfat dan panas hidrasi sedang.

3. Jenis III : Semen Portland yang penggunaannya memertukan kekuatan awal yang tinggi dalam fase permulaan setelah pengikatan terjadi.

4. Jenis IV : Semen Portland dalam penggunaanya memerlukan panas hidrasi yang rendah.

5. Jenis V : Semen Portland yang dalam penggunaannya memerlukan ketahanan tinggi terhadap sulfat.

Komposisi kimia dari kelima jenis semen tersebut dapat dilihat pada tabel 3.1. (Nawy.1985:11).

Tabel 3.1 persentase Komposisi Semen Portlsnd

		Komposisi dalam persen (%)						
	C3S	C2S	C3A	C4AF	CaSO4	CaO	MgO	riege and a second seco
Tipe I, Normal	49	25	12	8	2.9	0.8	2.4	Semen untuk semua tujuan
Tipe II, Modifkasi	46	29	6	12	2.8	0.6	3	Relatif sedikit
Į ū					'n			pelepasan panas, digunakan untuk
Tipe III, Kekuatan	56	15	12	12	3.9	1.4	2.6	struktur besar. Mencapai
awal tinggi			人		Þ			kekuatan awal yang tinggi pada
Tipe IV, Panas hidrasi rendah	30	46	5	/13	2.9	0.3	2.7	umur 3 hari Dipakai pada bendungan
Tipe V, Tahan sulfat	43	36	4	12	2.7	0.4	1.6	beton Dipakai pada
					ARTERIAL PARTICIPATION OF THE PERTURNING PROPERTY.			saluran yang diekspos terhadap sulfat.

Sumber: Nawy. 1985:11

Dalam penelitian ini dipakai semen Portland tipe I merk Gresik. Semen tipe ini dapat dikatakan yang paling banyak dimanfaatkan untuk bangunan dan tidak membutuhkan persyaratan khusus.

2.2.2. Air

Air merupakan bahan yang penting dalam pembuatan beton, karena air diperlukan untuk bereaksi dengan semen. Selain itu air berguna untuk menjadi bahan pelumas antara butir-butir agregat agar dapat mudah dikerjakan. Karena pasta semen merupakan hasil reaksi kimia antara semen dan air, maka bukan perbandingan jumlah air terhadap berat total campuran yang penting, tetapi justru perbandingan air dengan semen atau yang biasa disebut Faktor Air Semen (water cement ratio). Air yang berlebihan akan menyebabkan banyaknya gelembung air setelah proses hidrasi selesai, sedangkan air yang terlalu sedikit akan menyebabkan proses hidrasi tidak tercapai sehuruhnya, sehingga akan mempengaruhi kekuatan beton. (Tri Mulyono. 2003:51).

Air untuk pembuatan dan perawatan beton tidak boleh mengandung minyak, asam, alkali, garam-garaman, bahan-bahan organis, atau bahan-bahan lain yang merusakkan beton atau baja tulangan. Air yang dapat diminum umumnya dapat digunakan sebagai campuran beton. (Tri Mulyono. 2003:51).

Dalam pemakaian air untuk beton ini sebaiknya memenuhi syarat sebagai berikut: (Kardiyono Tjokrodimulyo.1992).

- 1. Tidak mngandung lumpur (benda melayang lainnya) lebih dari 2 gram/liter.
- 2. Tidak mengandung garam-garam yang dapat merusak beton (asam, zat organik, dan lainnya) lebih dari 15 gram/liter.
- 3. Tidak mengandung klorida (Cl) lebih dari 0.5 gram/liter.
- 4. Tidak mengandung senyawa sulfat lebih dari 1 gram/liter.

2.2.3. Agregat

Agregat ialah butiran partikel mineral yang digunakan bersama-sama semen untuk membentuk beton. Karena menempati kurang lebih 70% volume beton, maka pemilihan agregat sangat penting dalam pembuatan beton.

Menurut ukurannya, agregat dapat dibedakan menjadi 2, yaitu agregat halus dan agregat kasar, sebagaimana penjelasan berikut ini.

1. Agregat halus

Agregat yang berukuran lebih kecil dari 4,8 mm, sering disebut sebagai pasir, baik berupa pasir alami yang diperoleh dari sungai atau tanah galian, atau dari hasil pemecahan batu.

2. Agregat kasar

Agregat yang berukuran lebih dari 4,8 mm, sering disebut kerikil, batu pecah atau split. Menurut sumber asal batuan, agregat dapat dibedakan menjadi 2, yaitu agregat alami dan agregat buatan, sebagaimana penjelasan berikut ini.

1. Agregat alami

Agregat alami diperoleh dari sumber daya alam yang telah mengalami pengecilan baik secara alami atau dengan mesin pemecah batu. Batu bentonit termasuk agregat alami yang didapat dari penambang dialam dan dipecah dalam ukuran tertentu.

Agregat halus alami dibedakan menjadi 3 macam meliputi sebagai berikut ini :

- a. Pasir galian, diperoleh dari permukaan tanah atau dengan cara menggali sampai kedalaman tertentu. Pasir ini bertekstur tajam, bersudut, berpori, bebas kandungan garam, tetapi biasanya kotor oleh tanah.
- b. Pasir sungai, diperoleh dari dasar sungai, berbentuk bulat dan berbutir halus.
- c. Pasir laut, diperoleh dari pantai, biasanya butirannya halus dan bulat. Pasir ini banyak mengandung garam yang akan menyerap air.

2. Agregat buatan

Agregat buatan biasanya dibuat dari pecahan bata/genteng atau kerak tanur tinggi (blast furnace slag).

Sifat-sifat agregat sangat berpengasruh terhadap mutu campuran beton. Untuk menghasilkan kekuatan beton seperti yang diinginkan, sifat-sifat ini harus diketahui dan dipelajari agar kita dapat mengambil tindakan positif dalam memgatasi masalah-masalah yang akan timbul. (*Tri Mulyono*, 2003:88).

Agregat yang digunakan di Indonesia haris memenuhi standar SII.0052-80, "Mutu dan Cara Uji Agregat Beton" dan dalam hal-hal yang tidak termuat dalam SII.0052-80 maka agregat tersebut harus memenuhi syarat dan ketentuan yang ditentukan oleh ASTM C-33-82, "Standard Specification for Concret Aggregates". (Ulasar PB, 1989:14).

Beberapa sifat agregat ynag berpengaruh terhadap kekuatan beton antara lain:

1. Serapan Air

Serapan air dihitung dari banyaknya air yang mampu diserap oleh agregat pada kondisi jenuh permukaan (JPK) atau saturated surface dry (SSD).

2. Kadar Air

Kadar air adalah banyaknya air yang terkandung dalam suatu agregat. Kadar air dapat dibedakan menjadi empat:

- (1) Kadar air kering tungku
- (2) Kadar air kering udara
- (3) Jenuh Kering Permukaan (JPK)
- (4) Kondisi basah

3. Berat Jenis dan Daya Serap Agregat

Berat jenis agregat digunakan untuk menentukan volume beton yang diisi oleh agregat. Hubungan antara berat jenis dengan daya serap adalah jika semakin tinggi nilai berat jenis agreagt maka semakin kecil daya serap air agregat tersebut.(*Tri Mulyono*, 2003:90).

4. Gradasi Agregat

Gradasi agregat adalah distribusi dari ukuran agregat. Distribusi ini bervariasi dapat dibedakan menjadi tiga yaitu gradasi sela (gap grade), gradasi menerus (continos grade) dan gradasi seragam (uniform garde).

5. Modulus Halus Butir

Modulus halus butir (finnes modulus) atau biasa disingkat MHB ialah indek yang dipaaki untuk mengukur kehalusan atau kaksaran butir-

butir agregat. Makin besar nilai MHB suatu agregat berarti semakin besar butiran agregatnya. Umumnya agregat hahis mempunyai MHB sekitar 1,50-3,8 dan kerikil mempunyai nilai MHB 5-8.(*Tri Mulyono*,2003:90).

2.2.4. Superplasticizer

Superplasticizer adalah bahan tambah kimia (chemical admixture) yang mempunyai pengaruh dalam menungkatkan workabilitas beton sampai pada tingkat yang cukup besar. Alternatif lain, bahan ini dapat meningkatkan kekuatan beton karena memungkinkan pengurangan kadar air guna mempertahankan workabilitas yang sama. (L.J Murdock dan K.M Brook, 1999).

Dalam penelitian ini digunakan bahan tambah jenis Superplasticizer merk SIKAMENT-NN yang diproduksi oleh PT. Sika Nusantara Pratama. Dalam Eko Yuwono,1997 Sika Nusa Pratama menerangkan bahwa biasanya bahan dasar dari produk ini adalah modifikasi garam-garam lignosulfanate dan berisi pulla kalsium klorida. Garam-garam lignosulfanate bekerja pada permukaan dan memaksa proses deflocurasi dari semen.

Secara umum, partikel semen dalam air cenderung untuk berkohesi antara satu sama lain dan partikel semen akan menggumpal. Dengan menambah superlasticizer, partikel semen ini akan saling melepaskan diri dan terdispresi, selain itu superlasticizer juga mempunyai beberapa keistimewaan antara lain:

- 1. Menghasilkan beton yang mengalir tanpa terjadinya pemisahan yang tidak diinginkan antara agregat dengan pasta semen.
- 2. Dapat meningkatkan kekuatan beton dengan pengurangan kadar air.
- 3. Meningkatkan workability
- 4. Sedikit masalah terhadap sifat retardasi. Adanya retardasi terhadap dispersing agent adalah hal yang tidak diinginkan karena hal itu berarti panjangnya waktu untuk menunggu campuran beton untuk mencapai pengerasan.
- 5. Tidak adanya udara yang masuk.

Penambahan 1% udara kesalam campuran beton dapat menyeabkan pengurangan sirenght rata-rata 6 %. Untuk memperoleh kekuatan yang tinggi, diharapkan daat menjaga air content didalam beton serendah mungkin. Dengan menggunakan superplasticizer memungkinkan sedikit bahkan tidak ada udara yang masuk kedalam.

Karena mempunyai sifat yang "mengalir" kepada beton ini berguna untuk percetakan beton ditempat-tempat yang sulit, seperti tempat yang terdapat penulangan padat. (L.J Murdock dan K.M Brook, 1999).

Karena pengaruh dari workabilitas yang tinggi berakhir hanya sekitar 30 sampai 60 menit, tergantung pada suhu, setelah penambahan superplasticizer pada beton, maka perlu agar beton dicetak tanpa suatu penundaan wakt.u. kontrol dari dosis juga penting karena kelebihan dosis akan menjadikan beton terlalu encer sehingga terjadi pemisahan butir terlhu banyak. Penggunaan superplasticizer membutuhkan tingkatan kontrol yang sangat tinggi terhadap penakaran bahan beton, terutama airnya, karena bila superplasticizer ditambahkan pada saat workabilitas yang tidak tepat, maka aliran yang berlebihan dan segradasi (pemisahan butir) akan terjadi. (L.J Murdock dan K.M Brook, 1999).

2.3. Faktor Air Semen (fas)

Secara umum diketahui bahwa semakin tinggi nilai fas, semakin rendah mutu kekuatan beton. Namun demikian, nilai fas yang semakin rendah tidak selalu berarti bahwa kekuatan beton semakin tinggi. Ada batas-batas dalam hal ini. Nilai fas yang rendah akan menyebabkan kesulitan dalam pengerjaan, yaitu kesulitan dalam pelaksanaan pemadatan yang pada akhirnya akan menyebabkan mutu beton menurun.. (*Tri Mulyono, 2003*).

Kenaikan faktor air-semen mempunyai pengaruh sebaliknya terhadap sifat-sifat beton, sperti permeabilitas (sifat kedap air), ketahanan terhadap gaya frost (pembekuan pada musim dingin) dan pengaruh cuaca, ketahanan terhadap abrasi, kekuatan tarik, rayapan, modulus rupture robek, dan penyusutan. (L.J. Murdock dan K.M. Brook, 1999).

Dapat disimpulakn bahwa hampir untuk semua tujuan, beton yang mempunyai fas minimal dan cukup untuk memberikan workabilitas tertetu yang dibutuhkan untuk pemedatan yang sempurna tanpa pekerjaan pemadatan yang berlebihan, merupakan beton yang terbaik.

2.4. Slump

Slump merupakan parameter yang dignakan untuk mengetahui tingkat kelecekan suatu adukan beton, hal ini berkaitan dengan tingkat kemudahan pengerjaan (workability). Makin tingi nilai slump berarti semakin cair adukan beton tersebut, sehingga adukan beton semakin mudah dikerjakan. Nilai slump lebih ditentuka oleh jumlah air dalam adukan, sehingga variasi hanya terjadi pada jumalh semen dan agregat saja, bila nilai slump sama akan tetapi nilai fas-nya berubah maka beton akan mempunyai kekuatan yang lebih tinggi. (Kardiyono Tjokrodimulyo.1992).

2.5. Workabilitas

Istilah workabilitas sulit untuk didefinisikan denagn tepat, dan Newman mangusulkan agar didefinisikan pada sekurang-kurangnya tiga buah butir yang terpisah (L.J Murdock dan K.M Brook, 1999).

- 1. Kompakbilitas, atau keudahan diman beton dapat dipadatkan dan rongga-rongga udara diambil.
- Mobilitas, atau kemudahan diman beton dapat mengalir kedalam cetakan disekitar baja dan dituang kembali.
- Stabilitas, atau kemampuan beton untuk tetap sebagai massa yang homogen; kohern dan stabil selama dikerjakan dan digetarkan tanpa terjadi gregasi/pemisahan butiran dari bahan-bahan utamanya.

2.6. Ketentuan Pembuatan Benda Uji menurut SK.SNI M-14-1989-F

Ketentuan menurut SK.SNI M-14-1989-F merupakan penyempurnaan dari ketentuan PBI 1971. Ketentuan menurut SK.SNI M-14-1989-F yang digunakan sebagai acuan dalam penelitian ini antara lain :

 Benda uji standar berupa silinder berdiameter 150 mm dan tnggi 300 mm. Benda uji selain silinder sebagai alternative yang memberikan kuat tekan yang berbeda dibutuhkan faktor konversi seperti pada tabel 3.2 berikut ini:

Tabel 3.2 Angka Konversi Benda Uji Beton

Benda Uji	Faktor Konversi
Silinder 150 x 300 mm	1.00
Kubus 150 x 150 mm	0.80
Kubus 150 x 150 mm	0.83

2. Hasil pemeiksaan diambil nilai rata-rata dari minimal 2 buah benda uji.

2.1. Perencanaan Campuran Beton

Dalam penelitian kali ini kami menggunakan metode "the British Mix Design Methode" atau lebih dikenal di Indonesia dengan cara DOE (Departement of Environment). Adapun langkah-langkahnya sebagai berikut:

a. Menetapkan kuat tekan betn yang disyaratkan pada 28 hari (f c).

Kuat tekan beton ditetapkan sesuai dengan persyaratan perencanaan strukturnya dan kondisi setempat dilapangan. Kuat beton yang disyaratkan adalah kuat tekan beton dengan kemungkianan lebih rendah hanya 5 % saja dari nilai tersebut.

b. Menetapkan nilai standar deviasi (sd)

Standar deviasi ditetapkan berdasarkan tingkat mutu pengendalian pelaksaanaan pencampuran, makin baik mutu pelksanaan makin kecil nilai deviasi standar.

1) Jika pelaksana tidak mempunyai data pengalaman atau mepunyai pengalaman kurang dari 15 buah benda uji, maka nilai deviasi standar diambil dari tingkat pengendalian mutu pekerjaan seperti tabel 3.3 dibawah ini.

Tabel 3.3 Tingkat pengendalian pekerjaan

Tingkat Pengendalian Mutu Pekerjaan	Sd (Mpa)
Memuaskan	2,8
Sangat Baik	3,5
Baik	4,2
Cukup	5,6
Jelek	7,0
Tanpa Kendali	8,4

(Sumber: Triono Budi Astanto, 2001)

2) Jika pelaksana mempunyai data pengalaman pembuatan beton serupa minimal 30 buah silinder yang diuji kuat tekan rata – ratanya pada umur 28 hari, maka jumlah data dikoreksi terhadap nilai deviasi standar dengan suatu faktor pengali (tabel 3.4)

Tabel 3.4 Faktor Pengendali Deviasi Standar

Jumlah Data	30,00	25,00	20,00	15,00	<15
Faktor Pengali	1,0	1,03	1,08	1,16	Tidak Boleh

(Sumber: Triono Budi Astanto, 2001)

c. Menghitung niali tambah margin (M)

$$M = K.Sd (3.1)$$

Keterangan:

M= nilai tambah

K = 1,64

Sd = standar deviasi

Rumus diatas berlaku jika pelaksana mempunyai pengalaman pembuatan beton yang diuji kuat tekannya pada umur 28 hari. Jika tidak mempunyai data pengalaman pembuatan beton atau mempunyai pengalaman kurang dari 15 benda uji, nilai M langsung diambil 12 Mpa.

d. Menetapkan kuat tekan rata-rata yang direncanakan.

Rumusnya: $\mathbf{f}' \mathbf{cr} = \mathbf{f}' \mathbf{c} + \mathbf{M}$ (3.2)

Keterangan: f'cr = kuat tekan rata - rata

f c = kuat tekan yang disyaratkan

M = nilai tambah

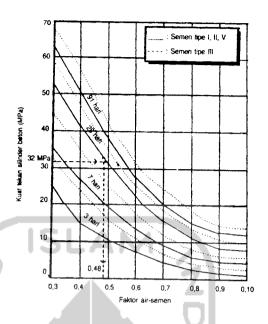
e. Menetapkan jenis semen

Sesuai dengan tujuan pemakaiannya, semen portland di Indonesia dibagi menjadi 5 jenis.

- 1). Jenis I, yaitu jenis semen biasa yang cepat mengeras.
- 2). Jenis II, yaitu jenis semen yang taham terhadap sulfat dan panas hidrasi sedang.

- 3). Jenis III, yaitu jenis semen untuk struktur yang meuntut kekuatan yang tinggi atau cepat mengeras,
- 4). Jenis IV, yaitu jenis semen untuk struktur yang meuntut panas hidrasi rendah,
- 5). Jenis V, yaitu jenis semen yang sangat tahan terhadap sulfat.

f. Menetapkan jenis agregat (pasir dan kerikil)


Munurut SK-SNI-T-15-1990-03 kekasaran, pasir dapat dibagi menjadi empat kelompok menurut generasinya yaitu pasir halus, agak halus, agakkasar, dan kasar. Adapun jenis agregat kasar (kerikil) dibedakan memjadi dua yaitu kerikil alami dan kerikil batu pecah.

Agregat yang baik butirannya tajam, kuat, bersudut dan tidak mengandung tanah atau kotoran lain lewat ayakan 0,075 mn yaitu \leq 5 % bagi pembuatan beton sampai 10 Mpa, dan untuk diatas 10 Mpa atau mutu yang lebih tinggi yang tidak mengandung zat organic, kotoran lewat ayakan \leq 2.5 %, terjadi variasi butir atau gradasi tidak kekal, tidak hancur,dan tingkat reaktif yang negatif terhadap alkali. Agregat kasar butir yang pipih dan panjang harus kurang dari 20% berat.

g. Menetapkan faktor air semen.

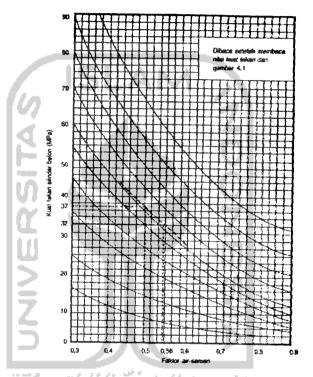
Cara memnetapkan faktor air semen diperoleh dari nilai terendah ketiga cara.

Cara pertama:

Gambar 3.1 Grafik Faktor air semen

Misal kuat tekan silinder (f'cr = 32 MPa) dan pada saat umur beton 28 hari. Jenis semen tipe I atau garis utuh. Caranya tarik garis lurus dan memotong 28 hari didapatkan faktor air semen (gambar 3.1)

Cara kedua :


Diketahui jenis semen I, jenis agregat kasar batu pecah, kuat tekan rataratanya pada umur 28 hari, maka gunakan tabel 3.5 Nilai kuat tekan beton.

Tabel 3.5 Nilai Kuat Tekan Beton

Jenis Semen	Jenis Agregat kasar (kerikil)		Beton		
· · · · · · · · · · · · · · · · · · ·		3	7	28	91
I, II, V	Alami	17	23	33	40
	Batu Pecah	19	27	37	45
Ш	Alami	21	28	38	44
	Batu Pecah	25	33	44	48

(Sumber: Triono Budi Astanto, 2001)

Dari tabel diatas diperoleh nilai kuat tekan = 37 MPa, yaitu jenis semen I, kerikil batu pecah dan umur beton 28 hari. Kemudian, dengan faktor air semen 0.5 dan f cr = 37 MPa, digunakan grafik penentuan faktor air semen dibawah ini. Caranya, tarik garis ke kanan mendatar 37, tarik garis ke atas 0,5 dan berpotongan dengan titik A. Buat garis putus-putus dimulai dai titik A ke atas dan kebawah melengkung seperti garis yang diatas dan dibawahnya.

Gambar 3.2 Grafik Mencari faktor air semen.

Cara ketiga:

Dengan melihat persyaratan untuk berbagai pembetonan dan melengkung khusus, beton yang berhubungan dengan air tanah mengandung sulfat dan untuk beton bertulang terendanm air. Dengan cara ini diperoleh:

1) Untuk pembetonan didalam ruang bangunan dan keadaan keliling non korosif = 0,06

- 2) Untuk beton yang berhubungan dengan air tanah , dengan jenis semen tipe I tanpa pozzolan untuk tanah mengandung SO_3 antara 0.3-1.2 maka FAS yang diperoleh = 0.50
- 3) Untuk beton bertulang dalam air tawar dan tipe semen I yaitu faktor air semennya = 0.50

Dari ketiga cara diatas ambil nilai faktor air semen (FAS) yang terendah.

h. Menetapkan faktor air semen maksimum.

Cara ini didapat dari ketiga cara diatas ambil faktor air semen yang terrendah.

i. Menetapkan nilai slump.

Nilai slump daidapat dari pemakaian beton, hal ini dapat diketahui dari tabel berikut

Tabel 3.6 Penetapan Nilai Slump

Pemakaian Beton	Maksimal	Minimal
Dinding, pelat pondasi dan pondasi telapak bertulang	12.5	5.0
Pondasi telapak bertulang koison, struktur dibawah	9.0	2.5
tanah Pelat, balok, kolom dan dinding	15.0	7.5
Pengerasan jalan	7.5	5.0
Pembetonan Massal	7.5	2.5

(Sumber: Triono Budi Astanto, 2001)

Menetapkan ukuran besar butir agregat maksimum (kerikil).

Untuk penetapan butir maksimum dapat menggunakan diameter maksimum 40 mm, 30 mm, 20 mm, dan 10 mm.

k. Menetapkan jumlah kebutuhan air.

Untuk memnetapkan kebutuhan air per meter kubik beton digunakan tabel dibawah ini dan dilanjutkan dengan perhitungan :

Tabel 3.7 Kebutuhan Air Per meter Kubik Beton

Besar ukuran	Jenis Batuan		Slump (mm)		
maks kerikil (mm)		0-10	10-30	30-60	60-180
10	Alami	150	180	205	225
	Batu Pecah	180	205	230	250
20	Alami	135	160	180	195
	Batu Pecah	170	190	210	225
40	Alami	115	140	160	175
	Batu Pecah	155	175	190	205

(Sumber: Triono Budi Astanto, 2001)

Dalam tabel diatas, bila agregat halus dan agregat kasar yang dipakai memiliki jenis yang berbeda (Alami dan pecahan), maka jumlah air yang diperbaiki dengan rumus :

$$A = 0.67A_h + 0.33 A_k \tag{3.3}$$

Dengan:

A = jumlah air yang dibutuhkan,liter/m³

A_b = jumlah air yang dibutuhkan menurut jenis agregat halusnya

A_k = jumlah air yang dibutuhkan menurut jenis agregat kasarnya

Menetapkan kebutuhan semen.

Berat semen per meter kubik dihitung dengan:

<u>Jumlah air yang dibutuhkan</u> Faktor air semen maksimal

m. Menetapkan kebutuhan semen minimum.

Kebutuhan semen minimum ditetapkan berdasarkan tabel dibawah ini :

Tabel 3.8 Kebutuhan Semen Minimum

Jenis Pembetonan	
Beton di dalam ruang bangunan :	1
Keadaan keliling non korosif	275
2. Keadaan keliling korosif, disebabkan oleh kondensasi atau	
uap korosif	
Beton di luar ruang bangunan	
 Tidak terlindung dari hujan dan terik matahari 	325
2. Terlindung dari hujan dan terik matahari langsung	275
Beton yang masuk ke dalam tanah:	
 Mengalami keadaan basah dan kering berganti-ganti 	325
2. Mendapat pengaruh sulfat berkali-kali	
Sumber: Triono Pulli Assession 2001	9

(Sumber: Triono Budi Astanto, 2001)

n. Menetapkan kebutuhan semen yang sesuai.

Untuk menetapkan kebutuhan semen , lihat langkah 1 dan langkah m, (kebutuhan semen dan kebutuhan semen minimumnya), maka yang dipakai harga terbesar diantara keduanya.

o. Penyesuaian jumlah air semen atau faktor air semen.

Jika jumlah semen pada langkah m dan langkah n berubah, maka faktor air semen berubah yang ditetapkan dengan :

- Jika akan menurunkan faktor air semen , maka faktor air semen dihitung lagi dengan cara jumlah air dibagi dengan jumlah semen minimum.
- 2) Jika akan menaikan jumlah air lakukan dengan cara jumlah semen minimum dikalikan faktor air semen.

p. Menentukan golongan pasir.

Golongan pasir ditentukan dengan cara menghitung hasil ayakan hingga dapat ditemukan golongannya.

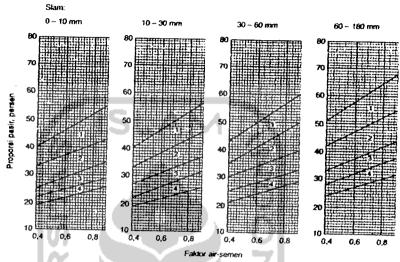
Dalam SK-SNI-T-15-1990-03 kekasaran pasir dibagi menjadi 4 daerah yaitu :

Daerah I : pasir kasar

Daerah II : pasir agak kasar

Daerah III : pasir agak halus

Daerah IV: pasir halus


Tabel 3.9 Gradasi Pasir

Lubang ayakan (mm)	Pe ا	rsen berat butir	yang lewat aya	kan	
-y-min (min)	Daerah II Daerah II		Daerah III	Daerah IV	
10	100	100	100	100	
48	90-100	90-100	90-100	95-100	
2,4	60-95	75-100	85-100	95-100	
1,2	30-70	55-90	75-100	90-100	
0,5	15-34	35-59	60-79	80-100	
0,3	5-20	8-30	12-40	15-50	
0,15	0-10	0-10	0-10	0-15	

(Sumber: Triono Budi Astanto, 2001)

q. Menentukan perbandingan pasir dan kerikil.

Untuk menentukan perbandingan pasir dengan kerikil dicari dengan bantuan grafik dibawah ini. Dengan melihat nilai slump yang diinginkan, ukuran butir maksimum, zona pasir, dan faktor air semen.

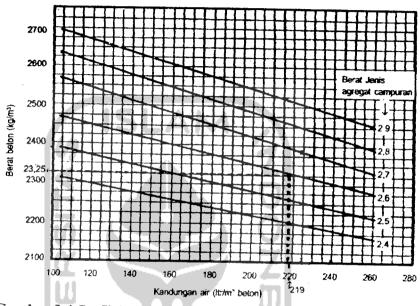
Gambar 3.3 Grafik presentase agregat halus terhadap agregat keseluruhan untuk ukuran butir maksimum 20 mm

r. Menentukan berat jenis campuran pasir dan kerikil.

- Jika tidak ada data, maka agregat alami (pasir) diambil 2.7 dan untuk kerikil (pecahan) diambil 2,7.
- Jika mempunyai data dihitung dengan rumus ;

Bj campuran =
$$\frac{P}{100}$$
 x Bj pasir + $\frac{K}{100}$ x Bj kerikil (3.4)

Diketahui:


Bj campuran = berat jenis campuran

P = persentase pasir tehadap agregat campuran

K = persentase kerikil terhadap agregat campuran.

s. Menentukan berat beton.

Untuk mementukan berat beton digunakan data berat jenis campuran . dan kebutuhan air tiap meter kubik, setelah ada data, kemudian dimasukan kedalam grafik beton dibawah ini.

Gambar 3.4 Grafik hubungan kandungan air, berat jenis, agregat campuran dan berat beton.

Caranya, tentukan angka 219 dan tarik gairis keatas memotong garis berat jenis 2,6 dan tarik garis kekiri, dan temukan berat jenis betonnya 2325 kg/m³.

t. Menentukan kebutuhan pasir dan kerikil.

Berat pasir + berat kerikil = berat beton - kebutuhan air - kebutuhan semen

u. Menentukan kebutuhan pasir.

Kebutuhan pasir = kebutuhan pasir dan kerikil x persentase berat pasir

v. Menentukan kebutuhan kerikil.

Kebutuhan kerikil = kebutuhan pasir dan kerikil - kebutuhan pasir.

2.2. Menghitung Kuat Desak

Kuat desak adalah besarnya beban tiap satuan luas. Pengujian kuat desak beton (f'c) pada umur 28 hari sesuai SK SNI T-1991-03 dengan kekuatan rencana f'c = 20 MPa.

$$fb = \frac{P}{A}(MPa) \tag{3.5}$$

fb = Kuat desak dari masing-masing benda uji (MPa)

P = Beban tekan maksimum (N)

A = Luas bidang desak benda uji (mm²)

2.3. Tegangan Regangan

Setiap bahan akan megalami perubahan bentuk apabila mendapat beban dan apabila perubahan bentuk terjadi maka gaya internal didalam bahan tersebut akan menahannya, dan gaya internal tersebut disebut tegangan. Bila suatu bahan mengalami tegangan, maka itu akan mengalami perubahan bentuk yang dikenal sebagai regangan (MJ. Smith, 1985). Apabila hubungan tegangan regangan dibuat suatu grafik, maka akan memperlihatkan kurva lengkung. Pada bagian pertama kurva ini untuk tujuan paraktis akan dianggap linier menurut Edward G Nawy kuva dianggap linier sampai sekitar 40% dari fc beton. Kemiringan suatu garis yang menghubungkan titik pusat dengan suatu harga tegangan sekitar 40% dari fc disebut modulus elastis sekan dari beton. Harga ini pada perhitungan desain disebut modulus elastis: modulus ini memenuhi asumsi praktis bahwa regangan yang terjadi selama pembebanan pada dasarnya dapat dianggap elastis, dan pada regangan lainnya akibat beban dipandang sebagai rangkak. (Edward G Nawy,1990).

