
No:TA/TK/2018/92

PRA RANCANGAN

PABRIK FORMALDEHIDA DARI METANOL DAN UDARA KAPASITAS 30.000 TON/TAHUN TUGAS AKHIR

Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Jurusan Teknik Kimia Konsentrasi Teknik Kimia

Disusun Oleh:

Nama: Raida Raudhatussyarifah Nama: Karima Haq

NIM :14521192 NIM :14521197

KONSENTRASI TEKNIK KIMIA JURUSAN TEKNIK KIMIA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS ISLAM INDONESIA YOGYAKARTA 2018

LEMBAR PERNYATAAN KEASLIAN HASIL

PRA RANCANGAN PABRIK FORMALDEHIDA DARI METANOL DAN UDARA KAPASITAS 30.000 TON/TAHUN

Saya yang bertanda tangan di bawah ini:

Nama : Raida Raudhatussyarifah Nama : Karima Haq

NIM : 14521192 NIM : 14521197

Yogyakarta, 1 November 2018

Menyatakan bahwa seluruh hasil Pra Rancangan Pabrik ini adalah hasil karya sendiri. Apabila di kemudian hari terbukti bahwa ada beberapa bagian dari karya ini adalah bukan hasil karya sendiri, maka saya siap menanggung resiko dan konsekuensi apapun.

Demikian surat pernyataan ini saya buat, semoga dapat dipergunakan sebagaimana mestinya.

Raida Raudhatussyarifah

Karima Haq

LEMBAR PENGESAHAN PEMBIMBING

Yogyakarta, 1 November 2018

Dosen pembimbing 1: Dosen Pembimbing 2:

Ir. Dulmalik, M.M.

Muflih Arisa Adnan S.T., M.Sc.

LEMBAR PENGESAHAN PENGUJI

PRA RANCANGAN PABRIK FORMALDEHIDA DARI METANOL DAN UDARA DENGAN KAPASITAS 30.000 TON/TAHUN

TUGAS AKHIR

	ICL	Oleh:
Nam <mark>a</mark>	: Raida Raudhatus	syarifah Nama : Ka <mark>r</mark> ima Haq
NIM	: 14521192	NIM : <mark>1452119</mark> 7
Pr	untuk Memperoleh G ogram Studi Teknik Kin Universita: Yogyakarta, Penguji,	dang Penguji sebagai Salah Satu Syarat Gelar Sarjana Teknik Kimia mia Fakultas Teknologi Industri s Islam Indonesia 1 November 2018
Anggo	ota II	141 (31

Mengetahui,

Ketua Program Studi Teknik Kimia Fakultas Teknologi Industri Universitas Islam Indonesia

Dr. Suharno Rusdi

KATA PENGANTAR

Assalamu'alaikum Wr., Wb.

Puji syukuratas kehadirat Allah SWT yang telah melimpahkan rahmat, taufik dan karunia-Nya, sehingga Tugas Akhir ini dapat diselesaikan dengan baik. Shalawat dan salam semoga selalu tercurahkan atas junjungan kita Nabi Muhammad S.A.W, sahabat serta para pengikutnya.

Tugas Akhir Pra Rancangan Pabrik yang berjudul "PRA RANCANGAN PABRIK FORMALEHIDA DARI METANOL DAN UDARA DENGAN KAPASITAS 30.000 TON/TAHUN", disusun sebagai penerapan dari ilmu teknik kimia yang telah didapat selama di bangku kuliah, dan merupakan salah satu syarat untuk mendapatkan gelar Sarjana Teknik Kimia Fakultas Teknologi Industri, Universitas Islam Indonesia, Yogyakarta.