Modulus Elastis (Ec) =
$$\frac{\sigma}{\varepsilon}$$
 (3.6)

Keterangan:

 σ = Tegangan pada 40 % kuat tekan uji (kg/cm²) (0,4 kuat desak beton)

 $\varepsilon = \text{regangan yang dihasilkan dari tegangan}$

SK SNI 03-XXX-2002 menetapkan nilai dari modulus Ec, ini sebagai nilai variabel yang tergantung dari mutu beton dan dirumuskan sebagai berikut :

$$Ec = 4700 \sqrt{f'c} \text{ (MPa)}$$
(3.7)

2.4. Hipotesis

Pengurangan kandungan air dan menambahkan dosis superplasticizer yang optimum ke dalam campuran beton normal akan meningkatkan kinerja beton normal ke tahap yang paling optimumnya, kinerja yang dimaksud adalah mencakup kinerja kelecakan beton segar, dan kekuatan beton keras.

 المحالات المالات الم

BAB IV METODOLOGI PENELITIAN

Pada bab ini berisikan tentang metode penelitian, material penyususun beton, model dan benda uji, peralatan penelitian, metode pelaksanaan penelitian, serta bagan alir penelitian.

4.1 Metode penelitian

Metode penelitian ini adalah suatu cara pelaksanaan penelitian dalam rangka mencari jawaban atas permasalahan penelitian yang diajukan dalam penulisan tugas akhir.

4.2 Persiapan Bahan dan Alat

4.2.1 Pengadaan Bahan

Mempersiapkan pengadaan bahan-bahan yang berkaitan dengan semua bahan yang digunakan dalam penelitian ini, yaitu:

- Semen, digunakan semen jenis Portland Cement tipe I dengan merk dagang Semen Gresik kemasan 50 kg. Pemilihan jenis ini dilakukan karena paling umum dipakai sebagai bahan campuran beton dan tidak memerlukan persyaratan khusus.
- 2. Agregat halus, digunakan pasir yang berasal dari Kaliurang Yogyakarta.
- Agregat kasar, digunakan batu pecah (split) dengan ukuran maksimum 20 mm berasal dari Celereng Kulonprogo
- 4. Superplasticizer yang digunakan adalah produksi PT. Sika Nusa Pratama dengan merk dagang Sikament NN.

4.2.2 Peralatan Penelitian

Dalam penelitian ini digunakan beberapa peralatan dan alat sebagai prasarana dalam mencapai maksud dan tujuan penelitian ini sebagai berikut.

- 1. Ayakan
- 2. Timbangan dan ember

- 3. Mistar
- 4. Mesin Pengaduk/mixer
- 5. Cetok dan tatakan baja
- 6. Kerucu Abrams dan penumbuk
- 7. Mesin uji desak

4.3 Pemeriksaan Material yang akan digunakan

4.3.1 Pemeriksaan Agregat Halus

Pemeriksaan agregat halus dalam penelitian ini antara lain :

1. Pemeriksaan Berat Jenis Agregat Halus

Urutan proses dalm pengujian ini adalah:

- 1. keringkan benda uji dalam oven suhu (±110° C), sampai berta tetap. Yang dimaksud berat tetap adlah keadaan berat benda uji selama 3 kali proses penimbangan dan pemanasan dalam oven dengan selang waktu 2 jam berturutturut tidak akan mengalami perubahan kadar air lebih besar daripada 0,1 %. kemudian setelah itu dinginkan pada suhu ruang lalu rendam dalam air selama ±24 jam,
- buang air perendam dengan hati-hati, jangan sampai ada butiran yang hilang, tebarkan agregat diatas talam, keringkan diudara panas dengan membalikbalikkan benda uji, lakukan pengeringan sampai tercapai keadaan kering permukaan jenuh,
- periksa keadaan kering permukaan jenuh dengan mengisikan benda uji kedalam kerucut terpancung, padatkan dengan cara menumbuk sebanyak 25 kali, angakat kerucut terpancung, keadaan kering permukaan jenuh tercapai bila benda uji runtuh tetapi masih dalam keadaan tercetak,
- segera setelah tercapai keadaan kering permukaan jenuh masukkan 500 gram benda uji kedalam piknometer, masukkan air suling sampai mencapai 90% isi piknometer, putar sambil diguncang sampai tidak terlihat gelembung udara diadalamnya,
- 5. rendam piknometer dalam air dan ukur suhu air penyesuaian perhitungan kepada suhu standar 25°C,

- 6. tambahkan air sampai mencapai tanda batas,
- 7. timabang piknometer berisi air dan benda uji sampai ketelitian 0,1 gram (Bt),
- 8. tentukan berat piknometer berisi air penuh dan ukur suhu air guna penyesuaian dengan suhu standar 25°C (B),
- 9. rumus berat jenis kering permukaan jenuh:

Berat Jenis (Bj) =
$$\frac{500}{(B+500-Bt)}$$
 (4.1)

Keterangan: B

B = berat piknometer berisi air, dalam gram

Bt = berat piknometer berisi benda uji dan air, dalam gram

500 = berat benda uji dalam keadaan kering pemukaan jenuh, dalam gram

2. Pemeriksaan Analisis Saringan Agregat Halus

Urutan proses dalam pengujian ini adalah sebagai :

- 1. benda uji dikeringkan dalam oven dengan suhu (±110° C), sampai berat tetap,
- saring benda uji lewat susunan asringan dengan ukuran saringan paling besar ditempatkan paling atas, kemudian saringan diguncang dengan tangan atau mesin pengguncang selam 15 menit.

3. Pemeriksaan Berat Volume Agregat Halus

Urutan pemeriksaan benda adalah sebagai berikut:

- 1. masukkan agregat halus kedalam silinder sebanyak 1/3 bagian dan ratakan,
- tumbuk dengan batang penumbuk sebanyak 25 kali yang terdistribusi merata keseluruh permukaan,
- masukkan agregat halus kedalam silinder sebanyak 2/3 bagian dan ratakan serta tumbuk sperti diatas,
- 4. masukkan agregat halus kedalam sampai penuh dan tumbuk kembali,
- 5. ratakn pemukaan agregat halus dengan jari tangan sehingga sebanding antara bagian yang menonjol dan bagian yang kosong dari atas silinder,
- 6. timbang silinder ukur berat isinya (W2),
- keluarkan agregat halus dari silinder,

8. timbang silinder (W1),

9. rumus berat volume

Berat Volume (Bv)
$$= \frac{W2 - W1}{V}$$
 (4.2)

Keterangan: W1 = be

= berat silinder, dalam gram

W2 = berat silinder + agregat halus, dalam gram

V = volume silinder, dalam cm³

4. Pemeriksaan Kadar Lumpur Butiran yang Lewat Ayakan no. 200

Urutan proses dalam pengujian ini adalah sebagai berikut:

- keringkan agregat halus sampai berat tetap dalam oven pada suhu (±110° C), dan timbang dengan ketelitian 0,1 gram (W1),
- 2. letakkan agregat halus dalam ayakan dan alirkan air diatasnya,
- 3. gerakkan agregat halus dengan air deras secukupnya sehingga bagian yang halus menembus ayakan 75 mm (no. 200) dan bagian yang kasar tertinggal diatas ayakan,
- 4. ulangi pekerjaan diatas hingga air pencuci menjadi jernih,
- keringkan agregat halus yang telah dicuci tersebut dalam oven samapi berat tetap dalam oven pada suhu (±110° C), dan timbang dengan ketelitian sampai 0,1 gram (W2),
- 6. rumus kadar lumpur:

$$Kadar lumpur = \frac{W1 - W2}{W1} \times 100\%$$
 (4.3)

Keternangan:

W1 = berat agregat awal, dalam gram

W2 = berat agregat setelah dicuci, dalam gram

4.3.2 Pemeriksaan Agregat Kasar

Pemeriksaan agregat kasar dalam penelitian ini antara lain:

1. Pemeriksaan Berat jenis Agregat Kasar

Urutan pelaksanaan penelitian ini adalah sebagai berikut:

- mengukur nilai slump dari adukan beton sampai didapatkan nilai slump yang diinginkan,
- kemudian beton dikeluarkan dari molen dan dimasukkan ke dalam cetakan silinder. Pengisian dilakukan dalam tiga tahap, masing-masin 1/3 dari tinggi cetakan. Setiap tahap ditusuk-tusuk dengan tongkat baja sebanyak 25 kali sampai beton memadat,
- 7. setelah beton padat, kemudian permukaannya diratakan
- 8. cetakan yang sudah diisikan beton dibiarkan selama 24 jam,
- setelah 24 jam cetakan dilepas dan benda uji direndam di dalam bak air dengan lama perendaman sesuai dengan lamanya umur beton rencana yang akan diuji.

4.6 Pengujian Kuat Desak Benda Uji

Pengujian kuat desak dilakukan sesuai dengan jadwal yang telah ditentukan. Tahapan pengujian dilakukan sebagai berikut:

- 1. Benda uji dikeluarkan dari rendaman satu hari sebelum pengujian
- 2. Menimbang berat benda uji
- 3. Mengukur dimensi benda uji
- 4. Benda uji diletakkan pada mesin desak
- Pembebanan dilakukan sampai benda uji pecah dan dicatat pembebanan maksimumnya.

30 cm

A A A

Gambar 3.1 Pengujian kuat tekan beton

4.7 Model dan Jumlah Benda Uji

Benda uji beton dalam penelitian ini berbentuk silinder dengan dimensi (Ø 15 cm x 30 cm) dengan variasi pengurangan air 0% hingga 30% dan penambahan superplasticizer.

Tabel 4.1. Jumlah sampel beton dengan variasi pengurangan air dan penambahan superplasticizer

Variasi Pangurangan		Uji tegangan-			
Pengurangan air	3 hari	7 hari	14 hari	28 hari	regangan 28 hari
0%	(3)	3	3 : 0	5	1
5%	3	3	3	5	1
10%	3	3	3	5	1
15%	3	3	3	5	1
20%	3	3	3	5	
25%	3	3	3.	5	1
30%	3	3	3	5	1
Σ	21	21	21	35	7

Catatan: Penambahan superplasticizer dilakukan dengan metode coba-coba himgga mencapai nilai slump lebih besar dari 150 mm

4.8 Pengolahan Data

Hasil dari pengujian berupa data-data kasar yang masih perlu diolah lebih lanjut untuk mengetahui hubungan antara satu pengujian dengan pengujian yang lain. Hasil pengujian yang dilakukan nantinya akan mengahasilkan pengaruh perawatandan penambahan superplasticizer pada mutu beton.

4.8.1 Kuat Tekan

Kuat desak adalah besarnya beban persatuan luas, yang menyebabkan benda uji hancur bila dibebani dengan gaya tekan tertentu.

Perhitungan kekuatan desak dengan memakai rumus:

Kuat desak f c =
$$\frac{P}{A}$$
 (4.6)

$$\mathbf{f} \cdot \mathbf{cr} = \frac{\sum_{i}^{N} fc}{N}$$
 (4.7)

Keterangan:

P = beban maksimum (N)

A = luas penampang benda uji (mm²)

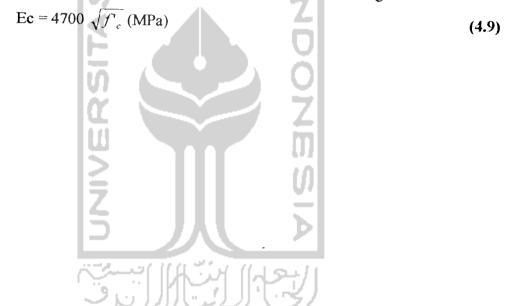
fc = kuat desak beton masing-masing benda uji (MPa)

f'cr= kuat desak beton rata-rata (MPa)

N = jumlah benda uji

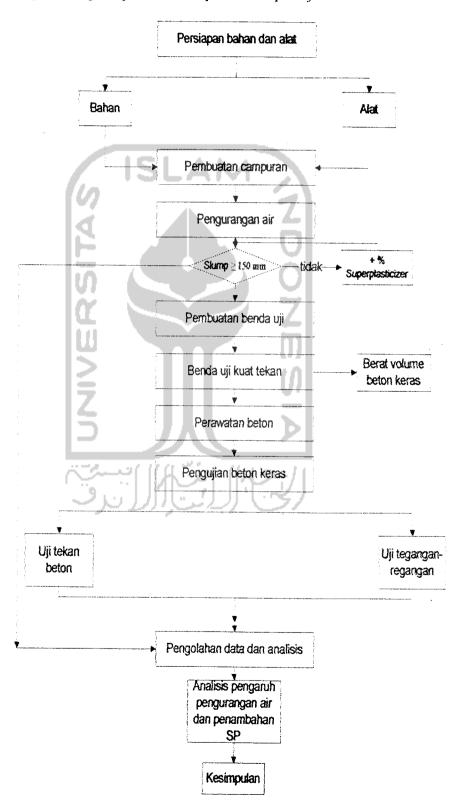
4.8.2 Modulus Elastis

Kemiringan suatu garis yang menghubungkan titik pusat dengan suatu harga tegangan sekitar 40% dari f'c disebut modulus elastis sekan dari beton. Harga ini pada perhitungan desain disebut *modulus elastis*: modulus ini memenuhi asumsi praktis bahwa regangan yang terjadi selama pembebanan pada dasarnya dapat dianggap elastis, dan pada regangan lainnya akibat beban dipandang sebagai rangkak.


Modulus Elastis (Ec) =
$$\frac{\sigma}{\varepsilon}$$
. (4.8)

Keterangan:

 σ = Tegangan pada 40 % kuat tekan uji (kg/cm²) (0,4 kuat desak beton)


ε = regangan yang dihasilkan dari tegangan

SK SNI 03-XXX-2002 menetapkan nilai dari modulus Ec, ini sebagai nilai variabel yang tergantung dari mutu beton dan dirumuskan sebagai berikut :

4.10. Langkah-langkah penelitian

Langkah-langkah penelitian dapat dilihat pada flow chart berikut ini :

BAB V HASIL PENELITIAN DAN PEMBAHASAN

5.1 Umum

Bab ini membicarakan hasil penelitian yang dilakukan dilaboratorium Bahan Konstruksi Teknik dan pembehasan mengenai hasil penelitian yang diperoleh. Hasil penelitian yang didapat meliputi : berat jenis agregat kasar dan halus, gradasi pasir, nilai slump serta hasil pengujian beton yaitu kuat tekan.

5.2 Hasil Uji Laboratorium

5.2.1 Data Awal Perencanaan

Dari pengujian awal laboratorium diperoleh data awal perencanaan.

Data awal perencanaan:

1. Kuat tekan rencana (f'c) = 20 MPa

2. Semen

Semen yang digunakan adalah Portland Cement (PC) dari Semen Gresik. Semen Portland adalah bahan konstruksi yang paling banyak digunakan dalam pekerjaan beton. Dalam penelitian ini dipakai semen portland tipe I karena semen tipe ini dapat dikatakan yang paling banyak dimanfaatkan untuk bangunan dan tidak membutuhkan persyaratan khusus. Menurut Edward G Nawy mengatakan bahwa semen tipe I normal dapat digunakan untuk semua tujuan.

3. Agregat

a. Kerikil

Kerikil menggunakan Batu Pecah dari Celereng Kulon Progo

Ukuran maksimal kerikil = 20 mm

Berat jenis kerikil = $2,544 \text{ gr/cm}^3$

Berat Volume rata-rata = 1.53 gram/cm^3

b. Pasir

Digunakan pasir yang berasal dari Cangkringan Kaliurang

Berat jenis pasir

 $= 2,621 \text{ gr/cm}^3$

Modulus halis butir

= 2,7345 %

Gradasi pasir

= daerah II (pasir agak kasar)

Berat jenis digunakan untuk menentukan volume yang akan diisi oleh agregat. Berat jenis dari agregat pada akhirnya akan menentukan bera jenis dari beton jadi secara tidak langsung menentukan banyaknya campuran agregat dalam campuran beton. Modulus halus butir (MHB) adalah suatu indeks yang dipakai untuk mengukur kekasaran atau kahalusan butir-butir agregat, dan diefinisika sebagi persen kumulatif dari butir agregat yang tertinggal dalam satu set ayakan. Makin besar nilai MHB suatu agregat berarti semakin besar butiran agregatnya. Umumnya untuk agregat halus mempunyai MHB sekitar 1,50-3,80%.

4. Superplasticizer

Superplasticizer digunakan merk Sikament NN produksi PT. Sika Nusa Pratama. Superplasticizer merk ini mempunyai berat volume 1,16-1,18 kg/ltr. Bahan ini berfungsi untuk mempertahankan workabilitas beton akibat dilakukannya pengurangan kandungan air dalam campuran beton. Pada penelitian ini penambahan superplasticizer dilakukan dengan coba-coba hingga mencapai nilai slump yang diinginkan.

5.2.2 Perencanaan Campuran (Mix Design)

Berdasar data awal perencanaan diatas maka perencanaan campuran dengan menggunakan metode DOE (*Department of Environment*) dapat diperoleh. Hasil perencanaan campuran adalah sebagai berikut:

Untuk setiap 1 m³ beton dibutuhkan:

a) Air

= 210 liter

b) Semen

= 375 kg

c) Pasir

= 635,4 kg

d) Kerikil

= 1129.6 kg

Langkah-langkah perhitungan perencanaan campuran secara lengkap dijelaskan pada Lampiran 2.

5.3 Pengaruh Pengurangan Air dan Penambahan Superplasticizer terhadap Workabilitas

Workabilitas merupakan salah satu kinerja beton segar dan dengan adanya workabilitas yang tinggi pada beton akan memudahkan pekerjaan pada saat penuangan beton kedalam cetakan. Pada saat penuangan dan pemadatan beton segar mudah dilaksanakan maka workabilitas beton tersebut tinggi.(Swamy 1989). Tingkat workabilitas beton ditunjukkan dengan besarnya nilai *slump*. Nilai *slump* menunjukkan seberapa besar runtuhnya adukan beton dari posisi awal sampai beton berhenti mengalir. Nilai *slump* yang tinggi menujukkan tingkat kelecakan beton tinggi dan bisa dikatakan bahwa tingkat workabilitas beton itu juga tinggi.

Penelitian ini bertujuan untuk meningkatkan kuat tekan beton normal dengan cara mengurangi kandungan airnya secara gradual mulai 5, 10, 15, 20, 25, 30%. Hal ini akan mengakibatkan tingkat kelecakan beton menjadi berkurang. Untuk dapat meningkatkan tingkat kelecakan beton maka perlu dilakukan penambahan *superplasticizer* dengan kadar tertentu. Pada penelitian ini beton dengan pengurangan kandungan air dan penambahan *superplasticizer* ditetapkan memiliki nilai *slump* lebih dari 150 mm.

Pada dasarnya cara kerja *superplasticizer* adalah dengan cara mengikat partikel semen sehingga tidak dapat melakukan proses hidrasi dengan air dalam jangka waktu tertentu. Hal ini mengakibatkan tidak adanya ikatan antar agregat pada campuran beton segar. Dan dapat dilihat dari perubahan fisik beton segar yang cenderung lebih lecak.

Tabel 5.1 Pengurangan air dengan penambahan superplasticizer dan nilai slump

Variasi Beton	Pengurangan Air (%)	Penambahan SP (%semen)	Slump Awal (cm)	Slump Akhir (cm)
B20-0%	0	0,3421	11,6	16,4
320-5%	5	0,5132	10,8	16,35
B20-10%	10	1,3684	9	15,75
B20-15%	15	1,8816	0	16,35
B20-20%	20	1,9500	0	18
B20-25%	25	2,0526	0	18
B20-30%	30	2,3947	0	17,65

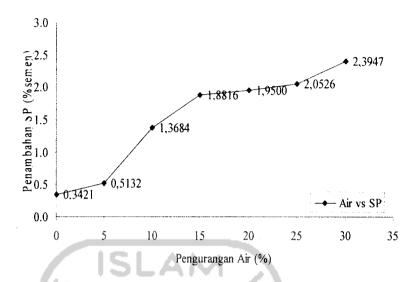
Keterangan

B20-0%

= beton dengan f'c 20 MPa dengan pengurangan air 0%

Slump Awal = slump sebelum penambahan superplasticizer

Slump Akhir= slump sesudah penambahan superplasticizer


Dari tabel 5.1 memperlihatkan akibat pengurangan air terjadi penurunan nilai *slump*, bahkan pada pengurangan air 15% hingga 30% terjadi kehilangan nilai *slump*. Hal ini terjadi karena kandungan air pada beton normal dikurangi. Air selain dibutuhkan dalam proses hidrasi oleh semen, air juga mempunyai fungsi untuk membentuk fisik beton segar dalam hal kelecakan. Dalam penelitian ini fungsi air sebagai pembentuk fisik beton segar tersebut dikurangi maka akan mengakibatkan kelecakan beton berkurang, yang dapat diketahui dengan turunnya nilai *slump*. Dengan *slump* rencana awal 60 mm, kemudian dilakukan pengurangan 15% air saja kelecakan beton berkurang secara drastis, nilai *slump* turun hingga mencapai angka 0 mm. Jadi jelaslah bahwa dengan dilakukan pengurangan air pada campuran beton maka maka tingkat workabilitas beton akan menurun yang dilihat lewat penurunan nilau *slump*.

Untuk tetap menjaga workabilitas beton maka beton tersebut perlu ditambahkan bahan tambah *superplasticizeer* yang berfungsi meningkatkan tingkat kelecakan beton. Dari tabel dapat dilihat nilai *slump* setelah penambahan *superplasticizeer* terjadi peningkatan. Pada pengerjaan pengadukan beton B20-0%, B20-5% dan beton B20-10% untuk mencapai nilai *slump* lebih besar dari 150 mm relatif lebih mudah, sedangkan pada pengerjaan beton B20-15%, B20-20%,

B20-25% dan beton B20-30% untuk mencapai slump lebih besar dari 150 mm relaif lebih sulit dicapai karena beton segar tersebut lebih kental karena dosis pengurangan air yang cukup tinggi. Hal ini terlihat dari nilai slump sebelum penambahan superplasticizer sangat rendah yakni sebesar 0 mm. Untuk mencapai slump yang ditetapkan lebih besar dari 150 mm maka perlu penambahan superplasticizer dengan dosis yang cukup tinggi pula. Semakin banyak dosis pengurangan kandungan air pada campuran maka semakin banyak pula dosis penambahan superplasticizer guna mencapai nilai slump yang ditetapkan. Jadi jelaslah bahwa dengan penggunaan superplasticizer pada beton dapat meningkatkan workabilitas beton melalui meningkatnya kelecakan beton.

Dari tabel 5.1 memperlihatkan nilai *slump* untuk seluruh variasi campuran adukan beton dengan pengurangan air dan penambahan *superplasticizer* yang dihasilkan lebih besar dari 150 mm. Hal ini sesuai yang diperoleh Swamy (1989), bahwa dengan penggunaan *superplasticizer* nilai *slump* yang didapat antara 150 – 250 mm, menurut Murdock dan Brook (1991) nilai *slump* yang diperoleh dengan penambahan *superplasticizer* antara 175 – 225 mm dan pada penelitian Ramachandran (1979) *superplasticizer* memberikan keuntungan dengan mendapatkan nilai *slump* lebih besar 200 mm dari nilai asli yang hanya sebesar 50 mm dengan dosis penambahan antara 0,3 - 0,6 % dari berat semen.

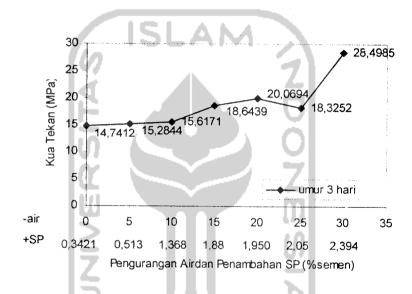
Swamy (1989) mengatakan bahwa dengan pemakaian superplasticizer akan meningkatkan workabilitas 12 %. Dalam kajian ini peningkatan kelecakan dari nilai slump awal sebelum dan sesudah dicampur superplasticizer meningkat sangat tinggi. Hal ini sebagaimana yang terjadi pada variasi beton B20-0% dengan kelecakan awal 11,6 mm meningkat menjadi 16,4 mm atau sekitar 42% tanpa terjadi segregasi dan bleeding, hanya dengan menambahkan superplasticizer 0,3421% dari berat semen (tabel 5.1). Bahkan terlihat dari variasi B20-15%, B20-20%, B20-25% dan B20-30% dengan pengurangan air sebesar 15%, 20%, 25%, 30% terlihat slump awal sebelum penambahan superplasticizer sebesar 0 mm kemudian ditambah superplasticizer workabilitasnya naik dengan peningkatan slump menjadi lebih besar dari 150 mm.

Gambar 5.1 Hubungan penambahan *superplasticizer* terhadap pengurangan kandungan air

Dari Gambar 5.1 terlihat dari variasi B20-15%, B20-20%, B20-25% dan B20-30% dengan pengurangan air sebesar 15%, 20%, 25%, 30% penambahan superplasticizer akan terus meningkat dari 1,88% hingga 2,385% terhadap berat semen. Dan terlihat pula penambahan superplasticizer meningkat tajam pada pengurangan air 5% hingga 30 %. Hal ini mungkin terjadi karena beton dengan slump rencana yang cukup rendah yakni sebesar 60 mm dengan dikurangi kandungan air sebesar 15% saja kelecakan beton menurun drastis, sehingga untuk dapat mencapai slump lebih besar dari 150 mm dan untuk meningkatkan kelecakan beton dibutuhkan superplasticizer dengan dosis yang tinggi pula. Semakin tinggi pengurangan air, maka semakin tinggi pula penambahan superplasticizer untuk menghasilkan slump 150 mm atau lebih(Hastoro, 2005). Hal ini terlihat jelas dari tabel 5.1 bahwa semakin tinggi pengurangan air, maka penambahan superplasticizer akan semakin tinggi untuk mencapai slump lebih besar dari 150 mm.

Untuk pengurangan air 30 %, nilai *slump* lebih dari 150 mm dapat dicapai tetapi adukan lebih kohesif dan kental. Sifat-sifat warkabilitasnyapun sedikit berbeda dibandingkan beton dengan pengurangan air yang lebih sedikit. Campuran ini terlihat berwarna agak kecoklatan yang menunjukkan campuran *superplasticizer* terlalu banyak. Walaupun demikian pada saat penuangan pada

cetakan sedikit mengalami hambatan karena campuran adukan beton cepat mengeras, hal ini dipengaruhi rendahnya kandungan air walaupun penambahan superplasticizer sudah cukup tinggi 2,3947 %. Dalam penambahan superplasticizer dilakukan sedikit demi sedikit, karena jika dilakukan langsung dalam jumlah banyak dapat mengakibatkan pengerasan beton dalam waktu yang relatif cepat. Hasil ini sesuai dengan pendapat Ramachandran (1979) yang mengatakan bahwa faktor yang mempengaruhi cepat mengerasnya adukan antara lain tipe dan jumlah penambahan superplasticizer, tipe dan jumlah kandungan semen, waktu penambahan superplasticizer, kelembaban dan temperatur udara, cara pengadukan, dan pemakaian bahan tambah lainnya.


5.4 Pengaruh Pengurangan Air dengan Kuat Tekan

Tujuan utama kajian ini adalah untuk meningkatkan kuat tekan lebih tinggi dari kuat tekan normal, yang dilakukan dengan cara mengurangi kandungan air, dengan asumsi semen yang tersedia mampu mencapai kuat tekan yang lebih tinggi. Dalam campuran beton sedikitnya dibutuhkan air sebanyak 25% dari berat semen dalam proses hidrasi dan selebihnya air dalam campuran beton berfungsi dalam proses pengerjaan beton. Disisi lain kelebihan jumlah air pada pasta semen akan menghasilkan beton dengan porositas tinggi pada beton sehingga mengakibatkan kekuatan rendah dan kurang adanya ikatan antara pasta semen dan agregat. Dengan asumsi ini maka kekuatan beton dapat ditingkatkan dengan cara pengurangan kandungan air pada beton. Pengurangan kandungan air ini maka perbandingan berat air dan semen (fas) akan menurun sehingga dimungkinkan kekuatan beton akan naik. Dengan turunnya nilai fas memungkinkan beton akan lebih rapat, porositas pada beton akan terkurangi sehingga kekuatan beton akan naik. Namun disisi lain dengan turunnya nilai fas pada beton mengakibatkan beton akan sulit dikerjakan, dengan kata lain tingkat workabilitas dan kelecakan beton akan turun. Chaiyasena (1992) menambahkan bahwa dengan pengurangan air berlebihan akan menghasilkan beton kering dengan kelecakan rendah. Untuk tetap mempertahankan kelecakan pada beton segar ditambahkan bahan tambah kimia berupa superplasticizer yang dapat meningkatkan workabilitas beton

tersebut. Hal ini akan terlihat dengan adanya peningkatan nilai slump setelah dilakukan penambahan superplasticizer.

1. Beton umur 3 hari

Pengaruh pengurangan air terhadap kuat tekan pada sampel beton umur 3 hari dapat dilihat pada Gambar 5.2. Data kuat tekan pada tabel menunjukkan kuat tekan rata-rata dari beberapa sampel beton, adapun untuk data lebih lengkap dapat dilihat pada Lampiran 3.

Gambar 5.2 Grafik hubungan kuat tekan terhadap pengurangan air dengan penambahan superplasticizer pada beton dengan fc 20 MPa umur 3 hari.