Penulisan laporan Tugas Akhir ini dapat berjalan dengan lancar atas bantuan berbagai pihak. Oleh karena itu, melalui kesempatan ini penyusun ingin menyampaikan terima kasih kepada:

- 1. Allah SWT yang selalu melimpahkan Hidayah dan Inayahnya.
- 2. Orangtua dan Adik tercinta yang tak henti-hentinya memberikan dorongan semangat dan motivasi.
- 3. Bapak Hari Purnomo, Prof., Dr., Ir., M.T. selaku Dekan Fakultas Teknologi Industri, Universitas Islam Indonesia.
- 4. Bapak Dr. Suharno Rusdi selaku Ketua Jurusan Teknik Kimia Fakultas Teknologi Industri, Universitas Islam Indonesia.

5. Bapak Ir. Dulmalik, M.M. selaku Dosen Pembimbing I, dan Bapak Muflih Arisa Adnan

S.T.,M.Sc. selaku Dosen Pembimbing II Tugas Akhir yang telah memberikan

pengarahan dan bimbingan dalam penyusunan dan penulisan Tugas Akhir ini.

6. Ibu Dyah Retno Sawitri, S.T., M.Eng. dan Ibu Nur Indah Fajar Mukti, S.T., M.Eng.

selaku dosen penguji, yang telah memberikan saran dan masukan dalam Tugas Akhir

ini.

7. Teman – teman Teknik Kimia UII 2014 yang selalu menemani dan mewarnai hari-hari

selama menempuh pendidikan sebagai mahasiswa Teknik Kimia.

8. Semua pihak yang tidak dapat kami sebutkan satu per satu, dalam membantu

penyusunan Tugas Akhir ini dengan tulus dan ikhlas.

Kami menyadari bahwa didalam penyusunan laporan Tugas Akhir ini masih banyak

terdapat kekurangan, untuk itu kami mengharapkan kritik dan saran untuk kesempurnaan

laporan ini. Akhir kata semoga laporan Tugas Akhir ini dapat memberikan manfaat bagi semua

pihak, Amin.

Wassalamu'alaikum Wr., Wb.

Yogyakarta, 1 November 2018

Penyusun

vi

DAFTAR ISI

LEME	BAR PERNYATAAN KEASLIAN HASIL	ii
LEME	BAR PENGESAHAN PEMBIMBING	iii
LEME	BAR PENGESAHAN PENGUJI	iv
KATA	A PENGANTAR	V
DAFT	TAR ISI	Vii
DAFT	TAR GAMBAR	ix
DAFT	TAR TABEL	X
DAFT	TAR LAMPIRAN	xii
ABST	TRAK	xiii
BAB I	I PENDAHULUAN	1
1.1	Latar Belakang	1
1.2	Tinjauan Pustaka	13
BAB I	II PERANCANGAN PRODUK	18
2.1	Spesifikasi produk	18
2.2	Spesifikasi Bahan Baku	19
2.3	Pengendalian Kualitas	22
BAB I	III PERANCANGAN PROSES	24
3.1	Uraian Proses	24
3.2	Spesifikasi Alat Proses	28
BAB I	IV PERANCANGAN PABRIK	38
4.1	Lokasi Pabrik	38
4.2	Tata Letak Pabrik	41
4.3	Tata Letak Alat Proses	43
4.4	Alir Proses dan Material	47
4.5	Perawatan (Maintenance)	52
4.6	Pelayanan Teknik (Utilitas)	54
4.7	Struktur Organisasi	64
4.8	Evaluasi Ekonomi	87

BAB '	V PENUTUP	104
5.1	Kesimpulan	104
5.2	Saran	105
DAFT	TAR PUSTAKA	106

DAFTAR GAMBAR

Gambar 1.1 Grafik Kebutuhan Impor Formaldehida	5
Gambar 1.2 Grafik Produksi Formaldehida	6
Gambar 1.3 Grafik Kebutuhan Ekspor Formaldehida	8
Gambar 1.4 Grafik Konsumsi Formaldehida	10
Gambar 4.1 Tata letak pabrik	46
Gambar 4.2 Tata letak alat proses	46
Gambar 4.3 Struktur organisasi	69
Gambar 4.4 Grafik indeks harga	91
Gambar 4.5 Grafik hubungan harga vs kapasitas	103