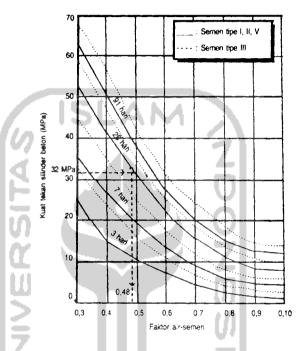

Tabel 5.2 Hubungan kuat tekan dan pengurangan dengan penambahan superplasticizer pada beton umur 3 hari

Sampel Beton	% Penguraangan Air	Superplasticizer (% semen)	Kuat Tekan (MPa)	% Peningkatan Kuat Tekan
B20-0%	0	0,3421	14,7412	0,0000
B20-5%	5	0,5132	15,2844	3,6849
B20-10%	10	1,3684	15,6171	5,9421
B20-15%	15	1,8816	18,6439	26,4749
B20-20%	20	1,9500	20,0694	36,1453
B20-25%	25	2,0526	18,3252	24,3134
B20-30%	30	2,3947	28,4985	93,3261

Dari data diatas terlihat bahwa kuat tekan cenderung meningkat seiring dengan semakin banyaknya pengurangan airnya. Pada variasi pengurangan air 0% - 10% yakni pada variasi beton B20-0%, B20-5% dan B20-10% peningkatan kuat tekan yang terjadi masih belum begitu terlihat secara signifikan. Peningkatan yang terjadi hanya sekitar 0 sampai 6% dari kuat tekan beton normal. Persentase peningkatan kuat tekan beton untuk variasi B20-5% adalah 3,6849% dan B20-10% adalah 5,9421%. Pada variasi pengurangan air 10% hingga 30%, peningkatan kuat tekan sudah mulai terlihat secara jelas. Untuk sampel beton peningkatan kuat tekan sebesar B20-15% adalah 26,4749%, B20-20% adalah 36,1453%, B20-25% adalah 24,3124% dan B20-30% adalah 93,3261% dari beton normal. Peningkatan kuat tekan pada sampel beton tersebut sebesar 20% lebih, bahkan pada sampel beton dengan pengurangan air 30% terjadi peningkatan sebesar 93,3261% dari beton normal. Hal ini mungkin terjadi karena pada pengurangan air 5%-10%, efek pengurangan air masih belum berpengaruh besar pada peningkatan kuat tekan karena pengurangan kandungan air masih dalam dosis yang cukup kecil. Namun pada pengurangan air 25% terjadi penurunan kuat tekan. Hal ini dimungkinkan terjadi karena kurang adanya kesesuaian antara penambahan superplasticizer dengan kondisi agregat saat itu. Agregat yang terlampau basah mengakibatkan kekuatan beton rendah. Peningkatan kuat tekan akibat pengurangan air mulai terlihat jelas pada pengurangan air dengan dosis yang tinggi yakni lebih besar dari 15% hingga 30%. Hal ini sesuai dengan Ramachandran (1979) bahwa penambahan superplasticizer dapat mengurangi kandungan air sampai 30%. Dengan demikian jelaslah bahwa kinerja beton normal dapat meningkat tinggi dengan mengurangi air dengan kombinasi menambahkan superplasticizer pada komposisi campuran beton normal dari metode DOE.

Pengurangan kadar air dalam air campuran beton akan mengakibatkan perbandingan air dan semen atau sering disebut faktor air semen (fas) juga akan berubah. Pada umumnya, faktor air-semen merupakan fungsi utama terhadap kuat tekan beton. Semakin rendah faktor air-semen, kuat tekan semakin tinggi atau

sebaliknya (Neville, 1995). Hasil penelitian tentang hubungan fas dan peningkatan kuat tekan dapat dilihat pada Gambar 5.3

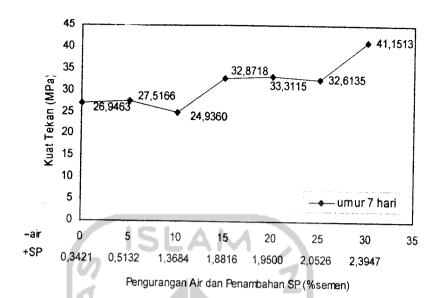

Gambar 5.3 Grafik hubungan peningkatan kuat tekan dan faktor air-semen dengan penambahan *superplasticizer* pada beton umur 3 hari

Tabel 5.3 Hubungan kuat tekan dan faktor air semen dengan penambahan superplasticizer pada beton umur 3 hari

Sampel Beton	Pengurangan air	faktor air semen	Superplasticizer (% semen)	Kuat tekan (MPa)
B20-0%	0	0,56	0,34	14,7412
B20-5%	5	0,53	0,51-	15.2844
B20-10%	== 10 (II (0,50	1,37	15,6171
B20-15%	15	0,48	1,88	18,6439
B20-20%	20	0,45	1,95	20,0694
B20-25%	25	0,42	2,05	18,3252
B20-30%	30	0,39	2,39	28,4985

Dari gambar dan tabel diatas dapat dilihat bahwa pengurangan jumlah air dalam campuran beton maka faktor air semen akan menurun. Kemudian akan berpengaruh pada peningkatan kuat tekan beton. Hal ini terjadi karena dengan pengurangan kadar air struktur beton akan diperbaiki karena beton lebih padat. Rongga-rongga antara semen dan air akan berkurang sehingga porositas beton juga berkurang dan kemudian akan berpengaruh pada peningkatan kuat tekan

beton. Hal ini sesuai dengan Neville (1995) bahwa kuat tekan beton akan meningkat apabila kandungan air pada campuran beton rendah. Semakin rendah faktor air-semen, kuat tekan semakin tinggi atau sebaliknya. Secara umum hubungan kuat tekan dan faktor air semen dapat dilihat dari Gambar 5.4



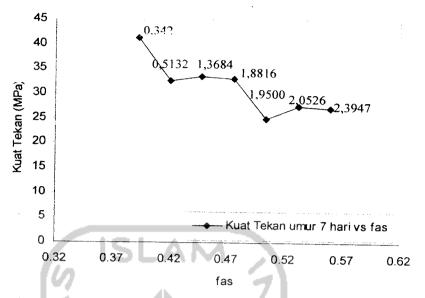
Gambar 5.4 Grafik hubungan antara kuat tekan dan faktor air smen untuk benda uji silinder (diameter 150mm, tinggi).

Dari Gambar diatas terlihat bahwa semakin rendah fas maka semakin tinggi kuat tekan beton. Jadi jelaslah bahwa kuat tekan beton normal akan dapat meningkat tinggi dengan mengurangi kandungan air pada campuran beton normal tersebut.

2. Beton umur 7 hari

Pengaruh pengurangan air terhadap kuat tekan pada beton umur 7 hari dapat dilihat pada Gambar 5.4. Data kuat tekan pada tabel menunjukkan kuat tekan rata-rata dari beberapa sampel beton, adapun untuk data lebih lengkap dapat dilihat pada Lampiran 3.

Gambar 5.4 Grafik hubungan kuat tekan terhadap pengurangan air dengan penambahan superplasticizer pada beton umur 7 hari.


Tabel 5.4 Hubungan kuat tekan dan pengurangan dengan penambahan superplasticizer pada beton umur 7 hari

Sampel Beton	% Penguraangan Air Superplasticizer (%semen)		Kuat Tekan (MPa)	% Peningkatan Kuat Tekan
B20-0%	0	0,3421	26,9463	0,0000
B20-5%	5	0,5132	27,5166	2,1161
B20-10%	10	1,3684	24,9360	-7,4604
B20-15%	15	1,8816	32,8718	21,9898
B20-20%	20	1,9500	33,3115	23,6217
B20-25%	9 25	2,0526	32,6135	21,0311
B20-30%	30	2,3947	41,1513	52,7159

Dari data diatas terlihat bahwa kuat tekan cenderung meningkat seiring dengan semakin banyak pengurangan airnya. Pada variasi pengurangan air 0% - 10% yakni pada variasi beton B20-0%, B20-5% dan B20-10% peningkatan kuat tekan yang terjadi masih belum begitu terlihat secara signifikan. Peningkatan yang terjadi hanya sekitar 0 sampai 2% dari kuat tekan beton normal. Persentase peningkatan kuat tekan beton untuk variasi B20-5% adalah 2,1161%. Pada pengurangan air 10% mengalami penurunan sebesar -7,4604%. Pada variasi

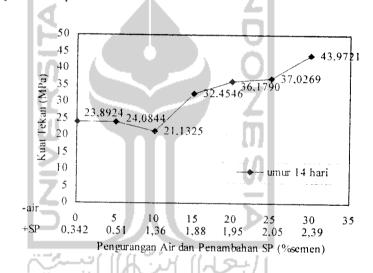
pengurangan air 15% hingga 30%, peningkatan kuat tekan sudah mulai terlihat secara jelas. Untuk sampel beton peningkatan kuat tekan sebesar B20-15% adalah 21,9898%, B20-20% adalah 23,6217%, B20-25% adalah 21,0311% dan B20-30% adalah 52,7159% dari beton normal. Peningkatan kuat tekan pada sampel beton tersebut sebesar 20% lebih, bahkan pada sampel beton dengan pengurangan air 30% terjadi peningkatan sebesar 52,7159% dari beton normal. Namun pada pengurangan air 10% dan 25% terjadi penurunan kuat tekan. Hal ini dimungkinkan terjadi karena kurang adanya kesesuaian antara penambahan superplasticizer dengan kondisi agregat saat itu. Agregat yang terlampau basah mengakibatkan kekuatan beton rendah. Peningkatan kuat tekan akibat pengurangan air mulai terlihat jelas pada pengurangan air dengan dosis yang tinggi yakni lebih besardari 15% hingga 30%. Hal ini sesuai dengan Ramachandran (1979) bahwa penambahan superplasticizer dapat mengurangi kandungan air sampai 30%. Dengan demikian jelaslah bahwa kinerja beton normal dapat meningkat tinggi dengan mengurangi air dengan kombinasi menambahkan superplasticizer pada komposisi campuran beton normal dari metode DOE..

Pengurangan kadar air dalam air campuran beton akan mengakibatkan perbandingan air dan semen atau sering disebut faktor air semen (fas) juga akan berubah. Pada umumnya, faktor air-semen merupakan fungsi utama terhadap kuat tekan beton. Semakin rendah faktor air-semen, kuat tekan semakin tinggi atau sebaliknya (Neville, 1995). Hasil penelitian tentang hubungan fas dan peningkatan kuat tekan dapat dilihat pada Gambar 5.3

Gambar 5.5 Grafik hubungan peningkatan kuat tekan dan faktor air-semen dengan penambahan *superplasticizer* pada beton umur 7 hari

Tabel 5.5 Hubungan kuat tekan dengan faktor air semen dengan penambahan

superplasticizer pada beton umur 7 hari


Sampel Beton	faktor air semen	Superplasticizer (% semen)	Kuat tekan (MPa)
B20-0%	0,56	0,34	26,9463
B20-5%	0,53	0,51	27,5166
B20-10%	0,50	1,37	24,9360
B20-15%	0,48	1,88	32,8718
B20-20%	0,45	1,95	33,3115
B20-25%	0,42	2,05	32,6135
B20-30%	0,39	2,39	41,1513

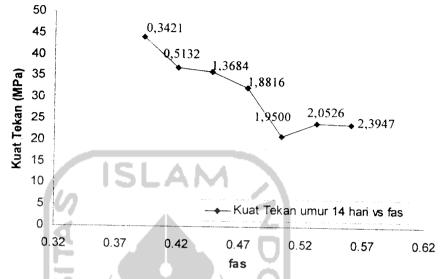
Dari Gambar dan tabel diatas dapat dilihat bahwa pengurangan jumlah air dalam campuran beton maka faktor air semen akan menurun. Kemudian akan berpengaruh pada peningkatan kuat tekan beton. Hal ini terjadi karena dengan pengurangan kadar air struktur beton akan diperbaiki karena beton lebih padat. Rongga-rongga antara semen dan air akan berkurang sehingga porositas beton juga berkurang dan kemudian akan berpengaruh pada peningkatan kuat tekan beton Hal ini sesuai dengan Neville (1995) bahwa kuat tekan beton akan meningkat apabila kandungan air pada campuran beton rendah. Namun tentu saja ada batas optimum bahwa pengurangan air akan tetap meningkatkan kuat tekan

beton, karena air juga dibutuhkan semen untuk proses hidrasi. Secara umum hubungan kuat tekan dan faktor air semen dapat dilihat dari Gambar 5.4. Dari Gambar tersebut terlihat bahwa semakin rendah fas maka semakin tinggi kuat tekan betonJadi jelaslah bahwa kuat tekan beton normal akan dapat meningkat tinggi dengan mengurangi kandungan air pada campuran beton normal tersebut.

3. Beton umur 14 hari

Pengaruh pengurangan air terhadap kuat tekan pada beton umur 14 hari dapat dilihat pada Gambar 5.6. Data kuat tekan pada tabel menunjukkan kuat tekan rata-rata dari beberapa sampel beton, adapun untuk data lebih lengkap dapat dilihat pada Lampiran 3.

Gambar 5.6 Grafik hubungan kuat tekan terhadap pengurangan air dengan penambahan superplasticizer pada beton dengan fc 20 MPa umur 14 hari.


Tabel 5.6 Hubungan kuat tekan dan pengurangan dengan penambahan superplasticizer pada beton umur 14 hari

Sampel Beton	Beton Air (%semen)		Kuat Tekan (MPa)	% Peningkatan Kuat Tekan	
B20-0%	0	0,34	23,8924	0,0000	
B20-5%	5	0,51	24,0844	0,8038	
B20-10%	10	1,37	21,1325	-11,5512	
B20-15%	15	1,88	32,4546	35,8364	
B20-20%	20	1,95	36,1790	51,4246	
B20-25%	25	2,05	37,0269	54,9737	
B20-30%	30	2,39	43,9721	84,0422	

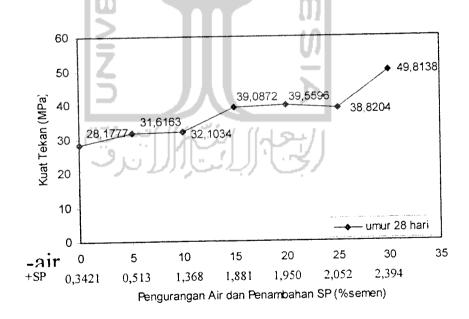
Dari data diatas terlihat bahwa kuat tekan cenderung meningkat seiring dengan semakin banyak pengurangan airnya. Pada variasi pengurangan air 0% -10% yakni pada variasi beton B20-0%, B20-5% dan B20-10% peningkatan kuat tekan yang terjadi masih belum begitu terlihat secara signifikan. Peningkatan yang terjadi hanya sekitar 0 sampai 1% dari kuat tekan beton normal. Persentase peningkatan kuat tekan beton untuk variasi B20-5% adalah 0,8038% dan B20-10% adalah -2,6982%. Pada variasi pengurangan air 15% hingga 30%, peningkatan kuat tekan sudah mulai terlihat secara jelas. Untuk sampel beton peningkatan kuat tekan sebesar B20-15% adalah 35,8364%, B20-20% adalah 51,4246%, B20-25% adalah 54,9737% dan B20-30% adalah 84,0422% dari beton normal. Peningkatan kuat tekan pada sampel beton tersebut sebesar 30% lebih, bahkan pada sampel beton dengan pengurangan air 30% terjadi peningkatan sebesar 84,0422% dari beton normal. Hal ini mungkin terjadi karena pada pengurangan air 5%-10%, efek pengurangan air masih belum berpengaruh besar pada peningkatan kuat tekan karena pengurangan kandungan air masih dalam dosis yang cukup kecil. Namun pada pengurangan air 10% terjadi penurunan kuat tekan. Hal ini dimungkinkan terjadi karena kurang adanya kesesuaian antara penambahan superplasticizer dengan kondisi agregat saat itu. Agregat yang terlampau basah mengakibatkan kekuatan beton rendah. Peningkatan kuat tekan akibat pengurangan air mulai terlihat jelas pada pengurangan air dengan dosis yang tinggi yakni lebih besar dari 15% hingga 30%. Hal ini sesuai dengan Ramachandran (1979) bahwa penambahan superplasticizer dapat mengurangi kandungan air sampai 30%. Dengan demikian jelaslah bahwa kinerja beton normal dapat meningkat tinggi dengan mengurangi air dengan kombinasi menambahkan superplasticizer pada komposisi campuran beton normal dari metode DOE.

Pengurangan kadar air dalam air campuran beton akan mengakibatkan perbandingan air dan semen atau sering disebut faktor air semen (fas) juga akan berubah. Pada umumnya, faktor air-semen merupakan fungsi utama terhadap kuat tekan beton. Semakin rendah faktor air-semen, kuat tekan semakin tinggi atau

sebaliknya (Neville, 1995). Hasil penelitian tentang hubungan fas dan peningkatan kuat tekan dapat dilihat pada Gambar 5.3

Gambar 5.7 Grafik hubungan peningkatan kuat tekan dan faktor air-semen dengan penambahan superplasticizer pada beton umur 14 hari

Tabel 5.7 Hubungan kuat tekan dengan faktor air semen dengan penambahan superplasticizer pada beton umur 14 hari


Sampel Beton	Pengurangan air	faktor air semen	Superplasticizer (% semen)	Kuat tekan (MPa)
B20-0%	0	0,56	0,34	23,8924
B20-5%	5	0,53	0,51	24,0844
B20-10%	10	0,50	1,37	21,1325
B20-15%	f5	0,48	1.88	32,4546
B20-20%	20	0,45	1,95	36,1790
B20-25%	25	0,42	2,05	37,0269
B20-30%	30	0,39	2,39	43,9721

Dari Gambar dan tabel diatas dapat dilihat bahwa pengurangan jumlah air dalam campuran beton maka faktor air semen akan menurun. Kemudian akan berpengaruh pada peningkatan kuat tekan beton. Hal ini terjadi karena dengan pengurangan kadar air struktur beton akan diperbaiki karena beton lebih padat. Rongga-rongga antara semen dan air akan berkurang sehingga porositas beton juga berkurang dan kemudian akan berpengaruh pada peningkatan kuat tekan beton Hal ini sesuai dengan Neville (1995) bahwa kuat tekan beton akan

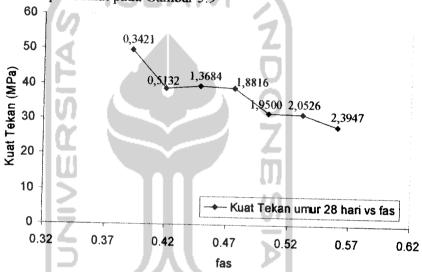
meningkat apabila kandungan air pada campuran beton rendah. Namun tentu saja ada batas optimum bahwa pengurangan air akan tetap meningkatkan kuat tekan beton, karena air juga dibutuhkan semen untuk proses hidrasi. Secara umum hubungan kuat tekan dan faktor air semen dapat dilihat dari gambar 5.4. Dari Gambar tersebut terlihat bahwa semakin rendah fas maka semakin tinggi kuat tekan betonJadi jelaslah bahwa kuat tekan beton normal akan dapat meningkat tinggi dengan mengurangi kandungan air pada campuran beton normal tersebut. Jadi jelaslah bahwa kuat tekan beton normal akan dapat meningkat tinggi dengan mengurangi kandungan air pada campuran beton normal tersebut.

4. Beton umur 28 hari

Pengaruh pengurangan air terhadap kuat tekan pada beton umur 14 hari dapat dilihat pada Gambar 5.8. Data kuat tekan pada tabel menunjukkan kuat tekan rata-rata dari beberapa sampel beton, adapun untuk data lebih lengkap dapat dilihat pada Lampiran 3.

Gambar 5.8 Grafik hubungan kuat tekan terhadap pengurangan air dengan penambahan superplasticizer pada beton dengan fc 20 MPa umur 28 hari.

Tabel 5.8 Hubungan kuat tekan dan pengurangan dengan penambahan


superplasticizer pada beton umur 28 hari

Sampel Beton	%Penguraangan Air	Superplasticizer (%semen)	Kuat Tekan (MPa)	% Peningkatan Kuat Tekan
B20-0%	0	0,34	28,1777	0,0000
B20-5%	5	0,51	31,6163	12,2031
B20-10%	10	1,37	32,1034	13,9319
B20-15%	15	1,88	39,0872	38,7167
B20-20%	20	1,95	39,5596	40,3932
B20-25%	25	2,05	38,8204	37,7699
B20-30%	30	2,39	49,8138	76,7843

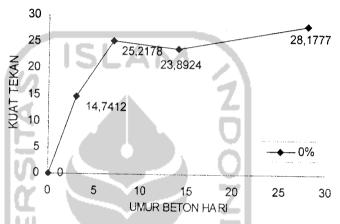
Dari data diatas terlihat bahwa kuat tekan cenderung meningkat seiring dengan semakin banyak pengurangan airnya. Pada variasi pengurangan air 0% -10% yakni pada variasi beton B20-0%, B20-5% dan B20-10% peningkatan kuat tekan yang terjadi masih belum begitu terlihat secara signifikan. Peningkatan yang terjadi hanya sekitar 0 sampai 20% dari kuat tekan beton normal. Persentase peningkatan kuat tekan beton untuk variasi B20-5% adalah 14,2031% dan B20-10% adalah 13,9319%. Pada variasi pengurangan air 15% hingga 30%, peningkatan kuat tekan sudah mulai terlihat secara jelas. Untuk sampel beton peningkatan kuat tekan sebesar B20-15% adalah 38,7167%, B20-20% adalah 40,3932%, B20-25% adalah 37,7399% dan B20-30% adalah 76,7843% dari beton normal. Peningkatan kuat tekan pada sampel beton tersebut sebesar 30% lebih, bahkan pada sampel beton dengan pengurangan air 30% terjadi peningkatan sebesar 76,7843% dari beton normal. Hal ini mungkin terjadi karena pada pengurangan air 5%-10%, efek pengurangan air masih belum berpengaruh besar pada peningkatan kuat tekan karena pengurangan kandungan air masih dalam dosis yang cukup kecil. Namun pada pengurangan air 25% terjadi penurunan kuat tekan. Hal ini dimungkinkan terjadi karena kurang adanya kesesuaian antara penambahan superplasticizer dengan kondisi agregat saat itu. Agregat yang terlampau basah mengakibatkan kekuatan beton rendah. Peningkatan kuat tekan akibat pengurangan air mulai terlihat jelas pada pengurangan air dengan dosis yang tinggi yakni lebih besardari 15% hingga 30%. Hal ini sesuai dengan Ramachandran (1979) bahwa penambahan superplasticizer dapat mengurangi

kandungan air sampai 30%. Dengan demikian jelaslah bahwa kinerja beton normal dapat meningkat tinggi dengan mengurangi air dengan kombinasi menambahkan *superplasticizer* pada komposisi campuran beton normal dari metode DOE.

Pengurangan kadar air dalam air campuran beton akan mengakibatkan perbandingan air dan semen atau sering disebut faktor air semen (fas) juga akan berubah. Pada umumnya, faktor air-semen merupakan fungsi utama terhadap kuat tekan beton. Semakin rendah faktor air-semen, kuat tekan semakin tinggi atau sebaliknya (Neville, 1995). Hasil penelitian tentang hubungan fas dan peningkatan kuat tekan dapat dilihat pada Gambar 5.9

Gambar 5.9 Grafik hubungan peningkatan kuat tekan dan faktor air-semen dengan penambahan *superplasticizer* pada beton umur 28 hari

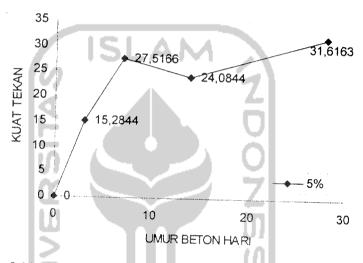
Tabel 5.9 Hubungan kuat tekan dengan faktor air semen dan penambahan superplasticizer umur 28 hari


Sampel Beton	Pengurangan air	faktor air semen	Superplasticizer (% semen)	Kuat tekan (Mpa)
B20-0%	0	0.56	0.34	28.1777
B20-5%	5	0.53	0.51	31.6163
B20-10%	10	0.50	1.37	32.1034
B20-15%	15	0.48	1.88	39.0872
B20-20%	20	0.45	1.95	39.5596
B20-25%	25	0.42	2.05	38.8204
B20-30%	30	0.39	2.39	49.8138

Dari Gambar dan tabel diatas dapat dilihat bahwa pengurangan jumlah air dalam campuran beton maka faktor air semen akan menurun. Kemudian akan berpengaruh pada peningkatan kuat tekan beton. Hal ini terjadi karena dengan pengurangan kadar air struktur beton akan diperbaiki karena beton lebih padat. Rongga-rongga antara semen dan air akan berkurang sehingga porositas beton juga berkurang dan kemudian akan berpengaruh pada peningkatan kuat tekan beton Hal ini sesuai dengan Neville (1995) bahwa kuat tekan beton akan meningkat apabila kandungan air pada campuran beton rendah. Namun tentu saja ada batas optimum bahwa pengurangan air akan tetap meningkatkan kuat tekan beton, karena air juga dibutuhkan semen untuk proses hidrasi. Secara umum hubungan kuat tekan dan faktor air semen dapat dilihat dari gambar 5.4. Dari Gambar tersebut terlihat bahwa semakin rendah fas maka semakin tinggi kuat tekan betonJadi jelaslah bahwa kuat tekan beton normal akan dapat meningkat tinggi dengan mengurangi kandungan air pada campuran beton normal tersebut. Jadi jelaslah bahwa kuat tekan beton normal akan dapat meningkat tinggi dengan mengurangi kandungan air pada campuran beton normal tersebut.

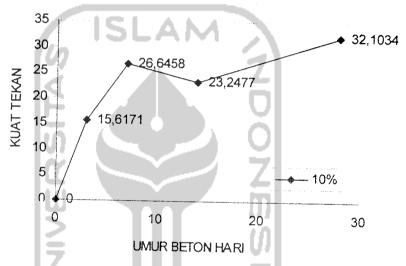
Dari hasil pengujian, penggunaan superplasticizer dengan merek dagang Sikament NN mampu mereduksi air maksimal 30% dengan peningkatan kelecakan maupun kuat tekan secara maksimal. Hal ini sesuai dengan yang dihasilkan oleh para peneliti seperti yang dilakukan Ramachandran (1979) bahwa penambahan superplasticizer dapat mengurangi kandungan air sampai 30%. Menurut Transportation research circular no. 365 (1990) bahwa superplasticizer mampu mereduksi pemakaian air antara 12–25% tanpa mempengaruhi kelecakan yang dihasilkan beton kinerja tinggi dan beton keras lebih padat, serta kuat tekan mampu mencapai 96,5 MPa setelah umur 28 hari. Hasil penelitian Cook (1994) bahwa superplasticizer dapat mengurangi kandungan air antara 15–35% dan menghasilkan beton dengan nilai slump antara 200–250 mm. Dengan demikian jelaslah bahwa kinerja beton normal dapat meningkat tinggi dengan mengurangi air dengan kombinasi menambahkan superplasticizer pada komposisi campuran beton normal dari metode DOE.

5.5 Hubungan Kuat Tekan dengan Umur Beton


Umur beton merupakan salah satu faktor yang mempengaruhi besarnya kuat tekan suatu beton karena dengan bertambahnya umur (termasuk umur perawatan) maka kuat tekan beton akan meningkat. Perawatan dalam kajian ini adalah perawatan basah berupa perendaman. Pengaruh umur beton terhadap kuat tekan untuk berbagai variasi pengurangan kandungan air dan penambahan superplasticizer ditunjukkan pada Gambar 5.6.

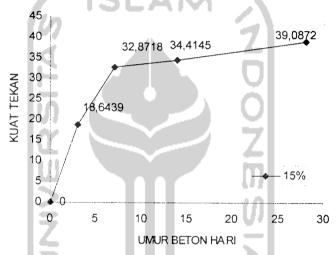
Gambar 5.10. Grafik hubungan kuat tekan terhadap umur beton dengan variasi pengurangan air sebesar 0% dan penambahan SP 0,3421%.

Dari Gambar 5.10 terlihat peningkatan kuat tekan terjadi seiring bertambahnya umur beton. Peningkatan kuat tekan beton pada umur 7 hari dari umur 3 hari terlihat cukup tinggi rata-rata sekitar 55,0101% dan meningkat lagi pada umur 28 hari hari sebesar 73,2041% dari kuat tekan beton umur 3 hari. Peningkatan kuat tekan awal yang tinggi pada umur 7 hari terjadi karena proses hidrasi semen, dan kuat tekan akan meningkat lagi pada umur 28. Hal ini sesuai dengan pendapat Tri Mulyono (2003) bahwa kekuatan tekan beton akan bertambah dengan naiknya umur beton, kekuatan beton akan naik secara cepat sampai umur 28 hari, tetapi setelah itu kenaikannya akan kecil. Hal ini juga dimungkinkan peningkatan kuat tekan awal yang tinggi pada umur 7 hari karena penambahan superplastcizer selain akibat dari pengurangan air. Penambahan superplastcizer dengan dosis yang optimum akan mempercepat proses hidrasi semen dan menghasilkan kuat tekan awal yang tinggi. Namun pada umur 14 hari


kuat tekan beton rendah, hal ini mungkin disebabkan karena dosis superplasticizer yang tidak sesuai dengan kondisi beton basah sehingga mengakibatkan workabilitas beton tinggi sehingga campuran beton menjadi encer serta pengikatan pasta semen terhadap agregat kurang baik. Namun secara keseluruhan kuat tekan akan terus meningkat hngga umur 28 hari. Hal ini sesuai pendapat Ilham (2003) bahwa penambahan optimum superplasticizer pada umur 7 hari akan mencapai kekuatan awal yang tinggi dan meningkat lagi pada umur 28 hari.

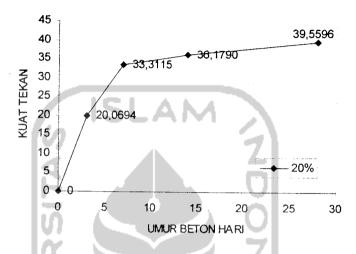
Gambar 5.11. Grafik hubungan kuat tekan terhadap umur beton dengan variasi pengurangan air sebesar 5% dan penambahan SP 0,5132%.

Dari Gambar 5.11 terlihat peningkatan kuat tekan terjadi seiring bertambahnya umur beton. Peningkatan kuat tekan beton pada umur 7 hari dari umur 3 hari terlihat cukup tinggi rata-rata sekitar 60,2931% dan meningkat lagi pada umur 28 hari hari sebesar 84,1753% dari kuat tekan beton umur 3 hari. Peningkatan kuat tekan awal yang tinggi pada umur 7 hari terjadi karena proses hidrasi semen, dan kuat tekan akan meningkat lagi pada umur 28. Hal ini sesuai dengan pendapat Tri Mulyono (2003) bahwa kekuatan tekan beton akan bertambah dengan naiknya umur beton, kekuatan beton akan naik secara cepat sampai umur 28 hari, tetapi setelah itu kenaikannya akan kecil. Hal ini juga dimungkinkan peningkatan kuat tekan awal yang tinggi pada umur 7 hari karena penambahan superplastcizer selain akibat dari pengurangan air. Penambahan superplastcizer dengan dosis yang optimum akan mempercepat proses hidrasi


semen dan menghasilkan kuat tekan awal yang tinggi. Namun pada umur 14 hari kuat tekan beton rendah, hal ini mungkin disebabkan karena dosis *superplasticizer* yang tidak sesuai dengan kondisi beton basah sehingga mengakibatkan workabilitas beton tinggi sehingga campuran beton menjadi encer serta pengikatan pasta semen terhadap agregat kurang baik. Namun secara keseluruhan kuat tekan akan terus meningkat hngga umur 28 hari. Hal ini sesuai pendapat Ilham (2003) bahwa penambahan optimum *superplasticizer* pada umur 7 hari akan mencapai kekuatan awal yang tinggi dan meningkat lagi pada umur 28 hari.

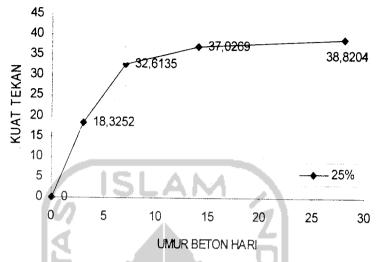
Gambar 5.12. Grafik hubungan kuat tekan terhadap umur beton dengan variasi pengurangan air sebesar 10% dan penambahan SP 1,3684%.

Dari Gambar 5.12 terlihat peningkatan kuat tekan terjadi seiring bertambahnya umur beton. Peningkatan kuat tekan beton pada umur 7 hari dari umur 3 hari terlihat cukup tinggi rata-rata sekitar 54,7699% dan meningkat lagi pada umur 28 hari hari sebesar 86,4698% dari kuat tekan beton umur 3 hari. Peningkatan kuat tekan awal yang tinggi pada umur 7 hari terjadi karena proses hidrasi semen, dan kuat tekan akan meningkat lagi pada umur 28. Hal ini sesuai dengan pendapat Tri Mulyono (2003) bahwa kekuatan tekan beton akan bertambah dengan naiknya umur beton, kekuatan beton akan naik secara cepat sampai umur 28 hari, tetapi setelah itu kenaikannya akan kecil. Hal ini juga dimungkinkan peningkatan kuat tekan awal yang tinggi pada umur 7 hari karena penambahan superplastcizer selain akibat dari pengurangan air. Penambahan

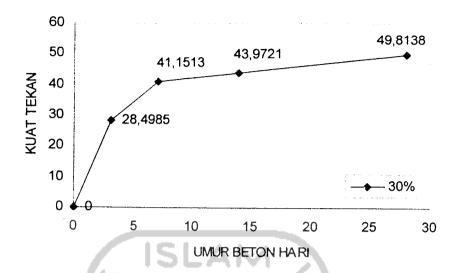

superplasticizer dengan dosis yang optimum akan mempercepat proses hidrasi semen dan menghasilkan kuat tekan awal yang tinggi. Namun pada umur 14 hari kuat tekan beton rendah, hal ini mungkin disebabkan karena dosis superplasticizer yang tidak sesuai dengan kondisi beton basah sehingga mengakibatkan workabilitas beton tinggi sehingga campuran beton menjadi encer serta pengikatan pasta semen terhadap agregat kurang baik. Namun secara keseluruhan kuat tekan akan terus meningkat hngga umur 28 hari. Hal ini sesuai pendapat Ilham (2003) bahwa penambahan optimum superplasticizer pada umur 7 hari akan mencapai kekuatan awal yang tinggi dan meningkat lagi pada umur 28 hari.

Gambar 5.13. Grafik hubungan kuat tekan terhadap umur beton dengan variasi pengurangan air sebesar 15% dan penambahan SP 1,8816%.

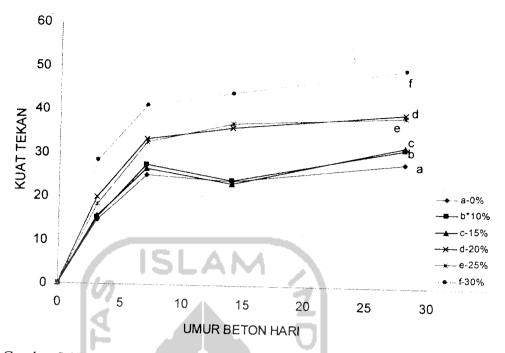
Dari Gambar 5.13 terlihat peningkatan kuat tekan terjadi seiring bertambahnya umur beton. Peningkatan kuat tekan beton pada umur 7 hari dari umur 3 hari terlihat cukup tinggi rata-rata sekitar 76,314% dan meningkat lagi pada umur 28 hari hari sebesar 109,6513% dari kuat tekan beton umur 3 hari. Peningkatan kuat tekan awal yang tinggi pada umur 7 hari terjadi karena proses hidrasi semen, dan kuat tekan akan meningkat lagi pada umur 28. Hal ini sesuai dengan pendapat Tri Mulyono (2003) bahwa kekuatan tekan beton akan bertambah dengan naiknya umur beton, kekuatan beton akan naik secara cepat sampai umur 28 hari, tetapi setelah itu kenaikannya akan kecil. Hal ini juga dimungkinkan peningkatan kuat tekan awal yang tinggi pada umur 7 hari karena


penambahan superplastcizer selain akibat dari pengurangan air. Penambahan superplasticizer dengan dosis yang optimum akan mempercepat proses hidrasi semen dan menghasilkan kuat tekan awal yang tinggi. Hal ini sesuai pendapat Ilham (2003) bahwa penambahan optimum superplasticizer pada umur 7 hari akan mencapai kekuatan awal yang tinggi dan meningkat lagi pada umur 28 hari.

Gambar 5.14. Grafik hubungan kuat tekan terhadap umur beton dengan variasi pengurangan air sebesar 20% dan penambahan SP 1,9500%.


Dari Gambar 5.14 terlihat peningkatan kuat tekan terjadi seiring bertambahnya umur beton. Peningkatan kuat tekan beton pada umur 7 hari dari umur 3 hari terlihat cukup tinggi rata-rata sekitar 65,9817% dan meningkat lagi pada umur 28 hari hari sebesar 97,1139% dari kuat tekan beton umur 3 hari. Peningkatan kuat tekan awal yang tinggi pada umur 7 hari terjadi karena proses hidrasi semen, dan kuat tekan akan meningkat lagi pada umur 28. Hal ini sesuai dengan pendapat Tri Mulyono (2003) bahwa kekuatan tekan beton akan bertambah dengan naiknya umur beton, kekuatan beton akan naik secara cepat sampai umur 28 hari, tetapi setelah itu kenaikannya akan kecil. Hal ini juga dimungkinkan peningkatan kuat tekan awal yang tinggi pada umur 7 hari karena penambahan superplastcizer selain akibat dari pengurangan air. Penambahan superplastcizer dengan dosis yang optimum akan mempercepat proses hidrasi semen dan menghasilkan kuat tekan awal yang tinggi. Hal ini sesuai pendapat

Ilham (2003) bahwa penambahan optimum superplasticizer pada umur 7 hari akan mencapai kekuatan awal yang tinggi dan meningkat lagi pada umur 28 hari.


Gambar 5.15. Grafik hubungan kuat tekan terhadap umur beton dengan variasi pengurangan air sebesar 25% dan penambahan SP 2,0526%.

Dari Gambar 5.15 terlihat peningkatan kuat tekan terjadi seiring bertambahnya umur beton. Peningkatan kuat tekan beton pada umur 7 hari dari umur 3 hari terlihat cukup tinggi rata-rata sekitar 73,0221% dan meningkat lagi pada umur 28 hari hari sebesar 105,9514% dari kuat tekan beton umur 3 hari. Peningkatan kuat tekan awal yang tinggi pada umur 7 hari terjadi karena proses hidrasi semen, dan kuat tekan akan meningkat lagi pada umur 28. Hal ini sesuai dengan pendapat Tri Mulyono (2003) bahwa kekuatan tekan beton akan bertambah dengan naiknya umur beton, kekuatan beton akan naik secara cepat sampai umur 28 hari, tetapi setelah itu kenaikannya akan kecil. Hal ini juga dimungkinkan peningkatan kuat tekan awal yang tinggi pada umur 7 hari karena penambahan superplasticizer selain akibat dari pengurangan air. Penambahan superplasticizer dengan dosis yang optimum akan mempercepat proses hidrasi semen dan menghasilkan kuat tekan awal yang tinggi. Hal ini sesuai pendapat Ilham (2003) bahwa penambahan optimum superplasticizer pada umur 7 hari akan mencapai kekuatan awal yang tinggi dan meningkat lagi pada umur 28 hari.

Gambar 5.16. Grafik hubungan kuat tekan terhadap umur beton dengan variasi pengurangan air sebesar 30% dan penambahan SP 2,3947%.

Dari Gambar 5.16 terlihat peningkatan kuat tekan terjadi seiring bertambahnya umur beton. Peningkatan kuat tekan beton pada umur 7 hari dari umur 3 hari terlihat cukup tinggi rata-rata sekitar 44,3983% dan meningkat lagi pada umur 28 hari hari sebesar 74,7943% dari kuat tekan beton umur 3 hari. Peningkatan kuat tekan awal yang tinggi pada umur 7 hari terjadi karena proses hidrasi semen, dan kuat tekan akan meningkat lagi pada umur 28. Hal ini sesuai dengan pendapat Tri Mulyono (2003) bahwa kekuatan tekan beton akan bertambah dengan naiknya umur beton, kekuatan beton akan naik secara cepat sampai umur 28 hari, tetapi setelah itu kenaikannya akan kecil. Hal ini juga dimungkinkan peningkatan kuat tekan awal yang tinggi pada umur 7 hari karena penambahan superplasticizer selain akibat dari pengurangan air. Penambahan superplasticizer dengan dosis yang optimum akan mempercepat proses hidrasi semen dan menghasilkan kuat tekan awal yang tinggi. Hal ini sesuai pendapat Ilham (2003) bahwa penambahan optimum superplasticizer pada umur 7 hari akan mencapai kekuatan awal yang tinggi dan meningkat lagi pada umur 28 hari.

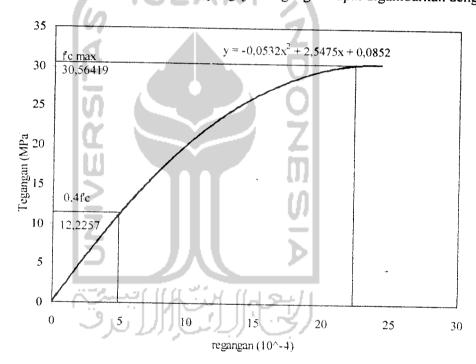
Gambar 5.17. Grafik hubungan kuat tekan terhadap umur beton dengan berbagai variasi pengurangan air dan penambahan SP

Tabel 5.10 Perbandingan kekuatan tekan beton pada berbagai umur

Sampel Beton	% Penguraangan Air			beton berb [Pa]	agai umur
D20 00/		3 hari	7 hari	14 hari	28 hari
B20-0%	0	14,7412	26,9463	23,8924	28.1777
B20-5%	5	15,2844	27.5166	24,0844	31,6163
B20-10%	10	15,6171	24,9360	21,1325	32,1034
B20-15%	15	18,6439	32,8718	32,4546	39,0872
B20-20%	20/ 1//1	20,0694	33,3115	36,1790	
B20-25%	25	18,3252	32,6135		39.5596
B20-30%	30			37,0269	38,8204
	1 30	28,4985	41,1513	43,9721	49.8138

Dari data diatas terlihat bahwa terjadi peningkatan kuat tekan akibat dari pengaruh umur beton. Pada pengurangan air 0% dan 15% pada umur 14 hari terjadi penurunan kuat tekan disebabkan oleh kadar *superplasticizer* yang tidak sesuai dengan kondisi agregat pada campuran beton yang berdampak pada workabilitas beton menjadi besar sehingga jarak partikel-partikel semen menjadi jauh yang menyebabkan pengikatan semen terhadap agregat menjadi lambat.

Pada penelitian ini kuat tekan rencana adalah 20 MPa, namun setelah ditambah dengan nilai margin kuat tekan rata-rata yang direncanakan menjadi 26,888 MPa. Dari hasil penelitian diperoleh kuat tekan yang memenuhi kuat tekan rata-rata yang direncanakan dicapai pada beton dengan umur 28 hari untuk setiap variasi pengurangan air. Untuk sampel beton dengan variasi umur yang lain, kuat tekan rata-rata yang direncanakan dipenuhi oleh beton dengan pengurangan air yang tinggi. Untuk umur 3 hari dicapai pada engurangan air 30%, pada umur 7 hari dicapai pada pengurangan air 0%, dan pada umur 14 hari dicapai pada pengurangan air 15%.

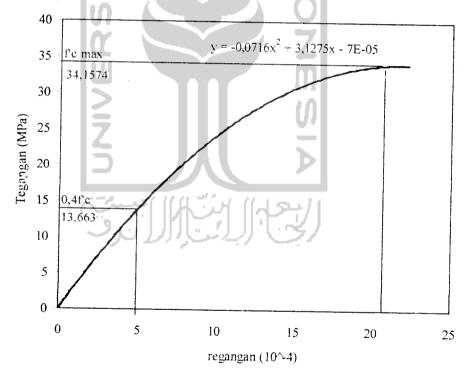

Tabel 5.11 Perbandingan kekuatan tekan beton pada berbagai umur

Umur	Perbar	ndingan k	uat tekan p	ada berba	gai varias	i penguran	igan air	Menurut
Omai	0%	5%	10%	15%	20%	25%	30%	PBBI 1971
3	0,52	0,48	0,49	0,48	0,51	0,47	0,57	0,40
7	0,89	0,87	0,83	0,84	0,84	0,84	0,83	0,65
14	0,85	0,76	0,72	0.88	0,91	0,95	088	0,88
28	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00

Dari tabel diatas terlihat bahwa kekuatan beton meningkat seiring bertambahnya umur. Peningkatan secara signifikan terlihat jelas pada umur 3 hari menuju 7 hari. Apabila dibandingkan dengan beton normal menurut PBBI Th.1971 peningkatan kekuatan dari berbagai hari tidak menujukkan peningkatan yang signifikan. Dari hasil penelitian ini terlihat bahwa beton mempuyai peningkatan kuat awal yang tinggi. Hal ini mungkin terjadi akibat pengurangan air yang dilakukan pada beton. Yang pada dasarnya beton hanya membutuhkan sedikitnya 30% air dari berat semen untuk proses hidrasi dengan semen, dan kelebihan air digunakan sebagai fungsi workabilitas beton, dengan dikuranginya kandungan air tersebut mengakibatkan beton lebih cepat mengeras sehingga beton mempunyai peningkatan kekuatan awal yang lebih tinggi daripada beton normal tanpa pengurangan air. Namun secara umum kekuatan beton akan meningkat siring bertambah umurnya hingga mencapai kandisi optimimnya.

5.6 Analisis Hubungan Tegangan dan Regangan

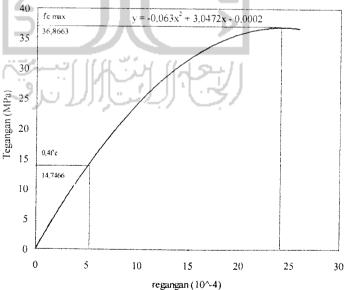
Setiap bahan akan megalami perubahan bentuk apabila mendapat beban dan apabila perubahan bentuk terjadi maka gaya internal didalam bahan tersebut akan menahannya, dan gaya internal tersebut disebut tegangan. Bila suatu bahan mengalami tegangan, maka itu akan mengalami perubahan bentuk yang dikenal sebagai regangan (MJ. Smith, 1985). Dalam penelitian ini pengujian tegangan regangan tidak dilakukan pada seluruh sampel benda uji karena keterbatasan biaya yang tersedia, sehingga hanya diambil satu sampel benda uji setiap variasi pengurangan kandungan air. Hasil pengujian tegangan dapat digambarkan dengan



Gambar 5.18 Grafik Hubungan Tegangan dan Regangan pada beton dengan pengurangan air 0% dengan disertai penambahan superplasticizer

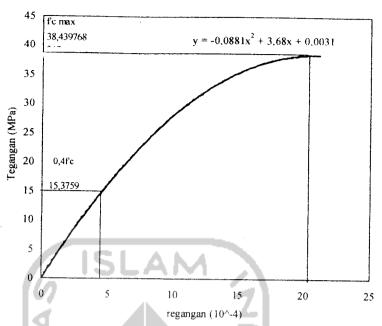
Dari gambar hubungan tegangan regangan diatas dapat dilihat bahwa kurva berbentuk lengkung. Hal ini menandakan bahwa nilai regangan tidak berbanding lurus dengan nilai tegangan, dan berarti bahwa beton tidak sepenuhnya elastis. Bentuk kurva tegangan regangan dipengaruhi oleh karakteristik aregat yang digunakan dan faktor pemadatan. Daerah terlemah pada

beton adalah daerah antara pasta semen dan agregat kasar. Penggunaan agregat kasar batu pecah yang memiliki permukaan kasar akan mengurangi kelemahan tersebut, sehingga dapat meningkatkan kuat tekan dan memperkecil deformasi yang tejadi akibat pembebanan.


Dari pengujian tegangan regangan pada sampel beton dengan pegurangan 0% didapat tegangan maksimum pada 30,56419 MPa dan regangan hancurnya sebesar 23.9 x 10⁻⁴. Pada kurva tegangan regangan bahwa sekitar 40% dari f'c pada umumnya dianggap linier dengan asumsi bahwa regangan yang tejadi selama pembebanan pada dasarnya dianggap elastis (pada keadaan beban dihilangkan besifat reversible penuh). Semakin tinggi kekuatan beton maka panjang bagian linier semakin bertambah (Edward G Nawy, 1990). Dan pada kurva diatas batas linier berada pada tegangan sebesar 12,2256 MPa dan besar regangannya adalah 4,9733 x 10⁻⁴.

Gambar 5.19 Grafik Hubungan Tegangan dan Regangan pada beton dengan pengurangan air 5% dengan disertai penambahan *superplasticizer*

Dari gambar hubungan tegangan regangan diatas dapat dilihat bahwa kurva berbentuk lengkung. Hal ini menandakan bahwa nilai regangan tidak berbanding lurus dengan nilai tegangan, dan berarti bahwa beton tidak sepenuhnya elastis. Bentuk kurva tegangan regangan dipengaruhi oleh karakteristik aregat yang digunakan dan faktor pemadatan. Daerah terlemah pada beton adalah daerah antara pasta semen dan agregat kasar. Penggunaan agregat kasar batu pecah yang memiliki permukaan kasar akan mengurangi kelemahan tersebut, sehingga dapat meningkatkan kuat tekan dan memperkecil deformasi yang tejadi akibat pembebanan.


Dari pengujian tegangan regangan pada sampel beton dengan pegurangan 5% didapat tegangan maksimum pada 34,1574 MPa dan regangan hancurnya sebesar 21,800 x 10⁻⁴. Pada kurva tegangan regangan bahwa sekitar 40% dari f'c pada umumnya dianggap linier dengan asumsi bahwa regangan yang tejadi selama pembebanan pada dasarnya dianggap elastis (pada keadaan beban dihilangkan besifat reversible penuh). Semakin tinggi kekuatan beton maka panjang bagian linier semakin bertambah (Edward G Nawy, 1990). Dan pada kurva diatas batas linier berada pada tegangan sebesar 13,6629 MPa dan besar regangannya adalah 5,08 x 10⁻⁴.

Gambar 5.20 Grafik Hubungan Tegangan dan Regangan pada beton dengan pengurangan air 10% dengan disertai penambahan *superplasticizer*

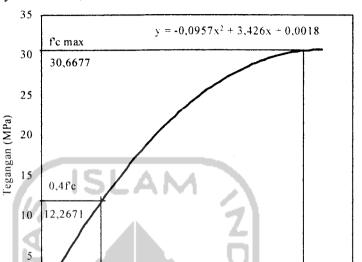
Dari gambar hubungan tegangan regangan diatas dapat dilihat bahwa kurva berbentuk lengkung. Hal ini menandakan bahwa nilai regangan tidak berbanding lurus dengan nilai tegangan, dan berarti bahwa beton tidak sepenuhnya elastis. Bentuk kurva tegangan regangan dipengaruhi oleh karakteristik aregat yang digunakan dan faktor pemadatan. Daerah terlemah pada beton adalah daerah antara pasta semen dan agregat kasar. Penggunaan agregat kasar batu pecah yang memiliki permukaan kasar akan mengurangi kelemahan tersebut, sehingga dapat meningkatkan kuat tekan dan memperkecil deformasi yang tejadi akibat pembebanan.

Dari pengujian tegangan regangan pada sampel beton dengan pegurangan 10% didapat tegangan maksimum pada 36,86638 MPa dan regangan hancurnya sebesar 24,2000 x 10⁻⁴. Pada kurva tegangan regangan bahwa sekitar 40% dari f'c pada umumnya dianggap linier dengan asumsi bahwa regangan yang tejadi selama pembebanan pada dasarnya dianggap elastis (pada keadaan beban dihilangkan besifat reversible penuh). Semakin tinggi kekuatan beton maka panjang bagian linier semakin bertambah (Edward G Nawy, 1990). Dan pada kurva diatas batas linier berada pada tegangan sebesar 14,7465 MPa dan besar regangannya adalah 5,6693 x 10⁻⁴.

Gambar 5.21 Grafik Hubungan Tegangan dan Regangan pada beton dengan pengurangan air 15% dengan disertai penambahan superplasticizer

Dari gambar hubungan tegangan regangan diatas dapat dilihat bahwa kurva berbentuk lengkung. Hal ini menandakan bahwa nilai regangan tidak berbanding lurus dengan nilai tegangan, dan berarti bahwa beton tidak sepenuhnya elastis. Bentuk kurva tegangan regangan dipengaruhi oleh karakteristik aregat yang digunakan dan faktor pemadatan. Daerah terlemah pada beton adalah daerah antara pasta semen dan agregat kasar. Penggunaan agregat kasar batu pecah yang memiliki permukaan kasar akan mengurangi kelemahan tersebut, sehingga dapat meningkatkan kuat tekan dan memperkecil deformasi yang tejadi akibat pembebanan.

Dari pengujian tegangan regangan pada sampel beton dengan pegurangan 15% didapat tegangan maksimum pada 38,4397 MPa dan regangan hancurnya sebesar 20,900 x 10⁻⁴. Pada kurva tegangan regangan bahwa sekitar 40% dari f c pada umumnya dianggap linier dengan asumsi bahwa regangan yang tejadi selama pembebanan pada dasarnya dianggap elastis (pada keadaan beban dihilangkan besifat reversible penuh). Semakin tinggi kekuatan beton maka panjang bagian linier semakin bertambah (Edward G Nawy, 1990). Dan pada kurva diatas batas


fc max 40 41,8666 +3.8299x + 0.003635 30 egangan (MPa) 20 0,4fc 15 16,7466 10 5 0 0 10 15 25 30 regangan (10^-4)

linier berada pada tegangan sebesar 15,3756 MPa dan besar regangannya adalah $4,5218 \times 10^{-4}$.

Gambar 5.22 Grafik Hubungan Tegangan dan Regangan pada beton dengan pengurangan air 20% dengan disertai penambahan superplasticizer

Dari gambar hubungan tegangan regangan diatas dapat dilihat bahwa kurva berbentuk lengkung. Hal ini menandakan bahwa nilai regangan tidak berbanding lurus dengan nilai tegangan, dan berarti bahwa beton tidak sepenuhnya elastis. Bentuk kurva tegangan regangan dipengaruhi oleh karakteristik aregat yang digunakan dan faktor pemadatan. Daerah terlemah pada beton adalah daerah antara pasta semen dan agregat kasar. Penggunaan agregat kasar batu pecah yang memiliki permukaan kasar akan mengurangi kelemahan tersebut, sehingga dapat meningkatkan kuat tekan dan memperkecil deformasi yang tejadi akibat pembebanan.

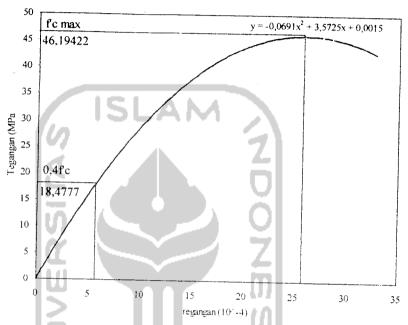
Dari pengujian tegangan regangan pada sampel beton dengan pegurangan 20% didapat tegangan maksimum pada 41,8666 MPa dan regangan hancurnya sebesar 21,9000 x 10⁻⁴. Pada kurva tegangan regangan bahwa sekitar 40% dari f'c pada umumnya dianggap linier dengan asumsi bahwa regangan yang tejadi selama pembebanan pada dasarnya dianggap elastis (pada keadaan beban dihilangkan besifat reversible penuh). Semakin tinggi kekuatan beton maka panjang bagian linier semakin bertambah (Edward G Nawy, 1990). Dan pada

kurva diatas batas linier berada pada tegangan sebesar 16,7466 MPa dan besar regangannya adalah $4,8629 \times 10^{-4}$.

Gambar 5.23 Grafik Hubungan Tegangan dan Regangan pada beton dengan pengurangan air 25% dengan disertai penambahan *superplasticizer*

10

regangan (10^-4)

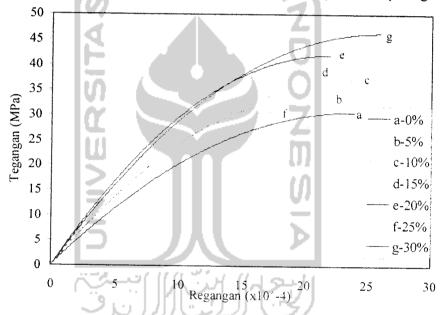

15

20

Dari gambar hubungan tegangan regangan diatas dapat dilihat bahwa kurva berbentuk lengkung. Hal ini menandakan bahwa nilai regangan tidak berbanding lurus dengan nilai tegangan, dan berarti bahwa beton tidak sepenuhnya elastis. Bentuk kurva tegangan regangan dipengaruhi oleh karakteristik aregat yang digunakan dan faktor pemadatan. Daerah terlemah pada beton adalah daerah antara pasta semen dan agregat kasar. Penggunaan agregat kasar batu pecah yang memiliki permukaan kasar akan mengurangi kelemahan tersebut, sehingga dapat meningkatkan kuat tekan dan memperkecil deformasi yang tejadi akibat pembebanan.

Dari pengujian tegangan regangan pada sampel beton dengan pegurangan 25% didapat tegangan maksimum pada 30,6677 MPa dan regangan hancurnya sebesar 17,900 x 10⁻⁴. Pada kurva tegangan regangan bahwa sekitar 40% dari f^cc pada umumnya dianggap linier dengan asumsi bahwa regangan yang tejadi selama

pembebanan pada dasarnya dianggap elastis (pada keadaan beban dihilangkan besifat reversible penuh). Semakin tinggi kekuatan beton maka panjang bagian linier semakin bertambah (Edward G Nawy, 1990). Dan pada kurva diatas batas linier berada pada tegangan sebesar 12,2670 MPa dan besar regangannya adalah 3,8153 x 10⁻⁴.


Gambar 5.24 Grafik Hubungan Tegangan dan Regangan pada beton dengan pengurangan air 30% dengan disertai penambahan *superplasticizer*

Dari gambar hubungan tegangan regangan diatas dapat dilihat bahwa kurva berbentuk lengkung. Hal ini menandakan bahwa nilai regangan tidak berbanding lurus dengan nilai tegangan, dan berarti bahwa beton tidak sepenuhnya elastis. Bentuk kurva tegangan regangan dipengaruhi oleh karakteristik aregat yang digunakan dan faktor pemadatan. Daerah terlemah pada beton adalah daerah antara pasta semen dan agregat kasar. Penggunaan agregat kasar batu pecah yang memiliki permukaan kasar akan mengurangi kelemahan tersebut, sehingga dapat meningkatkan kuat tekan dan memperkecil deformasi yang tejadi akibat pembebanan.

Dari pengujian tegangan regangan pada sampel beton dengan pegurangan 30% didapat tegangan maksimum pada 46,1942 MPa dan regangan hancurnya

sebesar 25,9000 x 10⁻⁴. Pada kurva tegangan regangan bahwa sekitar 40% dari fc pada umumnya dianggap linier dengan asumsi bahwa regangan yang tejadi selama pembebanan pada dasarnya dianggap elastis (pada keadaan beban dihilangkan besifat reversible penuh). Semakin tinggi kekuatan beton maka panjang bagian linier semakin bertambah (Edward G Nawy, 1990). Dan pada kurva diatas batas linier berada pada tegangan sebesar 18,4777 MPa dan besar regangannya adalah 5,6646 x 10⁻⁴.

Apabila grafik tegangan regangan untuk semua variasi pengurangan air digabung dapat terlihat bahwa pada beton dengan pengurangan air 30% mempunyai kekakuan yang lebih. Untuk lebih jelas dapat dilihat pada grafik 5.24.

Gambar 5.25 Grafik Hubungan Tegangan dan Regangan pada beton dengan semua variasi pengurangan air dan penambahan *superplasticizer*

Dari gambar grafik diatas terlihat bahwa ada beton dengan pengurangan air tinggi mempunyai tegangan maksimum yang tinggi pula. Dan beton dengan tegangan maksimum yang tinggi maka batas plastis beton yang diambil sekitar 40% tegangan maksimum dimana kurva dianggap linier juga lebih akan lebih panjang. Ditunjukkan pula pada grafik bahwa pada beton dengan pengurangan air tinggi dibutuhkan tegangan yang lebih tinggi untuk mencapai regangan yang sama

pada beton dengan pengurangan air rendah. Hal ini ini membuktikan bahwa beton dengan pengurangan air lebih tinggi cenderung mempunyai kekakuan yang lebih pula. Edward G Nawy mengatakan bahwa semakin tinggi kekuatan beton panjang bagian linier pada kurva semakin bertambah, dan ada reduksi daktilitas apabila kekuatan beton bertambah.

5.7 Modulus Elastis

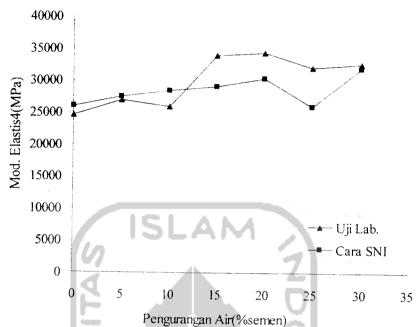
Modulus elastis merupakan sifat beton yang berkaitan dengan mudah atau tidaknya beton mengalami deformasi. Menurut Edward G Nawy modulus elastis adalah kemiringan suatu garis lurus yang menghubungkan titik pusat dengan suatu harga tegangan (sekitar 0,4 f°c), modulus ini memenuhi asumsi praktis bahwa regangan yang terjadi selama pembebanan pada dasarnya dianggap elastis. Dari modulus elastis ini maka dapat diketahui seberapa besar kekakuan beton. Hasil perhitungan Modulus Elastis dapat diketahui dari tabel berikut.