DAFTAR TABEL

Tabel 1.1 Data Perkembangan Impor Formaldehida di Indonesia	. 4
Tabel 1.2 Perkembangan Produksi Formaldehida di Indonesia	. 6
Tabel 1.3 Data Perkembangan Ekspor Formaldehida di Indonesia	. 8
Tabel 1.4 Data Perkembangan Konsumsi Formaldehida di Indonesia	. 9
Tabel 1.5 Data produsen Formaldehida di Indonesia	. 12
Tabel 1.6 Perbedaan proses pembuatan Formaldehida	. 16
Tabel 4.1 Perincian luas tanah dan bangunan pabrik	. 42
Tabel 4.2 Neraca massa total	. 47
Tabel 4.3 Neraca massa Dehumidifier	. 47
Tabel 4.4 Neraca massa Vaporizer	. 48
Tabel 4.5 Neraca massa Reaktor	. 48
Tabel 4.6 Neraca massa Absorber	. 49
Tabel 4.8 Neraca panas Vaporizer	. 50
Tabel 4.9 Neraca panas Reaktor	. 51
Tabel 4.10 Neraca panas Absorber	. 52
Tabel 4.11 Kebutuhan air sanitasi	. 61
Tabel 4.12 Kebutuhan air pendingin	. 61
Tabel 4.13 Kebutuhan steam	. 62
Tabel 4.14 Kebutuhan air proses	. 62
Tabel 4.15 Kebutuhan listrik	. 63

Tabel 4.16 Gaji karyawan	79
Tabel 4.17 Jadwal kerja masing-masing regu	83
Tabel 4.18 Jabatan dan keahlian	83
Tabel 4.19 Harga indek	89
Tabel 4.20 Harga indeks pada tahun perancangan	90
Tabel 4.21 Physical Plant Cost	98
Tabel 4.22 Direct Plant Cost (DPC)	98
Tabel 4.23 Fixed Capital Investment (FCI)	98
Tabel 4.24 Direct Manufacturing Cost (DMC)	98
Tabel 4.25 Indirect Manufacturing Cost (IMC)	99
Tabel 4.26 Fixed Manufacturing Cost (FMC)	99
Tabel 4.27 Total Manufacturing Cost (MC)	99
Tabel 4.28 Working Capital (WC)	99
Tabel 4.29 General Expense (GE)	100
Tabel 4.30 Total biaya produksi	100
Tabel 4.31 Fixed cost (Fa)	100
Tabel 4.32 Variable cost (Va)	100
Tabel 4.33 Regulated cost (Ra)	101

DAFTAR LAMPIRAN

Lampiran A Reaktor

ABSTRAK

Formaldehyde merupakan senyawa jadi maupun intermediet yang dapat digunakan dalam berbagai aplikasi industri dan konsumen. Formaldehyde banyak digunakan oleh industri tekstil, kulit, dan pewarna. Proses produksi dilakukan menggunakan proses haldor topsoe (mixed oxide catalyst). Pabrik formaldehyde dengan kapasitas 30.000 ton/tahun selama 24 jam/hari akan didirikan dikawasan industri di Bontang, Kalimantan Timur pada tahun 2021 dengan pertimbangan kemudahan akses bahan baku dan distribusi produk. Bahan baku yang digunakan adalah metanol dan udara. Proses produksi formaldehyde dibagi dalam tiga tahap. Tahap pertama yaitu tahap pretreatment bahan baku yang bertujuan untuk mengubah seluruh bahan baku dalam fase uap dan memanaskan hingga suhu persiapan reaktor. Tahap kedua adalah tahap pembentukan produk dengan bahan baku metanol dan udara dengan katalis iron dan molibdenum terjadi pada temperatur 340°C pada reaktor shell and tube dengan perbandingan mol antara metanol dan udara sebesar 1:2,8. Reaksi berlangsung pada fase uap dan bersifat eksotermis sehingga membutuhkan pendingin untuk menjaga kondisi temperature reaktor agar katalis bekerja sempurna. Tahap ketiga adalah tahap pemurnian produk yang bertujuan untuk memisahkan O2, N2, CO2, CO dari absorber dan juga memisahkan larutan formaldehyde dari asam formiat untuk diambil sebagai produk.Pabrik ini direncanakan beroperasi secara kontinyu selama 300 hari/tahun dengan basis 24 jam/hari. Bahan baku metanol yang dibutuhkan sebanyak 996,70 kg/jam dan udara 2790,86 kg/jam dengan bahan baku pendukung berupa Iron dan Molibdnum sebagai katalisator. Kebutuhan utilitas meliputi air sanitasi sebanyak 1500 kg/hari, water make up pendingin sebanyak 10962,79 kg/hari, water umpan boiler sebanyak 53284,91 kg/hari, dan air proses sebanyak 1642,8 kg/hari.