Tabel 5.12 Tabel Perhitungan Modulus Elastis Beton

Variasi Beton	Tegangan Max (MPa)	Tegangan (MPa)	Regangan (10^-4)	Modulus Elastis Uji Lab.(MPa)	Modulus Elastis SNI (MPa)
B20-0%	30,5642	12,2257	4,9733	24582,6260	25983,8995
B20-5%	34,1574	13,6630	5,0800	26895,5906	27468,8363
B20-10%	36,8664	14,7466	5,6693	26011,2383	28537,3141
B20-15%	38,4398	15,3759	4,5218	34003.9483	29139,9103
B20-20%	41,8666	16,7466	4,8630	34437.0444	30411,0703
B20-25%	30,6677	12,2671	3,8153	32152,3667	26027,8598
B20-30%	46,1942	18,4777	5,6646	32619.3543	31944,1767

Keterangan:

Modulus Elastis didapat dari perhitungan dengan rumus :


Modulus Elastis (**Ec**) =
$$\frac{\sigma}{\varepsilon}$$

 σ = Tegangan pada 40 % kuat tekan uji (kg/cm²) (0,4 kuat desak beton)

 ε = regangan yang dihasilkan dari tegangan

Modulus Elastis sesuai SNI didapat dari perhitungan dengan rumus :

Modulus Elastis (Ec) = 4700
$$\sqrt{f'c}$$
 (MPa)

Grafik 5.26 Perbandingan antara nilai modulus elastis dari uji laboratorium dan dari perhitungan cara SNI pada setiap variasi pengurangan air

Dari tabel diatas dapat dilihat Modulus Elastisitas yang paling kecil adalah pada beton B20-0% dengan nilai sebesar 24582,6260 MPa dan relatif terus meningkat sampai beton B20-30% dengan pengurangan air 30%. Modulus Elastisitas paling besar yakni pada sampel beton B20-30% dengan nilai sebesar 32169,3543 MPa. Hal ini mungkin disebabkan karena beton B20-30% mempunyai tegangan plastis yang paling tinggi dibanding dengan beton lainnya yakni sebesar 18,4777 MPa. Dari data juga dapat dilihat bahwa terdapat perbedaan nilai modulus elastis berdasarkan perhitungan dari grafik tegangan regangan dibandingkan dengan nilai berdasarkan cara SNI. Terlihat bahwa pada sampel beton dengan pengurangan air rendah antara 0% - 10% nilai modulus elastis menunjukkan nilai yang lebih tinggi pada perhitungan berdasarkan cara SNI, dan untuk sampel beton dengan pengurangan air tinggi lebih besar dari 15% nilai modulus elastis terlihat lebih tinggi pada perhitungan berdasarkan grafik tengan regangan. Ketidaksesuaian ini meungkin disebabkan karena pengerjaan sampel yang kurang baik dalam hal pemadatan. Dan mungkin juga karena keterbatasan jumlah sampel beton uji

sehingga kurang terlihat jelas perbedaaan nilai modulus elastis yang dihitung berdasarkan grafik tegangan regangan dan perhitungan berdasar rumus SNI.

Besarnya modulus elastis dipengaruhi sekali oleh karakteristik agregat. Daerah terlemah pada beton adalah daerah antara pasta semen dan agregat kasar. Penggunaan agregat kasar batu pecah yang memiliki permukaan kasar akan mengurangi kelemahan tersebut, sehingga dapat meningkatkan kuat tekan dan memperkecil deformasi yang tejadi akibat pembebanan. Pada beberapa sampel beton mengalami penurunan modulus elastis mungkin dikarenakan kurangnya kontrol terhadap agregat dan dalam faktor pemadatan beton. Beton dengan pemadatan kurang baik akan menimbulkan keropos antar agregat sehingga daya ikat antar agregat menjadi lemah kemudian mengakibatkan beton menjadi rapuh dan mudah patah. Beton dengan kuat tekan tinggi akan mempunyai modulus elastis yang tinggi pula, karena beton dengan kuat tekan tinggi akan mempunyai daerah linier pada kurva yang lebih panjang dibanding beton dengan kuat tekan yang lebih kecil. Edward G Nawy mengatakan bahwa semakin rendah kekuatan beton semakin tinggi regangan hancurnya, semakin tinggi kekuatan beton panjang bagian linier pada kurva semakin bertambah, dan ada reduksi daktilitas apabila kekuatan beton bertambah.

BAB V1

KESIMPULAN DAN SARAN

Pada bab ini berisikan tentang ksimpulan dan saran dari hasil penelitian. Penjelasan mengenai hal-hal tersebut akan diuraikan sebagai berikut ini.

6. 1 Kesimpulan

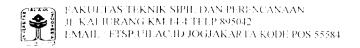
Dari hasil penelitian laboratorium didapatkan beberapa kesimpulan sebagai berikut ini.

- Karakteristik beton segar dapat diketahui kelecakannya dengan melihat parameter nilai slump. Nilai slump rencana lebih besar dari 150 mm tercapai setelah dilakukan penambahan superplasticizer dimana beton segar tidak terjadi bleeding maupun segregasi.
- Kuat tekan rata-rata tertinggi sebesar 49,8138 MPa untuk kuat tekan rencana 20 MPa dicapai oleh kombinasi pengurangan air 30 % dan penambahan SP 2,3947 % dari berat semen.
- 3. Mutu beton dengan variasi B20-0% menghasilkan kuat tekan 28,177 MPa, B20-5% menghasilkan kuat tekan 31,616 MPa, B20-10% menghasilkan kuat tekan 31,103 Mpa, B20-15% menghasilkan kuat tekan 39,087 Mpa, untuk variasi B20-20% menghasilkan kuat tekan rata-rata 39,559 MPa, B20-25% menghasilkan kuat tekan 38,820 MPa dan B20-30% menghasilkan kuat tekan 49,8138 MPa.
- 4. Penambahan superplasticizer dengan merk dagang "Sikament NN" sebesar 2,34947% pada pengurangan air 30% merupakan penambahan superplasticizer dengan kadar paling tinggi tanpa terjadi bleeding dan segregasi.
- Beton dengan pengurangan air dan penambahan superplasticizer mempunyai peningkatan kuat tekan awal yang lebih tinggi apabila dibanding

- dengan beton normal menurut PBBI 1971. Peningkatan kuat tekan terlihat jelas pada umur 3 hari menuju umur 7 hari.
- Beton dengan kuat tekan tinggi akan mempunyai modulus elastis yang tinggi pula, kuat tekan tertinggi pada beton dengan pengurangan air 30% dengan kuat tekan sebesar 49,8138 MPa dengan moduls elastis sebesar 32619,3543 MPa.

6.2 Saran

Dari kesimpulan hasil penelitian, didapatkan beberapa saran yang diharapkan untuk melengkapi penelitian ini maupun yang berguna untuk struktur beton dan dunia teknik sipil yaitu sebagai berikut.


- 1. Perlu penelitian lebih lanjut guna mencari kadar *superplasticizer* optimum yang mampu memberikan kuat desak beton maksimum.
- 2. Perlu dilakukan penelitian dengan penambahan *superplasticizer* dengan kadar yang tertatur antara 0-3% terhadap berat semen.
- 3. Perlu dilakukan penelitian tentang penggunaan *superplasticizer* dengan merk dagang "Sikament NN" yang dibandingkan dengan merk dagang lain.
- 4. Dalam penelitian berikutnya disarankan untuk dilakukan kontrol kualitas meterial dengan lebih baik untuk mendapatkan hasil yang lebih akurat.

DAFTAR PUSTAKA

- Ade Ilham, Syafruddin, Hastoro, 2005, Pengaruh Kandungan Air Dan Penambahan Superplasticizer Pada Komposisi Campuran Beton Kuat Tekan 30 Dan 40 Mpa, Yogyakarta.
- Buku Panduan Praktikum Bahan Konstruksi Teknik Universitas Islam Indonesia, 2004.
- Chaiyasena, T, 1992, A Study Of High Strength Concrete Made From Portland Cement Containing Rice Husk Ash, Fly Ash And Superplasticizer. www.library.kku.ac.th/abstract/thesis/meng/se/2535/se 350001e.html
- Fitria, H. dan Asna, L.,2003, Tugas Akhir Uji Lab Tinjauan Pemakaian Superplasticizer Pada Beton Mutu Tinggi Terhadap Kuat Desak dan Kadar Optimum, Jurusan teknik Sipil dan Perencanaan UII, Jogjakarta.
- Hastoro, P.A, dan Safruddin, P.N., 2005, Tugas Akhir Pengaruh Pengurangan Kandungan Air Dan Penambahan Superplasticizer Pada Komposisi Campuran Beton Kuat Tekan 30 dan 40 MPa, Jurusan teknik Sipil dan Perencanaan UII, Jogjakarta.
- lr. Tri mulyono, MT, 2004, Teknologi Beton, Yogyakarta, ANDI,
- Murdock, L.J., K.M.Brook, dan Stephanus Hendarko., 1991, BAHAN PRAKTEK BETON.Jakarta: Erlangga.
- Muzamil dan Budiyono, 1997, Tugas Akhir Pengaruh Pemakain Bahan Tambah "Superplasticizer" Terhadap Kuat Desak Beton, Jurusan teknik Sipil dan Perencanaan UII, Jogjakarta.

- Nawy, E. G., 1990, Beton Bertulang Suatu Pendekatan Dasar, Bandung, PT. Eresco.
- Ramachandran, V. S, 1979, Superplasticizer In Concrete. www.irc.nrc-cnrc.gc.ca/cbd/cbd203.e.html
- Tjokrodimulyo, K., 1992, Teknologi Beton. Yogyakarta: Nafiri.
- Yuwono, Eko, 1997, Tugas Akhir Pengaruh Bahan-bahan Pemercepat Pengerasan Terhadap Workabilitas dan Kuat Tekan Beton, Jurusan teknik Sipil dan Perencanaan UII, Jogjakarta.
- Direktorat Jendral Cipta Karya.

UNTUK DOSEN

KARTU PRESENSI KONSULTASI TUGAS AKHIR MAHASISWA

PERIODE KE : I (Sept.06- Pebr.07)

TAHUN TA : 2006 - 2007

Sampai Akhir Pebruari 2007

МО	NAMA	NO.MHS.	BID.STUDI
1.	Agung Fajar M	02 511 180	Teknik Sipil

JUDUL TUGAS AKHIR

Pengaruh Bahan Tambah Superplasticizer (Sikamen NM) Terhadap Kuat Desak Beton Fc 20 Mpa Dan Pengurangan Jumlah Air

Dosen Pembimbing I : Ade Ilham,Dr,Ir,MT Dosen Pembimbing II : Ade Ilham,Dr,Ir,MT

Jogjakanta ,29-Sep-86 . a.n. Dekan

) Jr.H.Faisol AM, MS

Catatan	•
Serninar	•
Sidang	•
Pendadaran	•

KARTU PESERTA TUGAS AKHIR

NO	NAMA	NO.MHS.	BID.STUDI	ļ
1.	Agung Fajar M	02 511 180	Teknik Sipil	-

JUDUL TUGAS AKHIR

Pengaruh Bahan Tambah Superplasticizer (Sikamen NN) Terhadap Kuat Desak Beton Fc 20 Mpa Dan Pengurangan Jumlah Air

PERIODE KE	: I (Sept.06- Pebr.07)
TAHUN TA	: 2006 - 2007.
Sampai	Akhir Pebruari 2007

				- 41			
NI	Vagiatan			Bula	n Ke :		
No.	Kegiatan	SEP	OKT.	NOP.	DES.	JAN.	PEB.
1	Pendaftaran	Y VALUE	$A = \mathcal{F}_{\lambda}$	-0 I			
2	Penentuan Dosen Pembimbing						
3	Pembuatan Proposal			71			
4	Seminar Proposal						
5	Konsultasi Penyusunan TA.						
6	Sidang - Sidang						
7	Pendadaran			U.		1	

Dosen Pembimbing I : Ade Ilham,Dr,Ir,MT Dosen Pembimbing II : Ade Ilham,Dr,Ir,MT

Jogjakarta , 29-Sep-06 a.n. Dekan

∦Ir.H.Faisol AM, MS

ett: jurgs.

Oll: promong \$2 31/57

<u>Catatan</u>	_:	
Seminar	:	
Sidang	:	
Pendadaran	:	

Perencanaan Kebutuhan Adukan Beton

A. Menetapkan kuat tekan beton yang disyaratkan 28 hari.

Beton akan dipakai untuk pembuatan sampel dengan kuat tekan f'c = 20 MPa

Jenis semen

: jenis I (Portland Cement)

Jenis kerikil

: batu pecah

Ukuran maksimum kerikil

: 20 mm

Nilai slump

: 30 - 60 mm

Jenis pasir

: agak kasar (golongan dua)

B. Menetapkan nilai deviasi standar (sd).

Standar deviasi ditetapkan berdasarkan tingkat mutu pengendalian pelaksanaan pencampuran betonnya, makin baik mutu pelaksanaan makin kecil nilai deviasi standar.

a) Jika pelaksana tidak mempunyai data pengalaman atau mempunyai pengalaman kurang dari 15 benda uji, maka nilai deviasi standar diambil dari tingkat pengendalian mutu pekerjaan dibawah ini

Tabel 1.1 Tingkat pengendalian mutu pekerjaan dan standar deviasi

ingkat Pengendalian Mutu Pekerjaan	sd (Mpa)
Memuaskan	2,8
Sangat Baik	3,5
Baik [] [J] J [FZ]	4,2
Cukup	5,6
Jelek	7,0
Tanpa Kendali	8,4

(Sumber: Triono Budi Astanto, 2001)

b). Jika pelaksana mempunyai data pengalaman pembuatan beton serupa minimum 30 silinder yang diuji kuat tekan rata-ratanya pada umur 28 hari, maka jumlah data dikoreksi terhadap nilai deviasi standar deengan suatu faktor pengali

Tabel 1.2 Faktor Pengali Deviasi Standar

Jumlah Data	30,0	25,00	20,00	15,00	< 15
Faktor Pengali	1,0	1,03	1,08	1,16	Tidak boleh

(Sumber: Triono Budi Astanto, 2001)

C. Menghitung nilai tambah Margin (M)

 $M = K \times Sd \dots (1.1)$

Keterangan:

M = Nilai tambah

K = 1.64

Sd = Standar deviasi

Rumus di atas berlaku jika pelaksana mempunyai data pengalaman pembuatan beton yang diuji kuat tekannya pada umur 28 hari. Jika tidak mempunyai data pengalaman kurang dari 15 benda uji, nilai N langsung diambil 12 Mpa. Standar deviasi nilainya diambil dari tabel 1.1 dengan nilai 4,2 karena pelaksana tidak mempunyai data pengalaman atau mempunyai pengalaman kurang dari 15 benda uji

Maka nilai tambah margin adalah:

 $M = 1,64 \times 4,2 = 6,888 \text{ Mpa}$

D. Menetapkan kuat tekan rata-rata yang direncanakan

f'cr = f'c + M (1.2)

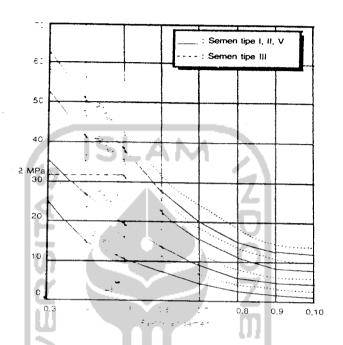
Keterangan:

f'cr = Kuat tekan rata-rata

f'c = Kuat tekan yang disyaratkan

M = Nilai tambah

f'cr = 40 + 6,888 = 26,888 MPa

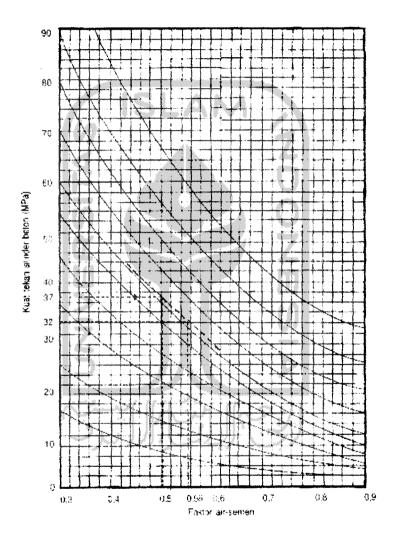

E. Menetapkan Jenis Semen

Jenis semen yang dipakai adalah semen Jenis I, yaitu jenis semen biasa yang cepat mengeras.

F. Menetapkan faktor air-semen

Cara menetapkan faktor air-semen diperoleh dari nilai terendah tiga cara.

Cara pertama : kuat silinder (f'cr = 26,888 Mpa) dan pada saat umur beton 28 hari. Jenis semen tipe I atau garis utuh. Caranya tarik garis lurus dan memotong 28 hari didapatkan faktor air-semen, yaitu 0,56. Jadi f.a.s pertama – **0,56**


Gambar 1.1 Hubungan faktor air-semen dan kuat tekan rata-rata silinder beton (sebagai perkiraan nilai f.a.s)

Cara kedua: Diketahui jenis semen I, jenis agregat kasar batu pecah. Kuat tekan rata-ratanya pada umur 28 hari maka digunakan tabel dibawah ini.

Tabel 1.3 Perkiraan kuat tekan beton (Mpa) dengan faktor air semen 0,50

Jenis Semen	Jenis Agregat kasar (kerikil)	Umur beton (hari)				
		3	7	28	91	
I, II, V	Alami	17	23	33	40	
	Batu pecah	19	27	37	45	
Į.	Alami	21	28	38	44	
	Batu pecah	25	33	44	48	

Dari Tabel diatas diperoleh nilai kuat tekan = 37 MPa, yaitu jenis semen I, kerikil batu pecah pada umur beton 28 hari. Kemudian, dengan faktor air semen 0,5 dan f'cr = 37 MPa, gunakan grafik dibawah ini.

Gambar 1.2 Mencari faktor air semen

Caranya, tarik garis kekanan mendatar 37, tarik garis keatas 0,5 dan berpotongan pada titik A. Buat garis putus-putus dimulai dari titik A ke atas dan ke bawah melengkung seperti garis yang di atas dan di bawahnya. Sekarang dengan f'cr =

26,888 tarik ke kanan memotong garis putus yang dibuat tadi di B dan tarik garis ke bawah maka diperoleh faktor air-semen yang baru yaitu = 0,65. Jadi fas kedua = 0,65

Cara Ketiga : Dengan melihat persyaratan untuk berbagai pembetonan dan lengkungan khusus, beton yang berhubungan dengan air tanah mengandung sulfat untuk beton bertulang terendam air.

Dengan cara ini diperoleh:

- a) Untuk pembetonan di dalam ruang bangunan dan keadaan keliling non korosif = 0,6
- b) Untuk beton yang berhubungan dengan air tanah, dengan jenis semen tipe I tanpa pozolan untuk tanah mengandung SO_3 antara 0.3 1.2, maka fas yang diperoleh = 0.50.
- c) Untuk beton bertulang dalam air tawar dan tipe semen I yaitu faktor air-semennya = 0,50

Dari ketiga cara di atas diperoleh masing-masing 0.6; 0.5; dan 0.5 diambil harga yang terendah yaitu 0.5 maka diperoleh faktor air-semennya = 0.5

Tabel 1.4 Persyaratan faktor air semen maksimum untuk berbagai pembetonan dan lingkungan khusus

Jenis pembetonan	f a a malai
Beton di dalam ruang bangunan :	f.a.s maksimum
 Keadaan keliling non korosif Keadaan keliling korosif, disebabkan oleh kondensasi 	0,60 0,52
atau uap korosi Beton di luar bangunan : - Tidak terlindung dari hujan dan	0,55
terik matahari langsung - Terlindung dari hujan dan terik matahari langsung	0,60
Beton yang masuk kedalam tanah: - Mengalami keadaan basah dan kering berganti-ganti - Mendapat pengaruh sulfat dan	0,55
alkali dari tanah	Lihat tabel

Tab

Jkuran cerikil m)

iono Budi

etapkai

t semen

t Semer

rangan

Jumlah Faktor a

t Semei

etapka

utuhan n dari

iu dan a

Beton yang berhubungan dengan air tawar/payau/laut	Lihat tabel
(Sumbar: Trions But 1	

(Sumber: Triono Budi Astanto, 2001)

Dari ketiga cara diatas, diperoleh masing-masing fas 0,36; 0,41; 0,6 maka nilai fas diambil nilai yang terendah yaitu 0,36

Menetapkan nilai Slump G.

Tabel 1.5 Penetapan nilai slump

Pemakaian Beton	Maksimal	Minimal
Dinding, pelat fondasi dan fondasi		Millimai
telapak bertulang	12,5	5.0
Fondasi telapak tidak bertulang kaison,	12,5	5,0
dan struktur di bawah tanah	9,0	2.5
Pelat, balok, kolom, dan dinding	15,0	2,5
Pengerasan jalan		7,5
Pembetonan masal	7,5	5,0
Jumber: Triono Rudi Astanta 2001)	7,5	2,5

(Sumber: Triono Budi Astanto, 2001)

Menetapkan kebutuhan air H.

Untuk menetapkan kebutuhan air per meter kubik digunakan tabel dibawah ini dan dilanjutkan dengan perhitungan:

Tabel 1.6 Perkiraan kebutuhan air per meter kubik beton (liter)

	Besar Ukuran maks (mm)	; F-4P/1 C		Slur	mp	
	(******)	batuan	0-10	10-30	30-60	60-180
	10	Alami	150	180	205	225
	20	Batu pecah	180	205	230	250
	20	Alami	135	160	180	195
	40	Batu pecah	170	190	210	225
	40	Alami	115	140	160	175
_ /S:	umber: Triono Budi Astanto	Batu pecah	155	175	190	205

(Sumber: Triono Budi Astanto, 2001)

CATATAN KONSULTASI TUGAS AKHIR

		CATATAN RONGO ET MOZ TO GMO THE	
NO	TANGGAL	CATATAN KONSULTASI	TANDA TANGA
7	207 -	- lean tom - hear pentahasa - recen lop stp - siaple use sidnes stp - leavent - lea	

Tabel 1.7 Penentuan kebutuhan air berdasarkan agregat

Tab	el 1.7 Penentua	111 110 -			
			Slump	(mm)	
Besar Ukuran maks kerikil	Jenis Batuan	0-10	10-30	30-60	60-180
(mm)		``	180	205	225
10	Alami Datu pecah	150 180	205	230	250 195
20	Batu pecah Alami	135	160	180 210	225
20	Batu pecah	170	190	160	175
40	Alami Batu pecah	155	175	190	205
	Batu pecan	1			

(Sumber: Triono Budi Astanto, 2001)

Menetapkan kebutuhan semen I.

Berat semen per meter kubik beton dihitung dengan:

Berat Semen per meter kubik beton dinasas

Berat Semen =
$$\frac{W}{C}$$
(1.3)

Keterangan:

W = Jumlah air yang dibutuhkan

C = Faktor air-semen maksimum

Berat Semen =
$$\frac{210}{0.56}$$
 = 375 kg/m³

Menetapkan kebutuhan semen minimum J.

Kebutuhan semen minimum ditetapkan lewat tabel antara lain untuk menghindari beton dari kerusakan akibat lingkungan khusus misalnya lingkungan korotif, air payau dan air laut.

Tabel 1.8 Kebutuhan semen minimum untuk berbagai pembetonan dan lingkungan

Jenis Pembetonan	
Beton di dalam ruang bangunan :	
- Keadaan keliling non korosif	
 Keadaan keliling korosif, disebabkan oleh kondensasi atau uap korosif 	275
Beton di luar ruang bangunan	
 Tidak terlindung dari hujan dan terik matahari Terlindung dari hujan dan terik matahari langsung 	325
Beton yang masuk ke dalam tanah:	275
- Mengalami keadaan basah dan kering berganti-ganti	325
nber: Triono Budi Astanto, 2001)	

Diambil kebutuhan semen dengan nilai terbesar adalah **583,3 kg/m³**

K. Menentukan golongan pasir

Golongan pasir ditentukan dengan cara menghitung hasil ayakan hingga dapat ditemukan golongannya.

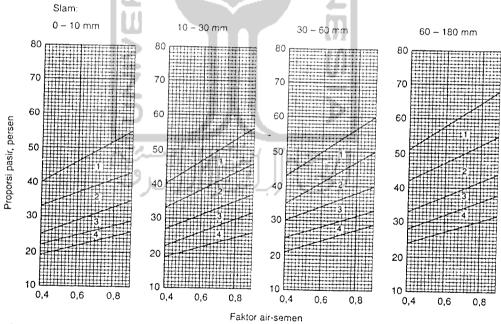
Dalam SK-SNI-T-15-1990-03 kekasaran pasir dibagi menjadi 4 daerah yaitu Daerah I

Pasir kasar

Daerah II Pasir agak kasar

Daerah III Pasir agak halus

Daerah IV Pasir halus


Tabel 1.9 Gradasi Pasir

Lubang ayakan (mm)	Pe	rsen berat butir	yang lewat ayal	kan
ayakan (mm)	Daerah I	Daerah II	Daerah III	Daerah IV
10	100	100	100	100
48	90-100	90-100	90-100	95-100
2,4	60-95	75-100	85-100	95-100
1,2	30-70	55-90	75-100	90-100
0,5	15-34	35-59	60-79	80-100
0,3	5-20	8-30	12-40	15-50
0,15	0-10	0-16	0-10	0-15

(Sumber: Triono Budi Astanto, 2001)

L. Menentukan perbandingan pasir dan kerikil

Untuk menentukan perbandingan pasir dan kerikil dicari dengan bantuan grafik di bawah ini. Dengan melihat nilai slump yang diinginkan, ukuran butir maksimum, zona pasir, faktor air-semen.

Gambar 1.3. Persentase agregat halus terhadap agregat keseluruhan untuk ukuran butir maksimum 20 mm

Fas

$$= 0.56$$

Daerah pasir

= daerah 2

Slump

= 30 - 60 mm

Agregat maksimum = 20 mm

Maka didapat persentase pasir

= 36%

persentase kerikil

= 64%

Menentukan berat jenis campuran pasir dan kerikil M.

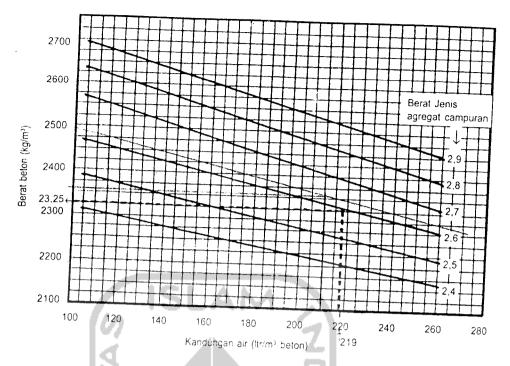
Bj campuran =
$$\frac{P}{100}$$
 x Bj pasir - $\frac{K}{100}$ x Bj kerikil(1.4)

Keterangan:

Bj campuran = Berat jenis campuran

P

= Persentase pasir terhadap agregat campuran


K

= Persentase kerikil terhadap agregat campuran

Bj campuran =
$$(\frac{36}{100} \times 2,621) + (\frac{64}{100} \times 2,643) = 2,635 \text{ t/m}^3$$

N. Menentukan Berat Beton

Untuk menentukan berat beton digunakan data berat jenis campuran kebutuhan dan kebutuhan air tiap meter kubik, setelah ada data, kemudian dimasukkan dalam grafik beton di bawah ini

Gambar 1.4 Hubungan kandungan air, berat jenis agregat campuran, dan berat beton

Maka didapat berat beton adalah $2350~{
m kg/m^3}$ dengan cara kebutuhan air

O. Menentukan Kebutuhan Pasir dan Kerikil

Berat pasir + berat kerikil = berat beton - kebutuhan air - kebutuhan semen = 2350 - 210 - 375 = 1765 kg

P. Menentukan Kebutuhan Pasir

Kebutuhan pasir = $1765 \times 36\% = 635,4 \text{ kg}$

Q. Menentukan Kebutuhan Kerikil

1765 - 635,4 = 1129,6 kg

Formulir Perancangan Adukan Beton (Menurut Standar Pekerjaan Umum)

No	Uraian	Jumlah
1	Kuat tekan yang disyaratkan pada umur 28 hari	20 Mpa
2	Deviasi standar	
3	Nilai tambah	4,2 MPa
	Kuat tekan rata-rata yang direncanakan	6,888 Mpa
	Jenis semen	26,888 MPa
	Jenis agregat kasar	biasa
	Faktor air semen	batu pecah
	Nilai slump	0,56
ſ	Ukuran maksimum agregat	30-60 mm
1	Kebutuhan Air	20 mm
- 1		210 ltr
	Kebutuhan semen portland	375 kg
	Daerah gradasi agregat halus	2
I	Persen berat agregat halus terhadap campuran	36 %
- 1	Berat jenis agregat campuran	$2,635 \text{ t/m}^3$
$\int \mathbf{E}$	Berat jenis beton	$\frac{2,635 \text{ km}}{2350 \text{ kg/m}^3}$
K	Kebutuhan agregat	
K	Cebutuhan agregat halus	1765 kg/m^3
- 1	ebutuhan agregat kasar	$635,4 \text{ kg/m}^3$
		$1129,6 \text{ kg/m}^3$

Kesimpulan

r	Semen	Ag. halus	1
		7 16. maius	Ag. kasar
kg	375 kg	635,4 kg	1129,6 kg
	kg	kg 375 kg	kg 375 kg 635,4 kg

Hn. Kaliurang Km. 14.4 Ttp. (0274) 895707, 895042 fax : (0274) 895330 Yogyakarta 55584

HASIL PEMERIKSAAN BERAT JENIS DAN KADAR AIR PASIR No. / Ka.Ops. / LBKT / / 2006

Penguji

: Agung Fajar M

Ditest tanggal: 22 Juni 2006 Pasir asal

: Cangkringan Kaliurang

Keperiuan

: Tugas Akhir

URAIAN	Contoh 1	Contoh 2	Contoh 3
Berat Pasir Kering Mutlak, gram (Bk)	474	480	478
Berat Pasir Kondisi Jenuh Kering Muka, gram	500	500	500
Berat Piknometer Berisi Pasir dan Air, gram (Bt)	1142	1147,5	1132
Berat Piknometer Berisi Air, gram (B)	831,5	831.5	831.5
Berat Jenis Curah, gram/cm ³ (1) Bk/(B+500-Bt)	2,5013	2,609	2,396
Berat Jenis Jenuh Kering Muka, gram/cm ³ (2) 500/(B+500-Bt)	2,64	2,717	2,506
Berat Jenis Semu	2,899	2,926	2,693
Penyerapan Air(4)	5,485 %	4,167 %	4,603 %

URAIAN	Rata-rata
Berat Pasir Kening Mutlak, gram (Bk)	477,33
Berat Pasir Kondisi Jenuh Kering Muka gram	
Berat Piknometer Berisi Pasir dan Air, gram (Bt)	500 1140.5
Berai Piknometer Berisi Air, gram (B)	831.5
Berat Jenis Curah, gram/cm ³ (1)	
Bk/(B + 500 - Bt)	2,502
Berat Jenis Jenuh Kering Muka, gram/cm ³ (2)	
500 / (B + 500 - Bt)	2,621
Berat Jenis Semu(3)	
Bk/(B+Bk-B1)	2,834
Penyerapan Air(4)	
(500 - Bk)/Bk x 100%	4,752 %

Keterangan:

500 = Berat benda uji dalam keadaan kering permukaan jenuh, dalam gram Kesimpulan: berat jenis jenuh kering muka pasir tersebut = 2,621 gr/cm³

Yogyakarta, 15 Desember 2006

Disahkan

Dikerjakan oleh

LABORATORIUM Laumhen Konstruksi Teknik FAKULTAS TEKNIK UIT

Hn. Kaliurang Km. 14.4 Ttp. (0274) 895707, 895042 fax : (0274) 895330 Yogyakarta 55584

HASIL PEMERIKSAAN BERAT JENIS DAN KADAR AIR KRICAK/KERIKIL

No. /Ka.Ops./LBKT/ / 2006

Penguji

: Agung Fajar M Ditest tanggal: 23 Juni 2006

Krikil asal

: Clereng Kulonprogo

Keperluan

: Tugas Akhir

URAIAN	Contoh 1	Contoh 2	Contoh 3
Berat Kerikil Kering Mutlak, gram (Bk)	4801	4830	4805
Berat Kerikil Kondisi Jenuh Kering Muka, gram (Bj)	5000	5(XX)	5000
Berat Kerikil Dalam Air, gram (Ba)	3098	3108	3119
Berat Jenis Curah(1) Bk/(Bj-Ba)	2,524	2,553	2,554
Berat Jenis jenuh Kering Muka (2) Bj / (Bj - Ba)	2,629	2,643	2,658
Berat Jenis Semu	2,819	2,805	2,85
Penyerapan Air,	4,145	3,519	4.058

URAIAN	Rata-rata
Berat Kerikil Kering Mutlak, gram (Bk)	4812
Berat Kerikil Kondisi Jenuh Kering Muka, gram (Bj)	5012 5000
Berat Kerikil Dalam Air, gram (Ba)	3108.33
Berat Jenis Curah(1)	2000,33
Bk/(Bj-Ba)	2,544
Berzt Jenis jenuh Kering Muka, (2) Bj / (Bj - Ba)	2,643
Berat Jenis Semu	2,825
Penyerapan Air	3,907%

Kesimpulan: berat jenis jenuh kering muka agregat tersebut = 2,544 gr/cm³

Yogyakarta, 15 Desember 2006

Disahkan

Dikerjakan oleh

LABORATORIUM ERICEBAHAM KONSTRUKSI TEKNIK

Agung Fajar M

PARULTAS TERNIK UIT

Iln. Kaliurang Km. 14.4 Tlp. (0274) 895707, 895042 fax : (0274) 895330 Yogyakarta 55584

HASIL PEMERIKSAAN BERAT VOLUME AGREGAT KASAR No. / Ka.Ops. / LBKT / / 2006

Penguji

: Agung Fajar M

Ditest tanggal: 22 Juni 2006

Krikil asal

: Clereng Kulonprogo

Keperluan

: Tugas Akhir

Uraian	Contoh 1	Contoh 2
Berat Tabung (W1), gram	15967	15967
Berat Tabung + Agregat Kering Tungku (W2), gram	31899,67	32868,55
Berat Agregat Bersih (W ₃), gram	15932.67	16901,55
Volume Tabung (V), cm ³	10765,32	10765,32
Berat Isi Padat (W ₃ /V), gram/cm ³	1,48	1,57

Uraian Berat Tabung (W 1), gram	Contoh 3	Rata- rata
Berat Tabung (W1), gram	15967	15967
Berat Tabung + Agregat Kering Tungku (W ₂), gram	33000	32589,41
Berat Agregat Bersih (W ₃), gram Volume Tabung (V), cm ³	17033	16622,41
Berat Isi Padat (W ₃ /V), gram/cm ³	10760	10763.52
Defait 1311 adai (W 3 / V), gram/cm	1.58	1.54

Yogyakarta, 15 Desember 2005

Disahkan

Dikerjakan oleh

Elines

LABORATORIUM

BAHAN KONSTRUKS! TEX SILK

FARULTAS TERRIT DIE

Hn. Kalinrang Km. 14.4 Ttp. (0274) 895707, 895042 fax : (0274) 895330 Yogyakarta 55584

DATA MODULUS HALUS BUTIR (MHB) AGREGAT HALUS

No. / Ka.Ops. / LBKT / / 2006

Penguji

: Agung Fajar M

Ditest tanggal: 23 Juni 2006 Pasir asal: Cangkringan

: Cangkringan Kaliurang

Keperluan

: Tugas Akhir

Lubang Ayakan (mm)	Berat Tertinggal (gram)	Berat Tertinggal	Berat Tertinggal Kumulatif (%)	Persen Lolos Kumulatif
40.00	- 3	0	()	((0)
20.00	0	0	0	100
10.00	0	0	0	100
4.80	23,50	1,175	1,175	98,825
2.40	141	7,05	8,225	91,775
1.20	416,5	20,825	29.05	70,95
0.60	644,50	32.225	61.275	38.725
0.30	407	20,35	81.625	18,375
0.15	209,5	10.475	92.1	7.90
Sisa	158	7.9	0	0
Jumlah	2000	100	273,45	

Modulus Halus Butir = $\frac{273,45}{100}$ = 2,7345

Yogyakarta, 15 Desember 2006

Disahkan

Dikerjakan oleh

LABORATORIUM LABORATORIUM ELMINISTRUKSI TEKNIK

FARULTAS TERNIK UIT

Jin. Kaliurang Km. 14,4 Tip. (0274) 895707, 895042 fax (0274) 895330 Yogyakaria 55584

GRADASI PASIR

Lubang ayakan		Persen butir agrega	t yang lewat ayakan	
(mm)	Daerah I	Daerah II	Daerah III	Daerah IV
10	100	1(x)	100	100
4,80	90-100	90-100	90-100	95-100
2,40	60-95	75-100	85-100	
1,20	30-70	55-90	75-100	95-100
0,60	15-34	35-59		90-100
0,30	5-20	8-30	60-79	80-100
0,15	0-10		12-40	15-50
		0-10 usir kasar	0-10	0-15

Daerah II

: Pasir agak kasar

Daerah III

: Pasir agak halus

Daerah IV

: Pasir halus

Hasil analisa ayakan masuk daerah : 2 (dua)

Jenis pasir : agak kasar

Yogyakarta, 15 Desember 2006

Disahkan

Dikerjakan oleh

LABORATORIUM BRHAN KONSTRUKSI TEKNIK

FARULTAS TERNIN UTI

DATA PENGUJIAN LABORATORIUM BETON f'c 20 MPa

Hasil perencanaan campuran adalah sebagai berikut:

Untuk setiap 1 m³ beton dibutuhkan:

a) Air

= 210 liter

b) Semen

= 375 kg

c) Pasir

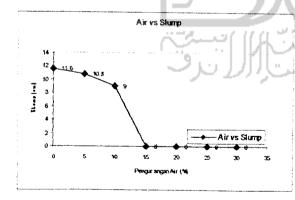
= 635,4 kg

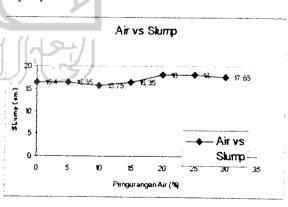
d) Kerikil

= 1129,6 kg

Data Nilai Slump

Sampel Beton	(-) air %	Slump Awal (cm)	Slump Akhir (cm)	SP(%semen)
B20-0%	0	11.6	16.4	0.3421
B20-5%	5	10.8	4 16.35	0.5132
B20-10%	10	9	15.75	1.3684
B20-15%	15	0	16.35	1.8816
B20-20%	20	(0)	18	1.9500
B20-25%	25	0	18	2.0526
B20-30%	30	0	17.65	2.3947

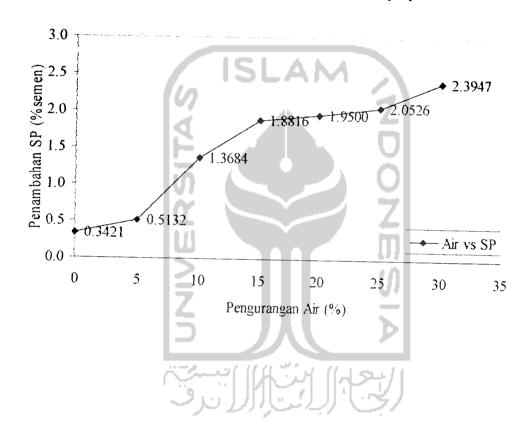

Keterangan:


B20-0%

= beton dengan f'c 20 MPa dengan pengurangan air 0%

Slump Awal = slump sebelum penambahan superplasticizer

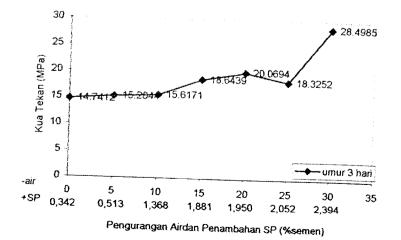
Slump Akhir= slump sesudah penambahan superplasticizer



Data Penambahan Superplasticizer

Sampel Beton	% Air	SP(%semen)	Kuat Tekan (MPa)				
		or (7000Holl)	3 hari	7 hari	14 hari	28 hari	
B20-0%	0	0.3421	16.2685	26.9463	23.8924	27.9087	
B20-5%	5	0.5132	17.1664	26.0598	24.0844	31.1151	
B20-10%	10	1.3684	17.2164	26,6458	23.2477	35.4075	
B20-15%	15	1.8816	18.6439	31.8066	34.4145	41.8588	
B20-20%	20	1.9500	20.0694	33.3115	36.1790		
B20-25%	25	2.0526	18.8493	33.1066	37.0269	42.8917	
B20-30%	30	2,3947	28.4985	41.4567	43.9721	39.1349 52.3343	

Grafik Hubungan Pengurangan Air dan Penambahan Superplasticizer

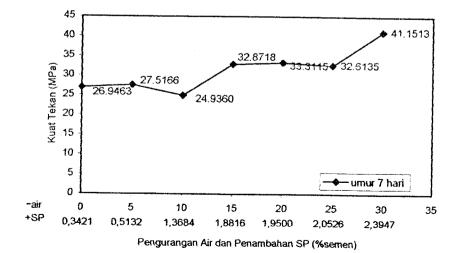


Data Kuat Tekan Beton Umur 3 Hari

Sample	(-) air %	Diameter	P (KN)	A (mm²)	D (sep.)
1	0%+SP	15	206.6	17678.57	P (MPa)
B20-0%	1	14.8	277.6	17210.29	1.1.0000
L	1	14.9	286.2		
rata-rata			1 200.2	17443.64	1
D20 50	5%	15.1	249.2	1 17045 07	14.7412
B20-5%		14.8	286.7	17915.07	
rata-rata	<u> </u>	74.0	200.7	17210.29	
200 100	10%	14.7	220		15.2844
B20-10%	·•**	14.8	238	16978.5	7 7.0 17 7
rata-rata	<u> </u>	14.0	296.3	17210.29	17.2164
	15%	4.5			15.6171
B20-15%	15% F	15	329.7	17678.57	18.6497
] 10/0	F	15.2	325.5	18153.14	17.9308
rata-rata		15	342.1	17678.57	19.3511
- day rate	20%				18.6439
B20-20%	20%	14.8	365.1	17210.29	21.2141
020-2070		14.9	350.9	17443.64	20.1162
rata-rata		14.9	329.3	17443.64	18.8779
i ala-i ala	050/ 1			97	20.0694
B20-25%	25%	15	314.7	17678.57	17.8012
50to ==1=	-134	14.9	328.8	17443.64	18,8493
rata-rata				U	18,3252
P20 202	30%	15.1	510.2	17915.07	28.4788
B20-30%		15.1	501.9	17915.07	28.0155
	44	15	512.7	17678.57	29.0012
rata-rata					28.4985
					_0.4000

Rata-rata

Committee				47.5
Sampel	%	Superplasticiz	Kuat Tekan	%
Beton	Penguraan	er (%semen)	(MPa)	Peningkata
B20-0%	0	0.3421	14.7412	0.0000
B20-5%	5	0.5132	15.2844	3.6849
B20-10%	10	1.3684	15.6171	5.9421
B20-15%	15	1.8816	18.6439	26.4749
B20-20%	20	1.9500	20.0694	36.1453
B20-25%	25	2.0526		24.3134
B20-30%	30	2.3947	28.4985	93.3261

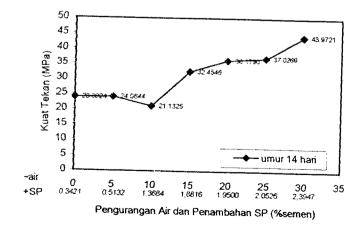


Data Kuat Tekan Beton Umur 7 Hari

Sample	(-) air %	Diameter	P (KN)	A (mm²)	P (MPa)
B20-0%	0%+SP	15	467.8	17678.57	26.4614
3200%		14.8	472.1	17210.29	27.4313
rata-rata	26.5463				
B20-5%	5%	14.9	505.4	17443.64	28.9733
		15	460.7	17678.57	26.0598
rata-rata					27.5166
B20-10%	10%	15.1	416.1	17915.07	23.2263
520 1070		14.9	464.8	17443.64	26.6458
rata-rata	24.9360				
B20-15%	15%	14.7	576.2	16978.5	33.9370
520 1070		14.8	547.4	17210.29	31.8066
rata-rata					32.8718
B20-20%	20%	14.8	589.6	17210.29	34.2586
525 25 70		14.7	549.5	16978.5	32.3645
rata-rata		4.670.0	- A A		33.3115
B20-25%	25%	14.7	562.1	16978.5	33.1066
020 20 %	110	14.8	552.8	17210.29	32.1203
rata-rata				-7	32.6135
	30%	15	716.7	17678.57	40.5406
B20-30%	18.	15.1	744.9	17915.07	41.5795
		15.1	740.5	17915.07	41.3339
rata-rata	-				41.1513

Rata-rata

		orhethrazu	Kuat Tekan	%
Beton	Penguraan	cizer	(MPa)	Peningkata
B20-0%	0	0.3421	26.9463	0.0000
B20-5%	5	0.5132	27.5166	2.1161
B20-10%	10	1.3684	24.9360	-7.4604
B20-15%	15	1.8816	32.8718	21.9898
B20-20%	20	1.9500	3 3 .3 1 15	23.6217
B20-25%	25	2.0526	32.6135	21.0311
B20-30%	30	2.3947	41.1513	52.7159

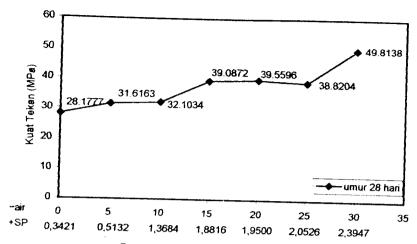


Data Kuat Tekan Beton Umur 14 Hari

Sample	(-) air %	Diameter	P (KN)	A (mm²)	P (MPa)			
B20-0%	0%+SP	15	380.7	17678.57	21.5345			
520-0%		14.9	457.9					
rata-rata								
B20-5%	5%	14.8	414.5	17210.29	23.8924 24.0844			
rata-rata					24.0844			
B20-10%	10%	14.8	400.1	17210.29				
020 1070		15	336.2	17678.57	19.0174			
rata-rata					21.1325			
1	15%	15.1	511.2	17915.07	28.5346			
B20-15%	į	15	632.9	17678.57	35.8004			
1		15	583.9	17678.57	33.0287			
rata-rata	rata-rata							
B00 000	20%	15	778	17678.57	44.0081			
B20-20%		14.9	533.8	17443.64	30.6014			
		14.8	583.9	17210.29	33.9274			
rata-rata		121	A A		36.1790			
D20 250	25%	14.9	628.5	17443.64	36.0303			
B20-25%	TO.	15.1	644	17915.07	35.9474			
		14.9	682.1	17443.64	39.1031			
rata-rata	-45-				37.0269			
B20-30%	30%	15.1	758.2	17915.07	42.3219			
020-30%		15	750.1	17678.57	42.4299			
rata-rata	-lin l	15	833.8	17678.57	47.1644			
raia-raia					43.9721			

Rata-rata

Sampel Beton	% Penguraan	Superplasti		%
	renguraan	cizer	Tekan	Peningkata
B20-0%	0 —	0.3421	23.8924	0.0000
B20-5%	5	0.5132	24.0844	0.8038
B20-10%	10	1.3684	21.1325	-11.5512
B20-15%	15	1.8816	32.4546	35.8364
B20-20%	20	1.9500	36.1790	51.4246
B20-25%	25	2.0526	37.0269	54.9737
B20-30%	30	2.3947	43.9721	84.0422



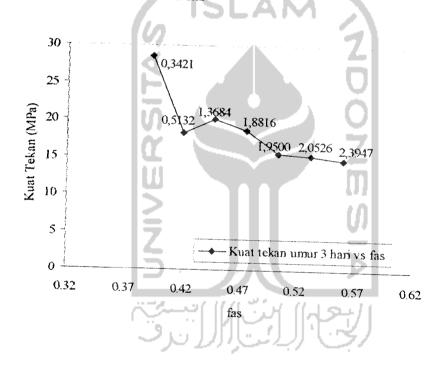
Data Kuat Tekan Beton Umur 28 Hari

Sample	(-) air %	Diameter	P (KN)	A (mm²)	P (MPa)
		14.9	500.5	17443.64	28.6924
	00/ .00	15	505.3	17678.57	28.5826
B20-0%	0%+SP	15.11	474.5	17938.81	26.4510
		14.9	505.6	17443.64	28.9848
rata-rata	28.1777				
		14.7	513	16978.5	30.2147
		14.6	533	16748.29	31.8242
B20-5%	5%	14.9	546.1	17443.64	31.3065
		14.8	570	17210.29	33.1197
rata-rata	<u> </u>				31.6163
	<u> </u>	14.7	541.7	16978.5	31.9051
B20-	10%	14.9	519.9	17443.64	29.8046
10%	ļ	14.6	579.5	16748.29	34.6006
rata-rata	32.1034				
		14.7	698.3	16978.5	41.1285
		14.7	698.8	16978.5	41.1579
B20-	15%	14.9	596.3	17443.64	34.1844
15%	11	15	690.4	17678.57	39.0529
	I	14.8	686.9	17210.29	39.9122
rata-rata		r e			39.0872
		14.7	614.6	16978.5	36,1987
B20-	20%	14.7	691.9	16978.5	40.7515
20%		15	737.7	17678.57	41.7285
rata-rata	3 U				39.5596
		15	704.3	17678.57	39.8392
B20-	25%	15	679.4	17678.57	38.4307
25%		15.1	684.2	17915.07	38.1913
rata-rat	a U	4			38.8204
		14.9	874.5	17443.64	50.1329
B20-	30%	14.9	951.3	17443.64	54.5356
30%		14.9		17443.64	44.7728
rata-rat	a Z				49.8138

Rata-rata

Sampel	%	Superplasti	Kuat	%
Beton	Penguraa	cizer	Tekan	Peningkata
B20-0%	0	0.3421	28.1777	0.0000
B20-5%	5	0.5132	31.6163	12.2031
B20-10%	10	1.3684	32.1034	13.9319
B20-15%	15	1.8816	39,0872	38.7167
B20-20%	20	1.9500	39,5596	40,3932
B20-25%		2.0526	38.8204	37.7699
B20-30%		2.3947	49,8138	76,7843

Pengurangan Air dan Penambahan SP (%semen)

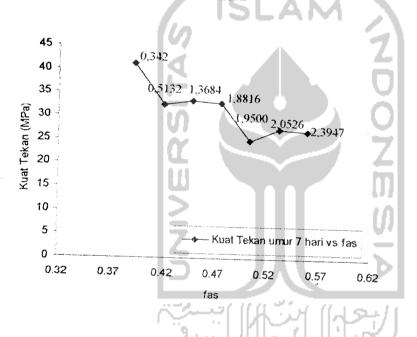


DATA KUAT TEKAN DAN FAKTOR AIR SEMEN (FAS) BETON UMUR 3 HARI

Tabel hubungan kuat tekan dan fas

Sampel Beton	faktor air semen	Superplasticizer (% semen)	Kuat tekan (Mpa)
B20-0%	0.56	0.34	14.7412
B20-5%	0.53	0.51	
B20-10%	0.50	1.37	15.2844
B20-15%	0.48	1.88	15.6171
B20-20%	0.45		18.6439
B20-25%	0.42	1.95	20.0694
B20-30%	0.39	2.05	18.3252
D20 30 /0	0.39	2.39	28.4985

Grafik hub. Kuat tekan dan fas

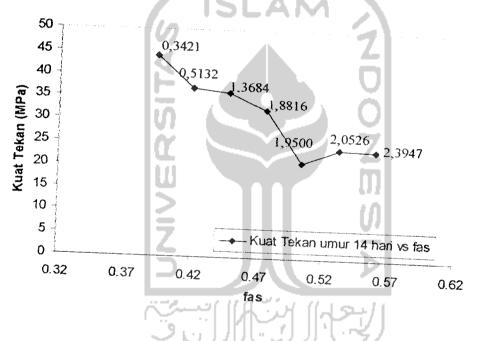


DATA KUAT TEKAN DAN FAKTOR AIR SEMEN (FAS) BETON UMUR 7 HARI

Tabel hubungan kuat tekan dan fas

	semen)	Kuat tekan (Mpa)
0.56	0.34	
0.53		26.9463
		27.5166
		24.9360
		32.8718
	1.95	33.3115
	2.05	32.6135
0.39	2.39	41.1513
	0.53 0.50 0.48 0.45 0.42 0.39	0.53 0.51 0.50 1.37 0.48 1.88 0.45 1.95 0.42 2.05

Grafik hub. Kuat tekan dan fas

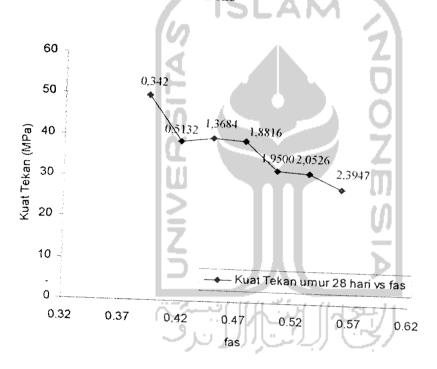


DATA KUAT TEKAN DAN FAKTOR AIR SEMEN (FAS) BETON UMUR 14 HARI

Tabel hubungan kuat tekan dan fas

Sampel Beton	Pengurangan air	faktor air semen	Superplasticizer (% semen)	Kuat tekan
B20-0%	0	0.56		(Mpa)
B20-5%	5	0.53	0.34	23.8924
B20-10%	10		0.51	24.0844
B20-15%		0.50	1.37	21.1325
B20-20%	15	0.48	1.88	32.4546
	20	0.45	1.95	
B20-25%	25	0.42		36.1790
B20-30%	30		2.05	37.0269
	50	0.39	2.39	43.9721

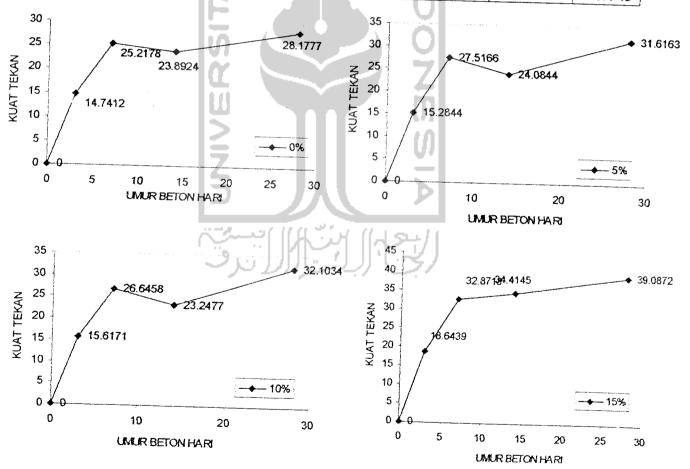
Grafik hub. Kuat tekan dan fas

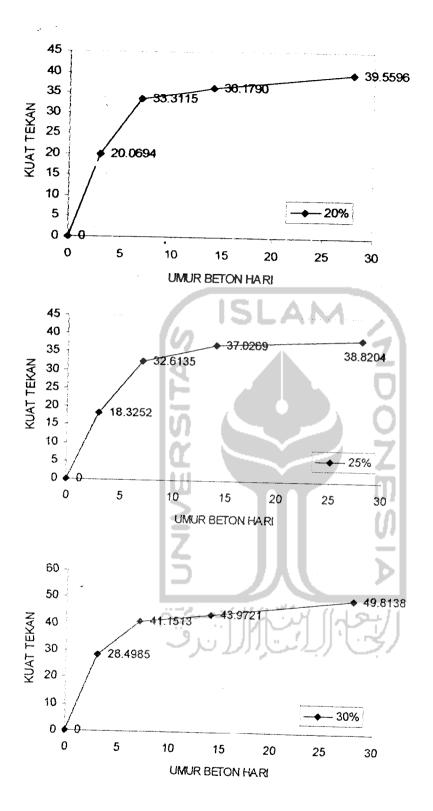


DATA KUAT TEKAN DAN FAKTOR AIR SEMEN (FAS) BETON UMUR 28HARI

Tabel hubungan kuat tekan dan fas

Sampel Beton	faktor air semen	Superplasticizer (% semen)	Kuat tekan (Mpa)
B20-0%	0.56	0.34	
B20-5%	0.53		28.1777
B20-10%	0.50	0.51	31.6163
B20-15%	0.48	1.37	32.1034
B20-20%		1.88	39.0872
	0.45	1.95	39,5596
B20-25%	0.42	2.05	
B20-30%	0.39		38.8204
		2.39	49.8138


DATA KUAT TEKAN BETON BERDASAR PENAMBAHAN UMUR


Peningkatan Kuat Tekan

11841.10		1		T	1		
UMUR	0%	5%	10%	15%	20%	25%	30%
0	0	0	0	0	0	0	30%
3	14.7412	15.2844	15.6171	18.6439	20.0694	19 2252	0
7	25.2178	27.5166	26.6458	32.8718		18.3252	28.4985
14	23.8924	24.0844			33.3115	32.6135	41.1513
28			23.2477	34.4145	36.1790	37.0269	43.9721
	28.1777	31.6163	32.1034	39.0872	39.5596	38.8204	49.8138

Peningkatan Kuat Tekan dengan Perbandingan PBBI 1971

	T		Bar z er bull	amgan I D	DL L7/1		
UMUR	0%	5%	10%	15%	20%	25%	30%
3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
7	71.0703	80.0303	70,6195	76.3140			0.0000
14	62.0791	57.5753	 		65.9817	77.9704	44.3983
28			48.8607	84.5888	80.2693	102.0545	54.2961
	91.1494	106.8532	105.5656	109.6513	97.1139	111.8414	74.7943

DATA TEGANGAN REGANGAN BETON DENGAN PENGURAGAN AIR 0%

Diameter	14.9	cm
Tinggi	30	cm
Berat	13.1	kg
Teg.max	30.56419	MPa
Reg.Hancur	23.9	x10^-4
Tegangan Plastis (0.4xf'c)	12.22568	MPa
Regangan Plastis	4.9733	10^-4

o %

0 %							
Beban (KN)	Dial	Teg.	Teg.	Pos	Reg.		
		(N/rnm2			Koreksi		
10	3	0.5733			0.7205		
20	7	1.1465			0.8538		
30	12	1.7198					
<u>40</u> 50	17	2.2931	2.2931		1.1872		
	22	2.8664	2.8664		1.3538		
60	29	3.4396	3.4396		1.5872		
70	34	4.0129	4.0129	1.1333	1.7538		
80	40	4.5862	4.5862	1.3333	1.9538		
90	45	5.1595	5.1595	1.5000	2.1205		
100	51	5.7327	5.7327	1.7000	2.3205		
110	58	6.3060	6.3060	1.9333	2.5538		
120	64	6.8793	6.8793	2.1333	2.7538		
130	71	7.4526	7.4526	2.3667	2.9872		
140	77	8.0258	8.0258	2.5667	3.1872		
150	84	8.5991	8.5991	2.8000	3.4205		
160	90	9.1724	9.1724	3.0000	3.6205		
170	97	9.7457	9.7457	3.2333	3.8538		
180	104	10.3189	10.3189	3.4667	4.0872		
190	111	10.8922	10.8922	3.7000	4.3205		
200	117	11.4655	11.4655	3.9000	4.5205		
210	127	12.0388	12.0388	4.2333	4.8538		
220	138	12.6120	12.6120	4.6000	5.2205		
230	144	13.1853	13.1853	4.8000	5.4205		
240	154	13.7586	13.7586	5.1333	5.7538		
250	165	14.3319	14.3319	5.5000	6.1205		
260	175	14.9051	14.9051	5.8333	6.4538		
270	186	15.4784	15.4784	6.2000	6.8205		
280	197	16.0517	16.0517	6.5667	7.1872		
290	210	16.6250	16.6250	7.0000	7.6205		
300	221	17.1982	17.1982	7.3667	7.9872		
310	237	17.7715	17.7715	7.9000	8.5205		
320	251	18.3448	18.3448	8.3667	8.9872		
330	267	18.9181	18.9181	8.9000	9.5205		
340	284	19.4913	19.4913	9.4667	10.0872		
350	272	20.0646	20.0646	9.0667	9.6872		
360	287	20.6379	20.6379	9.5667	10.1872		
370	302	21.2112	21.2112	10.0667	10.1872		
380	321	21.7844	21.7844	10.7000	11.3205		
390	338	22.3577	22.3577	11.2667	11.8872		
400	351	22.9310	22.9310	11.7000	12.3205		
410	366	23.5043	23.5043	12.2000	12.3205		
				12.2000	12.0205		