Kata kunci: Formaldehyde, Methanol, Iron Catalyst, Molybdenum Catalyst.

ABSTRAK

Formaldehyde is a finished and intermediate compound that can be used in various industrial and consumer applications. Formaldehyde is widely used by the textile, leather, and dye industries. The production process is done using haldor topsoe (mixed oxide catalyst) process. Formaldehyde factory with capacity of 30.000 ton/year for 24 hour/day will be established industrial area in Bontang, East Kalimantan in year 2021 with consideration of easy access of raw material and product distribution. The raw materials used are methanol and air. The production process of formaldehyde is divided into three stages. The first stage is the raw material pretreatment stage which aims to convert all raw materials in the vapor phase and heat up to the reactor preparation temperature. The second stage is the product formation stage with methanol and air raw materials with iron and molybdenum catalysts occurring at 340°C at shell and tube reactors with a mole ratio of methanol and air of 1: 2,8. The reaction takes place in the vapor phase and is exothermic and thus requires a coolant to maintain the reactor temperature conditions for the catalyst to work perfectly. The third stage is the purification step of the product which aims to separate O2, N2, CO2 in the absorber and also separates formaldehyde solution from formic acid to As a product. The plant is planned to operate continuously for 330 days/year on a 24 hour/day basis. The methanol raw material required is 996,70 kg/hour and air is 2790,86 kg/hour with the supporting material in the form of Iron and Molybdenum as catalyst. Utility needs include 1500 kg/hour water sanitation, 10962,79 kg/hour cooling water, boiler feed water 53284,91 kg / hour, and process water 1642,8 kg/hour.

Kata kunci: Formaldehyde, Methanol, Iron Catalyst, Molybdenum Catalyst.

BABI

PENDAHULUAN

1.1 Latar Belakang

1.1.1 Latar Belakang Pendirian Pabrik

Indonesia merupakan salah satu negara berkembang yang memiliki sumber daya alam maupun sumber daya manusia berlimpah, dapat dikatakan bahwa Indonesia adalah negara berkembang yang berpotensi untuk mengembangkan berbagai jenis industri. Pada era globalisasi seperti sekarang ini, sektor industri dipilih sebagai jalur alternatif yang turut serta berperan dalam pertumbuhan ekonomi. Salah satunya adalah industri kimia, yang diharapkan dapat berkontribusi dalam menjamin kehidupan warga negara, mengurangi ketergantungan impor, serta menciptakan lapangan kerja yang dapat mengurangi angka pengangguran. Karena pada umumnya industri kimia akan mengalami pertumbuhan seiring dengan meningkatnya kebutuhan manusia baik dari segi kualitas maupun kuantitas. Jadi sangat pantas apabila sektor ini mendapatkan perhatian serius.