420	384	24.0775	24.0775	12.8000	13.4205
430	402	24.6508	24.6508	13.4000	
440	427	25.2241	25.2241	+	14.0205
450	455	25.7974		14.2333	14.8538
460	488		25.7974	15.1667	15.7872
470		26.3706	26.3706	16.2667	16.8872
	414	26.9439	26.9439	13.8000	14.4205
480	443	27.5172	27.5172	14.7667	15.3872
490	478	28.0905	28.0905	15.9333	16.5538
500	527	28.6637	28.6637	17.5667	
510	620	29.2370	29.2370		18.1872
520	653			20.6667	21.2872
530		29.8103	29.8103	21.7667	22.3872
	664	30.3836	30.3836	22.1333	22.7538
540	669	30.9568	30.9568	22.3000	22.9205
550	675	31.5301	31.5301	22.5000	
560	681	32.1034	32.1034		23.1205
		32004	52.1034	22.7000	23.3205

A(luas) = $0.25x3.14xd^2$ Δl = dial/2

L = 15 cm Regangan = $\Delta L/L$ *10^-4

Tegangan Plastis (0.4xfc) 12.2257 MPa Regangan Plastis 4.9733 10^-4

koreksi 0.0333

DATA TEGANGAN REGANGAN DENGAN PENGURAGAN AIR 5%

Diameter	14.9	cm
i inggi	30	cm
Berat	13.1	ka
Teg.max	34.1574	MPa
Reg.Hancur	21.8	x10^-4
Tegangan Plastis	13.66296	MPa
Regangan Plastis	5.08	10^-4

5%

3	/0				
Beban (KN) Dial	Teg. (N/mm2)	Teg. (MPa)	Reg	Reg. Koreksi
10	5	0.5810	0.5810	0.1667	0.1201
20	11	1.1621	1.1621	0.3667	0.3201
30	17	1.7431	1.7431	0.5667	0.5201
40	22	2.3242	2.3242	0.7333	0.6867
50	28	2.9052	2.9052	0.9333	0.8867
60	34	3.4863	3.4863	1.1333	1.0867
70	39	4.0673	4.0673	1.3000	1.2534
80	45	4.6484	4.6484	1.5000	1.4534
90	51	5.2294	5.2294	1.7000	1.6534
100	58	5.8105	5.8105	1.9333	
110	65	6.3915	6.3915	2.1667	1.8867 2.1201
120	71	6.9726	6.9726	2.3667	2.3201
130	78	7.5536	7.5536	2.6000	
140	85	8.1347	8.1347	2.8333	2.5534 2.7867
150	91	8.7157	8.7157	3.0333	2.7867
160	99	9.2968	9.2968	3.3000	
170	106	9.8778	9.8778	3.5333	3.2534
180	114	10.4589	10.4589	3.8000	3.4867
190	120	11.0399	11.0399	4.0000	3.7534
200	127	11.6210	11.6210	4.2333	3.9534 4.1867
210	135	12.2020	12.2020	4.5000	
220	144	12.7831	12.7831	4.8000	4.4534
230	151	13.3641	13.3641	5.0333	4.7534
240	157	13.9451	13.9451	5.2333	4.9867 5.1867
250	165	14.5262	14.5262	5.5000	
260	172	15.1072	15.1072	5.7333	5.4534
270	180	15.6883	15.6883	6.0000	5.6867
280	187	16.2693	16.2693	6.2333	5.9534
290	195	16.8504	16.8504	6.5000	6.1867
300	202	17.4314	17.4314	6.7333	6.4534
310	208	18.0125	18.0125	6.9333	6.6867
320	217	18.5935	18.5935	7.2333	6.8867
330	224	19.1746	19.1746	7.4667	7.1867
340	232	19.7556	19.7556	7.7333	7.4201
350	241	20.3367	20.3367	8.0333	7.6867
360	249	20.9177	20.9177	8.3000	7.9867 8.2534
370	256	21.4988	21.4988	8.5333	
380	265	22.0798	22.0798	8.8333	8.4867
390	274	22.6609	22.6609	9.1333	8.7867
400	284	23.2419	23.2419	9.4667	9.0867
410	292	23.8230	23.8230	9.7333	9.4201
			_0.02.00	3.7333	9.6867

420	301	24.4040	24.4040	10.0333	9.9867
430	310	24.9851	24.9851	10.3333	10.2867
440	320	25.5661	25.5661	10.6667	10.6201
450	331	26.1472	26.1472	11.0333	10.9867
460	343	26.7282	26.7282	11.4333	11.3867
470	355	27.3093	27.3093	11.8333	11.7867
480	370	27.8903	27.8903	12.3333	12.2867
490	383	28.4713	28.4713	12.7667	12.7201
500	398	29.0524	29.0524	13.2667	13.2201
510	414	29.6334	29.6334	13.8000	13.7534
520	432	30.2145	30.2145	14,4000	14.3534
530	451	30.7955	30.7955	15.0333	14.9867
540	473	31.3766	31.3766	15.7667	15.7201
550	498	31.9576	31.9576	16.6000	16.5534
560	530	32.5387	32.5387	17.6667	17.6201
570	573	33.1197	33.1197	19.1000	19.0534
560	91	32.5387	32.5387	3.0333	2.9867
550	102	31.9576	31.9576	3.4000	3.3534
560	109	32.5387	32.5387	3.6333	3.5867
570	113	33.1197	33.1197	3.7 6 67	3.7201

A(luas) = $0.25x3.14xd^2$ ΔI = dial/2L = 15 cm Regangan = $\Delta L/L$ *10^-4

Tegangan Plastis 13.6630 MPa Regangan Plastis 5.0800 10^-4

koreksi 0.0465 10^-4

DATA TEGANGAN REGANGAN DENGAN PENGURAGAN AIR 10%

Diameter 14.8 cm Tinggi 30 cm Berat 13 kg Teg.max 36.86638 MPa Reg.Hancur 24.2000 x10^-4 Tegangan Plastis 14.74655 MPa Regangan Plastis 5.6693 10^-4

10%

Beban (KN)	Dial	Teg.	Teg.	Reg	Reg.
10	- 4	(N/mm2) 0.5810			Koreksi
20	11	1.1621	0.5810 1.1621	0.1333	0.1222
30	16	1.7431		0.3667	0.3556
40	21	2.3242	1.7431	0.5333	0.5222
50	27		2.3242	0.7000	0.6889
60	33	2.9052	2.9052	0.9000	0.8889
70	37	3.4863	3.4863	1.1000	1.0889
80	44	4.0673	4.0673	1.2333	1.2222
90	51	4.6484	4.6484	1.4667	1.4556
100	57	5.2294	5.2294	1.7000	1.6889
110	65	5.8105	5.8105	1.9000	1.8889
120	71	6.3915	6.3915	2.1667	2.1556
130		6.9726	6.9726	2.3667	2.3556
140	79 86	7.5536	7.5536	2.6333	2.6222
150		8.1347	8.1347	2.8667	2.8556
160	93	8.7157	8.7157	3.1000	3.0889
170	103	9.2968	9.2968	3.4333	3.4222
180	107	9.8778	9.8778	3.5667	3.5556
	111	10.4589	10.4589	3.7000	3.6889
190	121	11.0399	11.0399	4.0333	4.0222
200	130	11.6210	11.6210	4.3333	4.3222
210	136	12.2020	12.2020	4.5333	4.5222
220	144	12.7831	12.7831	4.8000	4.7889
230	150	13.3641	13.3641	5.0000	4.9889
240	159	13.9451	13.9451	5.3000	5.2889
250	167	14.5262	14.5262	5.5667	5.5556
260	176	15.1072	15.1072	5.8667	5.8556
270	183	15.6883	15.6883	6.1000	6.0889
280	190	16.2693	16.2693	6.3333	6.3222
290	197	16.8504	16.8504	6.5667	6.5556
300	207	17.4314	17.4314	6.9000	6.8889
310	212	18.0125	18.0125	7.0667	7.0556
320	220	18.5935	18.5935	7.3333	7.3222
330	226	19.1746	19.1746	7.5333	7.5222
340	234	19.7556	19.7556	7.8000	7.7889
350	241	20.3367	20.3367	8.0333	8.0222
360	249	20.9177	20.9177	8.3000	8.2889
370	256	21.4988	21.4988	8.5333	8.5222

380	265	22.0798	22.0798	8.8333	8.8222
390	272	22.6609	22.6609	9.0667	9.0556
400	281	23.2419	23.2419	9.3667	9.3556
410	291	23.8230	23.8230	9.7000	9.6889
420	299	24.4040	24.4040	9.9667	9.9556
430	308	24.9851	24.9851	10.2667	10.2556
440	318	25.5661	25.5661	10.6000	10.5889
450	328	26.1472	26.1472	10.9333	10.9222
460	339	26.7282	26.7282	11.3000	11.2889
470	350	27.3093	27.3093	11.6667	11.6556
480	351	27.8903	27.8903	11.7000	11.6889
490	374	28.4713	28.4713	12.4667	12.4556
500	387	29.0524	29.0524	12.9000	12.8889
510	402	29.6334	29.6334	13.4000	13.3889
520	414	30.2145	30.2145	13.8000	13.7889
530	428	30.7955	30.7955	14.2667	14.2556
540	443	31.3766	31.3766	14.7667	14.7556
550	459	31.9576	31.9576	15.3000	15.2889
560	477	32.5387	32.5387	15.9000	15.8889
570	495	33.1197	33.1197	16.5000	16.4889
580	515	33.7008	3 3.7008	17.1667	17.1556
590	544	34.2818	34.2818	18.1333	18.1222
600	573	34.8629	34.8629	19.1000	19.0889
610	596	35,4439	35.4439	19.8667	19.8556
620	626	36.0250	36.0250	20.8667	20.8556
630	677	36.6060	36.6060	22.5667	22.5556
620	10	36.0250	36.0250	0.3333	0.3222
610	41	35.4439	35.4439	1.3667	1.3556
600	72	34.8629	34.8629	2.4000	2.3889
590	102	34.2818	34.2818	3.4000	3.3889
580	134	33.7008	33.7008	4.4667	4.4556

A(luas) Δl L

Regangan

0.25x3.14xd^2 dial/2 15 cm ΔL/L *10 ∴cm *10^-4

Tegangan Plastis Regangan Plastis

14.7466 5.6693 MPa 10^-4

koreksi

0.1000

10^-4

DATA TEGANGAN REGANGAN DENGAN PENGURAGAN AIR 15%

Diameter	14.8	cm
Tinggi	30	cm
Berat	12.9	kg
Teg.max	38.43976	MPa
Reg.Hancur	20.9	x10^-4
Tegangan Plastis	15.37591	MPa
Regangan Plastis	4.5218	10^-4

15%

1378	1	Tog	T	T	1 5
Beban (KN)	Dial	Teg.	Teg.	Reg	Reg.
10	4	(N/mm2)	(MPa)		Koreksi
20	8	0.5810	0.5810	0.1333	0.4293
30	12	1.1621	1.1621	0.2667	0.5627
40		1.7431	1.7431	0.4000	0.6960
50	16	2.3242	2.3242	0.5333	0.8293
60	20	2.9052	2.9052	0.6667	0.9627
70	24	3.4863	3.4863	0.8000	1.0960
80	28	4.0673	4.0673	0.9333	1.2293
	32	4.6484	4.6484	1.0667	1.3627
90	37	5.2294	5.2294	1.2333	1.5293
100	41	5.8105	5.8105	1.3667	1.6627
110	46	6.3915	6.3915	1.5333	1.8293
120	51	6.9726	6.9726	1.7000	1.9960
130	56	7.5536	7.5536	1.8667	2.1627
140	60	8.1347	8.1347	2.0000	2.2960
150	65	8.7157	8.7157	2.1667	2.4627
160	70	9.2968	9.2968	2.3333	2.6293
170	75	9.8778	9.8778	2.5000	2.7960
180	79	10.4589	10.4589	2.6333	2.9293
190	85	11.0399	11.0399	2.8333	3.1293
200	90 –	11.6210	11.6210	3.0000	3.2960
210	96	12.2020	12.2020	3.2000	3.4960
220	102	12.7831	12.7831	3.4000	3.6960
230	107 🚽	13.3641	13.3641	3.5667	3.8627
240	113	13.9451	13.9451	3.7667	4.0627
250	118	14.5262	14.5262	3.9333	4.2293
260	124	15.1072	15.1072	4.1333	4.4293
270	130	15.6883	15.6883	4.3333	4.6293
280	136	16.2693	16.2693	4.5333	4.8293
290	143	16.8504	16.8504	4.7667	5.0627
300	149	17.4314	17.4314	4.9667	5.2627
310	156	18.0125	18.0125	5.2000	5.4960
320	163	18.5935	18.5935	5.4333	5.7293
330	170	19.1746	19.1746	5.6667	5.9627
340	179	19.7556	19.7556	5.9667	6.2627
350	181	20.3367	20.3367	6.0333	6.3293
360	191	20.9177	20.9177	6.3667	6.6627

370 380 390 400 410 420 430 440 450 460 470 480 490 500	198 206 214 223 230 238 247 256 266 276 287 306 308	21.4988 22.0798 22.6609 23.2419 23.8230 24.4040 24.9851 25.5661 26.1472 26.7282 27.3093	21.4988 22.0798 22.6609 23.2419 23.8230 24.4040 24.9851 25.5661 26.1472 26.7282 27.3093	6.6000 6.8667 7.1333 7.4333 7.6667 7.9333 8.2333 8.5333 8.8667 9.2000	7.4293 7.7293 7.9627 8.2293 8.5293 8.8293 9.1627
390 400 410 420 430 440 450 460 470 480 490	214 223 230 238 247 256 266 276 287 306	22.6609 23.2419 23.8230 24.4040 24.9851 25.5661 26.1472 26.7282 27.3093	22.6609 23.2419 23.8230 24.4040 24.9851 25.5661 26.1472 26.7282	7.1333 7.4333 7.6667 7.9333 8.2333 8.5333 8.8667	7.1627 7.4293 7.7293 7.9627 8.2293 8.5293 8.8293 9.1627
400 410 420 430 440 450 460 470 480 490	223 230 238 247 256 266 276 287 306	23.2419 23.8230 24.4040 24.9851 25.5661 26.1472 26.7282 27.3093	23.2419 23.8230 24.4040 24.9851 25.5661 26.1472 26.7282	7.4333 7.6667 7.9333 8.2333 8.5333 8.8667	7.4293 7.7293 7.9627 8.2293 8.5293 8.8293 9.1627
410 420 430 440 450 460 470 480 490	230 238 247 256 266 276 287 306	23.8230 24.4040 24.9851 25.5661 26.1472 26.7282 27.3093	23.8230 24.4040 24.9851 25.5661 26.1472 26.7282	7.6667 7.9333 8.2333 8.5333 8.8667	7.7293 7.9627 8.2293 8.5293 8.8293 9.1627
420 430 440 450 460 470 480 490	238 247 256 266 276 287 306	24.4040 24.9851 25.5661 26.1472 26.7282 27.3093	24.4040 24.9851 25.5661 26.1472 26.7282	7.9333 8.2333 8.5333 8.8667	7.9627 8.2293 8.5293 8.8293 9.1627
430 440 450 460 470 480 490	247 256 266 276 287 306	24.9851 25.5661 26.1472 26.7282 27.3093	24.9851 25.5661 26.1472 26.7282	8.2333 8.5333 8.8667	8.2293 8.5293 8.8293 9.1627
440 450 460 470 480 490	256 266 276 287 306	25.5661 26.1472 26.7282 27.3093	25.5661 26.1472 26.7282	8.5333 8.8667	8.5293 8.8293 9.1627
450 460 470 480 490	266 276 287 306	26.1472 26.7282 27.3093	26.1472 26.7282	8.8667	8.8293 9.1627
460 470 480 490	276 287 306	26.7282 27.3093	26.7282		9.1627
470 480 490	287 306	27.3093			
480 490	306		27 3003		9.4960
490		07.000	1 21.0033	9.5667	9.8627
	308	27.8903	27.8903	10.2000	10.4960
500		28.4713	28.4713	10.2667	10.5627
·	315	29.0524	29.0524	10.5000	10.7960
510	323	29.6334	29.6334	10.7667	11.0627
520	333	30.2145	30.2145	11.1000	11.3960
530	343	30.7955	30.7955	11.4333	11.7293
540	357	31.3766	31.3766	11.9000	12.1960
550	368	31.9576	31.9576	12.2667	12.5627
560	383	32.5387	32.5387	12.7667	13.0627
570	397	33.1197	33.1197	13.2333	13.5293
580	406	33.7008	33.7008	13.5333	13.8293
590	418	34.2818	34.2818	13.9333	14.2293
600	430	34.8629	34.8629	14.3333	14.6293
610	447	35.4439	35.4439	14.9000	15.1960
620	465	36.0250	36.0250	15.5000	15.7960
630	488	36.6060	36.6060	16.2667	16.5627
640	513	37.1871	37.1871	17.1000	17.3960
650	539	37.7681	37.7681	17.9667	18.2627
660	557	38.3492	38.3492	18.5667	18.8627
670	571	38.9302	38.9302	19.0333	19.3293
680	593	39.5113	39.5113	19.7667	20.0627
690	550	40.0923	40.0923	18.3333	18.6293
680	76	39.5113	39.5113	2.5333	2.8293
670	88	38.9302	38.9302	2.9333	3.2293

A(luas)

0.25x3.14xd^2 dial/2

 ΔI

L

15 =

Regangan $\Delta L/L$ cm *10^-4

Tegangan Plastis Regangan Plastis

15.3759 4.5218

MPa 10^-4

koreksi

0.0000

10^-4

DATA TEGANGAN REGANGAN DENGAN PENGURAGAN AIR 20%

Diameter 15 cm Tinggi 30.2 cm Berat 13.3 kg Teg.max Reg.Hancur МРа 41.8666 21.9000 x10^-4 Tegangan Plastis Regangan Plastis 16.74664 MPa 4.862973 10^-4

20%

20%	T -	Teg.	Teg.	T'''	Reg.
Beban (KN)	Dial	(N/mm2)	(MPa)	Reg	Keg. Koreksi
10	3	0.5657	0.5657	0.1000	0.2550
20	7	1.1313	1.1313	0.2333	0.3883
30	11	1.6970	1.6970	0.3667	0.5217
40	15	2.2626	2.2626	0.5000	0.6550
50	20	2.8283	2.8283	0.6667	0.8217
60	23	3.3939	3.3939	0.7667	0.9217
70	28	3.9596	3.9596	0.9333	1.0883
80	32	4.5253	4.5253	1.0667	1.2217
90	37	5.0909	5.0909	1.2333	1.3883
100	41	5.6566	5.6566	1.3667	1.5217
110	46	6.2222	6.2222	1.5333	1.6883
120	50	6.7879	6.7879	1.6667	1.8217
130	55	7.3535	7.3535	1.8333	1.9883
140	60	7.9192	7.9192	2.0000	2.1550
150	65	8.4848	8.4848	2.1667	2.3217
160	70	9.0505	9.0505	2.3333	2.4883
170	75	9.6162	9.6162	2.5000	2.6550
180	80	10.1818	10.1818	2.6667	2.8217
190	85	10.7475	10.7475	2.8333	2.9883
200	90	11.3131	11.3131	3.0000	3.1550
210	95	11.8788	11.8788	3.1667	3.3217
220	100 –	12.4444	12.4444	3.3333	3.4883
230	105	13.0101	13.0101	3.5000	3.6550
240	111	13.5758	13.5758	3.7000	3.8550
250	115	14.1414	14.1414	3.8333	3.9883
260	123	14.7071	14.7071	4.1000	4.2550
270	128	15.2727	15.2727	4.2667	4.4217
280	132	15.8384	15.8384	4.4000	4.5550
290	137	16.4040	16.4040	4.5667	4.7217
300	144	16.9697	16.9697	4.8000	4.9550
310	150	17.5354	17.5354	5.0000	5.1550
320	156	18.1010	18.1010	5.2000	5.3550
330	162	18.6667	18.6667	5.4000	5.5550
340	164	19.2323	19.2323	5.4667	5.6217
350	174	19.7980	19.7980	5.8000	5.9550
360	181	20.3636	20.3536	6.0333	6.1883
370	185	20.9293	20.9293	6.1667	6.3217
380	194	21.4949	21.4949	6.4667	6.6217

390	200	22.0606	22.0606	6.6667	6.821
400	206	22.6263			
410	213	23.1919			
420	220	23.7576		7.3333	
430	227	24.3232	24.3232	7.5667	
440	234	24.8889	24.8889	7.8000	
450	242	25.4545	25.4545	8.0667	
460	247	26.0202	26.0202	8.2333	
470	255	26.5859	26.5859	8.5000	
480	262	27.1515	27.1515	8.7333	
490	269	27.7172	27.7172	8.9637	9.1217
500	277	28.2828	28.2828	9.2333	9.3883
510	285	28.8485	28.8485	9.5000	9.6550
520	295	29.4141	29.4141	9.8333	9.9883
530	303	29.9798	29.9798	10.1000	
540	311	30.5455	30.5455	10.3667	
550	322	31.1111	31.1111	10.7333	
560	330	31.6768	31.6768	11.0000	
570	340	32.2424	32.2424	11.3333	
580	349	32.8081	32.8081	11.6333	
590	359	33.3737	33.3737	11.9667	
600	369	33.9394	33.9394	12.3000	12.4550
610	379	34.5051	34.5051	12.6333	12.7883
620	392	35.0707	35.0707	13.0667	13.2217
630	403	35.6364	35.6364	13.4333	13.5883
640	413	36.2020	36.2020	13.7667	13.9217
650	425	36.7 6 77	36.7677	14.1667	14.3217
660	442	37.3333	37.3333	14.7333	14.8883
670	460	37.8990	37.8990	15.3333	15.4883
680	478	38.4646	38.4646	15.9333	16.0883
690	501	39.0303	39.0303	16.7000	16.8550
700	499	39.5960	39.5960	16.6333	16.7883
710	505	40.1616	40.1616	16.8333	16.9883
720	510	40.7273	40.7273	17.0000	17.1550
730	511	41.2929	41.2929	17:0333	17.1883
740	504	41.8586	41.8586	16.8000	16.9550
750	495	42.4242	42.4242	16.5000	16.6550
760	500	42.9899	42.9899	16.6667	16.8217
770	505	43.5556	43.5556	16.8333	16.9883
780	510	44.1212	44.1212	17.0000	17.1550
790	495	44.6869	44.6869	16.5000	16.6550
800	450	45.2525	45.2525	15.0000	15.1550

DATA TEGANGAN REGANGAN DENGAN PENGURAGAN AIR 25%

Diameter	15	cm
Tinggi	29.9	cm
Berat	13	ka
Teg.max	30.6677	MPa
Reg.Hancur	17.9000	x10^-4
Tegangan Plastis	12.26708	MPa
Regangan Plastis	3.815296	10^-4

25%

10						
10 3 0.5657 0.1000 0 20 7 1.1313 1.1313 0.2333 0 30 11 1.6970 1.6970 0.3667 0 40 15 2.2626 2.2626 0.5000 0 50 20 2.8283 2.8283 0.6667 0 60 25 3.3939 3.3939 0.8333 1 70 30 3.9596 3.9596 1.0000 1 80 35 4.5253 4.5253 1.1667 1 90 39 5.0909 5.0909 1.3000 1 100 44 5.6566 5.6566 1.4667 1 110 49 6.2222 6.2222 1.6333 1.1 120 54 6.7879 6.7879 1.8000 2.6 130 59 7.3535 7.3535 1.9667 2.3 140 63 7.9192 7.9192	Beban (KN)) Dial	Teg.	Teg.	Reg	Reg.
20 7 1.1313 1.1313 0.2333 0 30 11 1.6970 1.6970 0.3667 0 40 15 2.2626 2.2626 0.5000 0 50 20 2.8283 2.8283 0.6667 0 60 25 3.3939 3.3939 0.8333 1 70 30 3.9596 1.0000 1 80 35 4.5253 4.5253 1.1067 1 90 39 5.0909 5.0909 1.3000 1 100 44 5.6566 5.6566 1.4667 1 110 49 6.2222 6.2222 1.6333 1 120 54 6.7879 6.7879 1.8000 2.5 130 59 7.3535 7.3535 1.9667 2.5 140 63 7.9192 7.9192 2.1000 2.5 150 70 8.4848 8.4848 <t< td=""><td>10</td><td>3</td><td></td><td></td><td>0.1000</td><td>Koreksi</td></t<>	10	3			0.1000	Koreksi
30 11 1.6970 1.6970 0.3667 0. 40 15 2.2626 2.2626 0.5700 0. 50 20 2.8283 2.8283 0.6667 0. 60 25 3.3939 3.3939 0.8333 1. 70 30 3.9596 3.9596 1.0000 1. 80 35 4.5253 4.5253 1.1667 1. 90 39 5.0909 5.0909 1.3000 1. 100 44 5.6566 5.6566 1.4667 1. 110 49 6.2222 6.2222 1.6333 1. 120 54 6.7879 6.7879 1.8000 2. 130 59 7.3535 7.3535 1.9667 2. 140 63 7.9192 7.9192 2.1000 2. 150 70 8.4848 8.4848 2.3333 2.6 150 70 8.4848						
40 15 2.2626 2.2626 0.5700 0.50 50 20 2.8283 2.8283 0.6667 0.6667 0.60 60 25 3.3939 3.3939 0.8333 1.70 30 3.9596 3.9596 1.0000 1.667 1.11 80 35 4.5253 4.5253 1.1667 1.11 90 39 5.0909 1.3000 1.110 100 44 5.6566 5.6566 1.4667 1.110 110 49 6.2222 6.2222 1.6333 1.110 120 54 6.7879 6.7879 1.8000 2.0100 130 59 7.3535 7.3535 1.9667 2.311 140 63 7.9192 7.9192 2.1000 2.311 150 70 8.4848 8.4848 2.3333 2.667 150 70 8.4848 8.4848 2.3333 3.26 160	30					
50 20 2.8283 2.8283 0.6667 0.6667 60 25 3.3939 3.3939 0.8333 1.70 30 3.9596 3.9596 1.0000 1.80 80 35 4.5253 4.5253 1.1667 1.90 90 39 5.0909 5.0909 1.3000 1.100 100 44 5.6566 5.6566 1.4667 1.100 110 49 6.2222 6.2222 1.6333 1.110 120 54 6.7879 6.7879 1.8000 2.000 130 59 7.3535 7.3535 1.9667 2.000 140 63 7.9192 7.9192 2.1000 2.000 150 70 8.4848 8.4848 2.3333 2.6667 2.5000 170 80 9.6162 9.6162 2.6667 2.5000 2.700 180 85 10.1818 10.1818 2.8333 3.1 <tr< td=""><td>40</td><td></td><td></td><td></td><td></td><td></td></tr<>	40					
60 25 3.9399 3.3939 0.8333 1. 70 30 3.9596 3.9596 1.0000 1. 80 35 4.5253 4.5253 1.1667 1. 90 39 5.0909 5.0909 1.3000 1. 100 44 5.6566 5.6566 1.4667 1. 110 49 6.2222 6.2222 1.6333 1. 120 54 6.7879 6.7879 1.8000 2. 130 59 7.3535 7.3535 1.9667 2. 140 63 7.9192 7.9192 2.1000 2. 150 70 8.4848 8.4848 2.3333 2.6 150 75 9.0505 9.0505 2.5000 2.7 180 85 10.1818 10.1818 2.8333 3. 190 90 10.7475 10.7475 3.0000 3. 200 96 11.3	50					
70 30 3.9596 3.9596 1.0000 1. 80 35 4.5253 4.5253 1.1667 1. 90 39 5.0909 5.0909 1.3000 1. 100 44 5.6566 5.6566 1.4667 1. 110 49 6.2222 6.2222 1.6333 1. 120 54 6.7879 6.7879 1.8000 2. 130 59 7.3535 7.3535 1.9667 2. 140 63 7.9192 7.9192 2.1000 2. 150 70 8.4848 8.4848 2.3333 2.6 160 75 9.0505 9.0505 2.5000 2.7 170 80 9.6162 9.6162 2.6667 2. 180 85 10.1818 10.1818 2.8333 3. 190 90 10.7475 10.7475 3.0000 3. 200 96 11.	60					
80 35 4.5253 4.5253 1.1667 1. 90 39 5.0909 5.0909 1.3000 1. 100 44 5.6566 5.6566 1.4667 1. 110 49 6.2222 6.2222 1.6333 1.9 120 54 6.7879 6.7879 1.8000 2.0 130 59 7.3535 7.3535 1.9667 2.3 140 63 7.9192 7.9192 2.1000 2.3 150 70 8.4848 8.4848 2.3333 2.6 160 75 9.0505 9.0505 2.5000 2.7 170 80 9.6162 9.6162 2.6667 2.9 180 85 10.1818 10.1818 2.8333 3.1 190 90 10.7475 10.7475 3.0000 3.2 200 96 11.3131 11.3131 3.2000 3.6 220 108	70					
90 39 5.0909 5.0909 1.3000 1. 100 44 5.6566 5.6566 1.4667 1. 110 49 6.2222 6.2222 1.6333 1.9 120 54 6.7879 6.7879 1.8000 2.0 130 59 7.3535 7.3535 1.9667 2.3 140 63 7.9192 7.9192 2.1000 2.5 150 70 8.4848 8.4648 2.3333 2.6 160 75 9.0505 9.0505 2.5000 2.7 170 80 9.6162 9.6162 2.6667 2.9 180 85 10.1818 10.1818 2.8333 3.1 190 90 10.7475 10.7475 3.0000 3.2 200 96 11.3131 11.3131 3.2000 3.4 210 102 11.8788 11.8788 3.4000 3.6 220 108 12.4444 12.4444 3.6000 3.6 230 115 13.0101 13.0101 3.8333 4.1 240 121 13.5758 13.5758 4.0333 4.3 250 129 14.1414 14.1414 4.3000 4.5 260 138 14.7071 14.7071 4.6000 4.8 270 144 15.2727 15.2727 4.8000 5.0 280 150 15.8384 15.8384 5.0000 5.2 290 158 16.4040 16.4040 5.2667 5.5 300 165 16.9697 16.9697 5.5000 5.7 310 176 17.5354 17.5354 5.8667 6.14 330 295 19.2323 19.2323 6.8333 7.11 380 246 21.4949 17.949 8.2000 8.47 390 257 22.6263 22.6263 8.9000 9.17	80					
100 44 5.6566 5.6566 1.4667 1. 110 49 6.2222 6.2222 1.6333 1. 120 54 6.7879 6.7879 1.8000 2. 130 59 7.3535 7.3535 1.9667 2. 140 63 7.9192 7.9192 2.1000 2. 150 70 8.4848 8.4848 2.3333 2.6 160 75 9.0505 9.0505 2.5000 2. 170 80 9.6162 9.6162 2.6667 2.9 180 85 10.1818 10.1818 2.8333 3.1 190 90 10.7475 10.7475 3.0000 3.2 200 96 11.3131 11.3131 3.2000 3.4 210 102 11.8788 11.8788 3.4000 3.6 220 108 12.4444 12.4444 3.6000 3.8 230 115 <td>90</td> <td></td> <td></td> <td></td> <td></td> <td></td>	90					
110 49 6.2222 6.2222 1.6333 1.9 120 54 6.7879 6.7879 1.8000 2.0 130 59 7.3535 7.3535 1.9667 2.2 140 63 7.9192 7.9192 2.1000 2.5 150 70 8.4848 8.4848 2.3333 2.6 160 75 9.0505 9.0505 2.5000 2.7 170 80 9.6162 9.6162 2.6667 2.5 180 85 10.1818 10.1818 2.8333 3.1 190 90 10.7475 10.7475 3.0000 3.2 200 96 11.3131 11.3131 3.2000 3.4 210 102 11.8788 11.8788 3.4000 3.6 220 108 12.4444 12.4444 3.6000 3.8 230 115 13.0101 13.0101 3.8333 4.1 240 <t< td=""><td>100</td><td></td><td></td><td></td><td></td><td></td></t<>	100					
120 54 6.7879 6.7879 1.8000 2.0 130 59 7.3535 7.3535 1.9667 2.2 140 63 7.9192 7.9192 2.1000 2.5 150 70 8.4848 8.4848 2.3333 2.6 160 75 9.0505 9.0505 2.5000 2.7 170 80 9.6162 9.6162 2.6667 2.5 180 85 10.1818 10.1818 2.8333 3.1 190 90 10.7475 10.7475 3.0000 3.2 200 96 11.3131 11.3131 3.2000 3.4 210 102 11.8788 11.8788 3.4000 3.6 220 108 12.4444 12.4444 3.6000 3.8 230 115 13.0101 13.0101 3.8333 4.3 250 129 14.1414 14.1414 4.3000 4.5 260	110					
130 59 7.3535 7.3535 1.9667 2.3 140 63 7.9192 7.9192 2.1000 2.3 150 70 8.4848 8.4848 2.3333 2.6 160 75 9.0505 9.0505 2.5000 2.7 170 80 9.6162 9.6162 2.6667 2.9 180 85 10.1818 10.1818 2.8333 3.1 190 90 10.7475 10.7475 3.0000 3.2 200 96 11.3131 11.3131 3.2000 3.4 210 102 11.8788 11.8788 3.4000 3.6 220 108 12.4444 12.4444 3.6000 3.8 230 115 13.0101 13.0101 3.8333 4.1 240 121 13.5758 13.5758 4.0333 4.3 250 129 14.1414 14.1414 4.3000 4.5 260	120					
140 63 7.9192 7.9192 2.1000 2.5 150 70 8.4848 8.4848 2.3333 2.6 160 75 9.0505 9.0505 2.5000 2.7 170 80 9.6162 9.6162 2.6667 2.5 180 85 10.1818 10.1818 2.8333 3.1 190 90 10.7475 3.0000 3.2 200 96 11.3131 11.3131 3.2000 3.4 210 102 11.8788 11.8788 3.4000 3.6 220 108 12.4444 12.4444 3.6000 3.8 230 115 13.0101 13.0101 3.8333 4.1 240 121 13.5758 13.5758 4.0333 4.3 250 129 14.1414 14.1414 4.3000 4.5 260 138 14.7071 14.7071 4.6000 4.8 270 144	130					2.0780
150 70 8.4848 8.4848 2.3333 2.6 160 75 9.0505 9.0505 2.5000 2.7 170 80 9.6162 9.6162 2.6667 2.5 180 85 10.1818 10.1818 2.8333 3.1 190 90 10.7475 10.7475 3.0000 3.2 200 96 11.3131 11.3131 3.2000 3.4 210 102 11.8788 11.8788 3.4000 3.6 220 108 12.4444 12.4444 3.6000 3.8 230 115 13.0101 13.0101 3.8333 4.1 240 121 13.5758 13.5758 4.0333 4.3 250 129 14.1414 14.1414 4.3000 4.5 260 138 14.7071 14.7071 4.6000 4.8 270 144 15.2727 15.2727 4.8000 5.0 280 <td>140</td> <td></td> <td></td> <td></td> <td></td> <td>2.2447</td>	140					2.2447
160 75 9.0505 9.0505 2.5000 2.7 170 80 9.6162 9.6162 2.6667 2.9 180 85 10.1818 10.1818 2.8333 3.1 190 90 10.7475 10.7475 3.0000 3.2 200 96 11.3131 11.3131 3.2000 3.4 210 102 11.8788 11.8788 3.4000 3.6 220 108 12.4444 12.4444 3.6000 3.8 230 115 13.0101 13.0101 3.8333 4.1 240 121 13.5758 13.5758 4.0333 4.3 250 129 14.1414 14.1414 4.3000 4.5 260 138 14.7071 14.7071 4.6000 4.8 270 144 15.2727 15.2727 4.8000 5.0 280 150 15.8384 15.8384 5.000 5.7 300 </td <td>150</td> <td></td> <td></td> <td></td> <td></td> <td></td>	150					
170 80 9.6162 9.6162 2.6667 2.7 180 85 10.1818 10.1818 2.8333 3.1 190 90 10.7475 10.7475 3.0000 3.2 200 96 11.3131 11.3131 3.2000 3.4 210 102 11.8788 11.8788 3.4000 3.6 220 108 12.4444 12.4444 3.6000 3.8 230 115 13.0101 13.0101 3.8333 4.1 240 121 13.5758 13.5758 4.0333 4.3 250 129 14.1414 14.1414 4.3000 4.5 260 138 14.7071 14.7071 4.6000 4.8 270 144 15.2727 15.2727 4.8000 5.0 280 150 15.8384 15.8384 5.0000 5.2 300 165 16.9697 16.9697 5.5000 5.7 3	160					2.6113
180 85 10.1818 10.1818 2.8333 3.1 190 90 10.7475 10.7475 3.0000 3.2 200 96 11.3131 11.3131 3.2000 3.4 210 102 11.8788 11.8788 3.4000 3.6 220 108 12.4444 12.4444 3.6000 3.8 230 115 13.0101 13.0101 3.8333 4.1 240 121 13.5758 13.5758 4.0333 4.3 250 129 14.1414 14.1414 4.3000 4.5 260 138 14.7071 14.7071 4.6000 4.8 270 144 15.2727 15.2727 4.8000 5.0 280 150 15.8384 15.8384 5.0000 5.2 290 158 16.4040 16.4040 5.2667 5.5 300 165 16.9697 16.9697 5.5000 5.7 <t< td=""><td>170</td><td></td><td></td><td></td><td></td><td>2.7780</td></t<>	170					2.7780
190 90 10.7475 10.7475 3.0000 3.2 200 96 11.3131 11.3131 3.2000 3.4 210 102 11.8788 11.8788 3.4000 3.6 220 108 12.4444 12.4444 3.6000 3.8 230 115 13.0101 13.0101 3.8333 4.1 240 121 13.5758 13.5758 4.0333 4.3 250 129 14.1414 14.7071 4.6000 4.8 260 138 14.7071 14.7071 4.6000 4.8 270 144 15.2727 15.2727 4.8000 5.0 280 150 15.8384 15.8384 5.0000 5.2 290 158 16.4040 16.4040 5.2667 5.5 300 165 16.9697 16.9697 5.5000 5.7 310 176 17.5354 17.5354 5.8667 6.14	180					2.9447
200 96 11.3131 11.3131 3.2000 3.4 210 102 11.8788 11.8788 3.4000 3.6 220 108 12.4444 12.4444 3.6000 3.8 230 115 13.0101 13.0101 3.8333 4.1 240 121 13.5758 13.5758 4.0333 4.3 250 129 14.1414 14.7071 4.6000 4.8 260 138 14.7071 14.7071 4.6000 4.8 270 144 15.2727 15.2727 4.8000 5.0 280 150 15.8384 15.8384 5.0000 5.2 290 158 16.4040 16.4040 5.2667 5.5 300 165 16.9697 16.9697 5.5000 5.7 310 176 17.5354 17.5354 5.8667 6.14 330 195 18.6667 18.6667 6.5000 6.77	190					3.1113
210 102 11.8788 11.8788 3.4000 3.4 220 108 12.4444 12.4444 3.6000 3.8 230 115 13.0101 13.0101 3.8333 4.1 240 121 13.5758 13.5758 4.0333 4.3 250 129 14.1414 14.7071 4.6000 4.5 260 138 14.7071 14.7071 4.6000 4.8 270 144 15.2727 15.2727 4.8000 5.0 280 150 15.8384 15.8384 5.0000 5.2 290 158 16.4040 16.4040 5.2667 5.5 300 165 16.9697 16.9697 5.5000 5.7 310 176 17.5354 17.5354 5.8667 6.14 330 195 18.6667 18.6667 6.5000 6.77 340 205 19.2323 19.2323 6.8333 7.11	200					3.2780
220 108 12.4444 12.4444 3.6000 3.8 230 115 13.0101 13.0101 3.8333 4.1 240 121 13.5758 13.5758 4.0333 4.3 250 129 14.1414 14.1414 4.3000 4.5 260 138 14.7071 14.7071 4.6000 4.8 270 144 15.2727 15.2727 4.8000 5.0 280 150 15.8384 15.8384 5.0000 5.2 290 158 16.4040 16.4040 5.2667 5.5 300 165 16.9697 16.9697 5.5000 5.7 310 176 17.5354 17.5354 5.8667 6.14 330 195 18.6667 18.6667 6.5000 6.77 340 205 19.2323 19.2323 6.8333 7.11 360 224 20.3636 20.3636 7.4667 7.74	210					3.4780
230 115 13.0101 13.0101 3.8333 4.1 240 121 13.5758 13.5758 4.0333 4.3 250 129 14.1414 14.1414 4.3000 4.5 260 138 14.7071 14.7071 4.6000 4.8 270 144 15.2727 15.2727 4.8000 5.0 280 150 15.8384 15.8384 5.0000 5.2 290 158 16.4040 16.4040 5.2667 5.5 300 165 16.9697 16.9697 5.5000 5.7 310 176 17.5354 17.5354 5.8667 6.1 320 185 18.1010 18.1010 6.1667 6.44 330 195 18.6667 18.6667 6.5000 6.77 340 205 19.2323 19.2323 6.8333 7.11 350 215 19.7980 19.7980 7.1667 7.44	220					3.6780
240 121 13.5768 13.5758 4.0333 4.1 250 129 14.1414 14.1414 4.3000 4.5 260 138 14.7071 14.7071 4.6000 4.8 270 144 15.2727 15.2727 4.8000 5.0 280 150 15.8384 15.8384 5.0000 5.2 290 158 16.4040 16.4040 5.2667 5.5 300 165 16.9697 16.9697 5.5000 5.7 310 176 17.5354 17.5354 5.8667 6.14 320 185 18.1010 18.1010 6.1667 6.44 330 195 18.6667 18.6667 6.5000 6.77 340 205 19.2323 19.2323 6.8333 7.11 350 215 19.7980 19.7980 7.1667 7.44 360 224 20.3636 20.3636 7.4667 7.74	230					3.8780
250 129 14.1414 14.1414 4.3000 4.5 260 138 14.7071 14.7071 4.6000 4.8 270 144 15.2727 15.2727 4.8000 5.0 280 150 15.8384 15.8384 5.0000 5.2 290 158 16.4040 16.4040 5.2667 5.5 300 165 16.9697 16.9697 5.5000 5.7 310 176 17.5354 17.5354 5.8667 6.1 320 185 18.1010 18.1010 6.1667 6.44 330 195 18.6667 18.6667 6.5000 6.77 340 205 19.2323 19.2323 6.8333 7.11 350 215 19.7980 19.7980 7.1667 7.44 360 224 20.3636 20.3636 7.4667 7.74 370 235 20.9293 20.9293 7.8333 8.11	240					4.1113
260 138 14.7071 14.7071 4.6000 4.8 270 144 15.2727 15.2727 4.8000 5.0 280 150 15.8384 15.8384 5.0000 5.2 290 158 16.4040 16.4040 5.2667 5.5 300 165 16.9697 16.9697 5.5000 5.7 310 176 17.5354 17.5354 5.8667 6.1 320 185 18.1010 18.1010 6.1667 6.44 330 195 18.6667 18.6667 6.5000 6.77 340 205 19.2323 19.2323 6.8333 7.11 350 215 19.7980 19.7980 7.1667 7.44 360 224 20.3636 20.3636 7.4667 7.74 370 235 20.9293 20.9293 7.8333 8.11 380 246 21.4949 21.4949 8.2000 8.47	250					4.3113
270 144 15.2727 15.2727 4.8000 5.0 280 150 15.8384 15.8384 5.0000 5.2 290 158 16.4040 16.4040 5.2667 5.5- 300 165 16.9697 16.9697 5.5000 5.7 310 176 17.5354 17.5354 5.8667 6.1- 320 185 18.1010 18.1010 6.1667 6.4- 330 195 18.6667 18.6667 6.5000 6.77 340 205 19.2323 19.2323 6.8333 7.11 350 215 19.7980 19.7980 7.1667 7.44 360 224 20.3636 20.3636 7.4667 7.74 370 235 20.9293 20.9293 7.8333 8.11 380 246 21.4949 21.4949 8.2000 8.47 390 257 22.0606 22.0606 8.5667 8.84 <t< td=""><td>260</td><td></td><td></td><td></td><td></td><td>4.5780</td></t<>	260					4.5780
280 150 15.8384 15.8384 5.0000 5.2 290 158 16.4040 16.4040 5.2667 5.5 300 165 16.9697 16.9697 5.5000 5.7 310 176 17.5354 17.5354 5.8667 6.14 320 185 18.1010 18.1010 6.1667 6.44 330 195 18.6667 18.6667 6.5000 6.77 340 205 19.2323 19.2323 6.8333 7.11 350 215 19.7980 19.7980 7.1667 7.44 360 224 20.3636 20.3636 7.4667 7.74 370 235 20.9293 20.9293 7.8333 8.11 380 246 21.4949 21.4949 8.2000 8.47 390 257 22.0606 22.0606 8.5667 8.84 400 267 22.6263 22.6263 8.9000 9.17 <td>270</td> <td></td> <td></td> <td></td> <td></td> <td>4.8780</td>	270					4.8780
290 158 16.4040 16.4040 5.2667 5.5 300 165 16.9697 16.9697 5.5000 5.7 310 176 17.5354 17.5354 5.8667 6.14 320 185 18.1010 18.1010 6.1667 6.44 330 195 18.6667 18.6667 6.5000 6.77 340 205 19.2323 19.2323 6.8333 7.11 350 215 19.7980 19.7980 7.1667 7.44 360 224 20.3636 20.3636 7.4667 7.74 370 235 20.9293 20.9293 7.8333 8.11 380 246 21.4949 21.4949 8.2000 8.47 390 257 22.0606 22.0606 8.5667 8.84 400 267 22.6263 22.6263 8.9000 9.17						5.0780
300 165 16.9697 16.9697 5.5000 5.77 310 176 17.5354 17.5354 5.8667 6.14 320 185 18.1010 18.1010 6.1667 6.44 330 195 18.6667 18.6667 6.5000 6.77 340 205 19.2323 19.2323 6.8333 7.11 350 215 19.7980 19.7980 7.1667 7.44 360 224 20.3636 20.3636 7.4667 7.74 370 235 20.9293 20.9293 7.8333 8.11 380 246 21.4949 21.4949 8.2000 8.47 390 257 22.0606 22.0606 8.5667 8.84 400 267 22.6263 22.6263 8.9000 9.17	290					5.2780
310 176 17.5354 17.5354 5.8667 6.14 320 185 18.1010 18.1010 6.1667 6.44 330 195 18.6667 18.6667 6.5000 6.77 340 205 19.2323 19.2323 6.8333 7.11 350 215 19.7980 19.7980 7.1667 7.44 360 224 20.3636 20.3636 7.4667 7.74 370 235 20.9293 20.9293 7.8333 8.11 380 246 21.4949 21.4949 8.2000 8.47 390 257 22.0606 22.0606 8.5667 8.84 400 267 22.6263 22.6263 8.9000 9.17	300					5.5447
320 185 18.1010 18.1010 6.1667 6.44 330 195 18.6667 18.6667 6.5000 6.77 340 205 19.2323 19.2323 6.8333 7.11 350 215 19.7980 19.7980 7.1667 7.44 360 224 20.3636 20.3636 7.4667 7.74 370 235 20.9293 20.9293 7.8333 8.11 380 246 21.4949 21.4949 8.2000 8.47 390 257 22.0606 22.0606 8.5667 8.84 400 267 22.6263 22.6263 8.9000 9.17	310					5.7780
330 195 18.6667 18.6667 6.5000 6.77 340 205 19.2323 19.2323 6.8333 7.11 350 215 19.7980 19.7980 7.1667 7.44 360 224 20.3636 20.3636 7.4667 7.74 370 235 20.9293 20.9293 7.8333 8.11 380 246 21.4949 21.4949 8.2000 8.47 390 257 22.0606 22.0606 8.5667 8.84 400 267 22.6263 22.6263 8.9000 9.17						6.1447
340 205 19.2323 19.2323 6.8333 7.11 350 215 19.7980 19.7980 7.1667 7.44 360 224 20.3636 20.3636 7.4667 7.74 370 235 20.9293 20.9293 7.8333 8.11 380 246 21.4949 21.4949 8.2000 8.47 390 257 22.0606 22.0606 8.5667 8.84 400 267 22.6263 22.6263 8.9000 9.17				10.1010		6.4447
350 215 19.7980 19.7980 7.1667 7.44 360 224 20.3636 20.3636 7.4667 7.74 370 235 20.9293 20.9293 7.8333 8.11 380 246 21.4949 21.4949 8.2000 8.47 390 257 22.0606 22.0606 8.5667 8.84 400 267 22.6263 22.6263 8.9000 9.17						6.7780
360 224 20.3636 20.3636 7.1667 7.44 370 235 20.9293 20.9293 7.8333 8.11 380 246 21.4949 21.4949 8.2000 8.47 390 257 22.0606 22.0606 8.5667 8.84 400 267 22.6263 22.6263 8.9000 9.17						7.1113
370 235 20.9293 20.9293 7.4667 7.74 380 246 21.4949 21.4949 8.2000 8.47 390 257 22.0606 22.0606 8.5667 8.84 400 267 22.6263 22.6263 8.9000 9.17						7.4447
380 246 21.4949 21.4949 8.2000 8.47 390 257 22.0606 22.0606 8.5667 8.84 400 267 22.6263 22.6263 8.9000 9.17						7.7447
390 257 22.0606 22.0606 8.5667 8.84 400 267 22.6263 22.6263 8.9000 9.17						8.1113
400 267 22.6263 22.6263 8.9000 9.17						8.4780
410 220 22.0203 8.9000 9.17						8.8447
						9.1780
9.54		270	23.1818	23.1919	9.2667	9.5447

289	23.7576	23 7576	0.6222	1 00440
298				9.9113
+				10.2113
			10.2667	10.5447
		25.4545	10.5667	10.8447
		26.0202	10.7333	11.0113
329	26.5859	26.5859		11.2447
335	27.1515	27 1515		
345	27 7172			11.4447
359				11.7780
				12.2447
			12.6000	12.8780
		29.4141	13.0000	13.2780
350	29.9798	29.9798	11.6667	11.9447
	298 308 317 322 329 335	298 24.3232 308 24.8889 317 25.4545 322 26.0202 329 26.5859 335 27.1515 345 27.7172 359 28.2828 378 28.8485 390 29.4141	298 24.3232 24.3232 308 24.8889 24.8889 317 25.4545 25.4545 322 26.0202 26.0202 329 26.5859 26.5859 335 27.1515 27.1515 345 27.7172 27.7172 359 28.2828 28.2828 378 28.8485 28.8485 390 29.4141 29.4141	298 24.3232 24.3232 9.9333 308 24.8889 24.8889 10.2667 317 25.4545 25.4545 10.5667 322 26.0202 26.0202 10.7333 329 26.5859 26.5859 10.9667 335 27.1515 27.1515 11.1667 345 27.7172 27.7172 11.5000 359 28.2828 28.2828 11.9667 378 28.8485 28.8485 12.6000 390 29.4141 29.4141 13.0000

A(luas) = 0.25x3.14xd^2 ΔI = dial/2 L = 15 cm Regangan = $\Delta L/L$ *10^-4

Tegangan Plastis 12.2671 MPa Regangan Plastis 3.8153 10^-4

koreksi 0.0333 10^-4

DATA TEGANGAN REGANGAN DENGAN PENGURAGAN AIR 30%

Diameter	14.9	cm
Tinggi	29.6	cm
Berat	13.2	ka
Teg.max	46.19422	МРа
Reg.Hancur	25.9000	x10^-4
Tegangan Plastis	18.47769	MPa
Regangan Plastis	5.66464	10^-4

30%

					
Beban (KN)	Dial	Teg. (N/mm2	Teg. (MPa)	Reg	Reg. Koreksi
10	5	0.5733	0.5733		
20 -	7	1.1465			
30	8	1.7198	1.7198		
40	9	2.2931	2.2931		
50	10	2.8664	2.8664		
60	11	3.4396	3.4396		
70	20	4.0129	4.0129		
80	25	4.5862	4.5862		
90	30	5.1595	5.1595		
100	37	5.7327	5.7327	1.2333	
110	48	6.3060	6.3060		
120	52	6.8793	6.8793	1.7333	
130	57	7.4526	7.4526	1.9000	
140	61	8.0258	8.0258	2.0333	2.6593
150	66	8.5991	8.5991	2.2000	2.8260
160	70	9.1724	9.1724	2.3333	
170	73	9.7457	9.7457	2.4333	3.0593
180	80	10.3189	10.3189		3.2927
190	83	10.8922	10.8922	2.7667	3.3927
200	89	11.4655	11.4655	2.9667	3.5927
210	94	12.0388	12.0388	3.1333	3.7593
220	100	12.6120	12.6120	3.3333	3.7593
230	105	13.1853	13.1853	3.5000	4.1260
240	110	13.7586	13.7586	3.6667	4.2927
250	114	14.3319	14.3319	3.8000	4.4260
260	115	14.9051	14.9051	3.8333	4.4200
270	124	15.4784	15.4784	4.1333	4.4593
280	129	16.0517	16.0517	4.3000	4.7593
290	135	16.6250	16.6250	4.5000	5.1260
300	139	17.1982	17.1982	4.6333	
310	144	17.7715	17.7715	4.8000	5.2593
320	150	18.3448	18.3448	5.0000	5.4260 5.6260
330	155	18.9181	18.9181	5.1667	
340	161	19.4913	19.4913	5.3667	5.7927
350	167	20.0646	20.0646	5.5667	5.9927
360	168	20.6379	20.6379	5.6000	6.1927
370	172	21.2112	21.2112	5.7333	6.2260
380	178	21.7844	21.7844	5.9333	6.3593
390	184	22.3577	22.3577	6.1333	6.5593 6.7593
400	190	22.9310	22.9310	6.3333	
410	196	23.5043	23.5043	6.5333	6.9593
			_0.0070	0.0000	7.1593

420	204	24.0775	24.0775	6.8000	7.4260
430	211	24.6508	24.6508		
440	. 213	25.2241	25.2241	7.1000	
450	222	25.7974	25.7974		1200
460	229	26.3706	26.3706	7.6333	8.2593
470	236	26.9439	26.9439		8.4927
480	244	27.5172			8.7593
490	252	28.0905	28.0905		9.0260
500	260	28.6637	28.6637		9.2927
510	267	29.2370	29.2370		9.5260
520	276	29.8103	29.8103		9.8260
530	285	30.3836	30.3836	9.5000	10.1260
540	294	30.9568	30.9568	9.8000	10.4260
550	303	31.5301	31.5301	10.1000	
560	311	32.1034	32.1034	10.3667	10.9927
570	321	32.6767	32.6767	10.7000	11.3260
580 -	332	33.2499	33.2499	11.0667	11.6927
590	340	33.8232	33.8232	11.3333	11.9593
600	341	34.3965	34.3965	11.3667	11.9927
610	360	34.9698	34.9698	12.0000	12.6260
620	371	35.5430	35.5430	12.3667	12.9927
630	382	36.1163	36.1163	12.7333	13.3593
640	411	36.6896	36.6896	13.7000	14.3260
650	432	37.2629	37.2629	14.4000	15.0260
660	453	37.8361	37.8361	15.1000	15.7260
670	470	38.4094	38.4094	15.6667	16.2927
680	488	38.9827	38.9827	16.2667	16.8927
690	508	39.5560	39.5560	16.9333	17.5593
700	535	40.1292	40.1292	17.8333	18.4593
710	585	40.7025	40.7025	19.5000	20.1260
720	610	41.2758	41.2758	20.3333	20.9593
730	625	41.8491	41.8491	20.8333	21.4593
740	650	42.4223	42.4223	21.6667	22.2927
750	671	42.9956	42.9956	22.3667	22.9927
760	699	43.5689	43.5689	23.3000	23.9260
770	740	44.1422	44.1422	24.6667	25.2927
780	770	44.7154	44.7154	25.6667	26.2927
790	820	45.2887	45.2887	27.3333	27.9593
800	850	45.8620	45.8620	28.3333	28.9593
810	855	46.4353	46.4353	28.5000	29.1260
820	850	47.0085	47.0085	28.3333	28.9593
830	890	47.5818	47.5818	29.6667	30.2927
840	970	48.1551	48.1551	32.3333	32.9593
850	960	48.7284	48.7284	32.0000	32.6260
860	925	49.3016	49.3016	30.8333	31.4593
			.0.0010	00.0000	31.4593

A(luas) = $0.25x3.14xd^2$ Δl = dial/2

L = 15 cm Regangan = $\Delta L/L$ *10^-4

Tegangan Plastis 18.4777 MPa Regangan Plastis 5.6646 10^-4

koreksi 0.1004 10^-4

LAMPIRAN 3

- Data Agregat
- Nilai Slump dan Penambahan Superplasticizer
- Data Kuat Tekan
- Data Tegangan Regangan

LAMPIRAN 4

Foto-foto Dokumentasi Pengujian di Laboratorium

Technical Data Sheet Edition 2, 2005 Identification no. 02 01 01 01 100 0 000081 Version no. 0010 Sikament® -NN

Sikament®-NN

High Range Water - Reducing

Description	A highly effective dual action liquid superplasticizer for the production of free flowing concrete or as a substantial water-reducing agent for promoting high early and ultimate strengths. Chloride free. Complies with A.S.T.M. C 494-92 Type F
Use	Sikament-NN is used as a super plasticizer in the production of free flowing concrete for use in: Slabs and foundations Walls, columns and piers. Slender components with densely packed reinforcement. Textured surface finishes. It is also used as a water-reducing agent leading to high early strength concrete for use in: Pre-cast concrete elements Pre-stressed concrete Bridges and cantilever structures Areas of concrete where formwork must be removed quickly or early load will
Advantages	be applied. Sikament NN provides the following properties:
	As a Superplasticizer Workability is greatly improved. Increased placeability in slender components with packed reinforcement. Decreases the amount of vibration required. Normal set without retardation. Significantly reduces risk of segregation. As a Water reducer: Up to 20% reduction of water will produce 40% increase in 28 days compressive strength. High strength after 12 hours.
Dosage	0.6 % - 1.5 % by weight of cement. It is advisable to carry out trial mixes to establish the exact dosage rate required. Sikament-NN is compatible with all type of Portland cement including S.R.C.
Dispensing	Sikament-NN can be added to the mixing water prior to its addition to the aggregates or as in most cases, it can be added directly to the freshly mixed concrete. When added directly to the freshly mixed concrete, the plasticizing effect is more pronounced. For ready-mix concrete, Sikament-NN is added to the concrete immediately prior to discharge and after further mixing has taken place for about three to five minutes.

Combinations

Sikament NN may be combined with the following products:

- Plastocrete series
- Plastiment series
- Sika Pump
- SikaFume
- SikaAER

Pre-trials are recommended if combinations with the above products are required. Please consult our Technical Service Department.

Technical Data	
Туре	Naphthalene Formaldehyde Sulphonate
Colour	Dark brown
Specific Gravity	1.16 – 1.18 kg/ ltr
Shelf Life	Minimum 1 year if stored in original unopened container
Storage	Dry, cool, shaded place
Packaging	250 kg drum

Handling Precautions:

- Avoid contact with skin and eyes
- Wear protective gloves and eye protection during work
 - If skin contact occurs, wash skin thoroughly.
- If in eyes, hold eyes open, flood with warm water and seek medical attention without delay.

Legal Notes

The information and in particular the recommendations relating to the application and engiuse of Sixa products are given in good faith baseu on Sika's current knowledge and experience of the product when properly stored, handled and applied under normal conditions, in practice, the differences in materials substrates and actual site conditions are such that no warranty in respect of merchantability or fitness for a particular purpose not any liability arising out of any legal relationship whatscever, can be inferred either from this information, or from any written recommendations or from any other advice offered. The proprietary rights of third parties must be observed. All orders are accepted subject to our current tein's of sales and delivery. Users should always refer to the most recent issue of the technical Data Sheet for the product concerned copies of which will be supplied on request

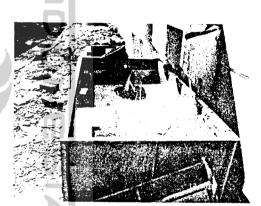
PT. Sika Indonesia Jl. Raya Cibinong- Bekasi km. 20 Limusnunggal- Cileungsi BOGOR 16820- Indonesia +62 21 8230025

Fax +62 21 8230025 www.sika.co. id e-mail: marketing@sika.co.id

Branches Surabaya, Tet: 031-8690202 Fax: 031-8682123 Medan, Tel: 061-7941200 Fax: 061-7940822 Tel: 0778-424928, Fax: 0778-426913

Sub Distributor

Sub Distributor
Bandung, Tel: 022-5423855,5423857, Fax: 022-5423517
Denpasar, Tel: 0361-235998 — 235973, Fax: 0361-237053
Makassar, Tel: 0411- 859147 — 658527, Fax: 0411-858527
Balikpapan, Tel: 05-24-411258 Fax: 0542-412230
Pekanbaru, Tel: 0761-46993 — 47677, Fax: 0761-45112
Dun/Dumai, Tel: 0765-595259 Fax: 0765-91135
Palembang, Tel: 0711-351523 Fax: 0711-369858
Palu, Tel: 0451-454855 — 422122, Fax: 0451-454855
Manado, Tel. Fax: 04313-324069 Manado, Tel /Fax : (0431) 324069


Penyimpanan Agregat

Portland Cement

Superplasticizer

Bak Perendaman

Pengadukan

Pengujian Slump