Salah satu jenis industri kimia yang penting keberadaannya dalah industri formaldehida. Formaldehida atau *formaldehyde* adalah senyawa dari gugus aldehida, yang merupakan salah satu bahan kimia organik yang sangat penting dalam industri kimia. Bahan kimia ini banyak digunakan sebagai bahan baku maupun bahan pembantu dalam berbagai industri, menjadikan formaldehid memiliki nilai strategis dalam perkembangan dunia industri.

Beberapa sektor industri yang membutuhkan formaldehyde:

1. Industri Tekstil

Turunan formaldehida, n-*Methylol* digunakan sebagai bahan pembantu untuk memproduksi tekstil yang tahan lipatan, sukar hancur dan tidak mudah kusut.

2. Industri kertas

Formaldehida digunakan sebagai bahan pembantu untuk memproduksi kertas yang tidak mudah kusut dan tahan terhadap minyak.

3. Industri minyak bumi

Formaldehida digunakan sebagai pemurni dan penyaring untuk bahan bakar cair dan produk hidrokarbon lain.

4. Industri kesehatan dan farmasi

Formaldehyde digunakan sebagai bahan untuk mengurangi efek racun yang disebabkan oleh virus, gigitan ular atau reptil lainnya.

Selain memenuhi kebutuhan industri, *formaldehyde* juga dibutuhkan oleh beberapa sektor lainnya. Dalam bidang pertanian, senyawa ini digunakan sebagai bahan pendukung dalam pembuatan pupuk urea. Dalam bidang medis, formaldehida digunakan untuk pengeringan kulit.

Formaldehyde sangat dekat kaitannya dengan pengawetan pada zaman dahulu dan sepertinya masih sama sampai sekarang. Formaldehyde telah digunakan

sejak awal 1899 untuk pengawetan mayat yang sebagian besar ada di era Wild West. (Bedino, 2004)

Formaldehida dapat digunakan secara langsung, akan tetapi dalam jumlah kecil digunakan sebagai bahan pengawet, bahan penelitian dan disinfektan pada rumah sakit. (Ulman,1971)

Dilihat dari fungsi dan kegunaannya yang beragam, dapat disimpulkan bahwa kebutuhan akan senyawa ini akan semakin meningkat seiring waktu. Secara ekonomis, pendirian pabrik formaldehida dapat dikategorikan menguntungkan. Hal ini juga dinilai dari harga formaldehida yang lebih tinggi dibandingkan dengan harga metanol dan biaya produksi.

	Bahan baku ((metanol 99,90%)) USS	§ 166/ton
--	--------------	------------------	-------	-----------

Formaldehida (37,1%) US\$ 463/ton

Biaya produksi US\$ 148/ton

Laba US\$ 149/ton

(McKetta, 1983)

1.1.2 Ketersediaan Bahan Baku

Ketersediaan bahan baku merupakan faktor yang sangat penting dalam kelangsungan hidup suatu pabrik, semakin besarnya kebutuhan formaldehida mengakibatkan kebutuhan akan bahan baku turut meningkat. Bahan baku yang digunakan dalam pembuatan formaldehida adalah metanol dan oksigen. Ketersediaan metanol didatangkan dari PT. Kaltim Metanol Indonesia (KMI) di

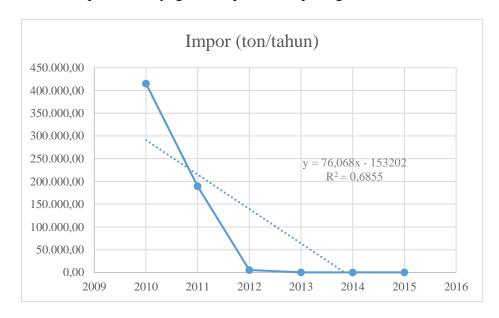
Bontang, Kalimantan Timur dengan kapasitas produksi 660.000 ton/tahun dimana 70% dari kapasitas produksi diekspor sedangkan sisanya yang sekitar 198.000 ton/tahun dijual untuk memenuhi kebutuhan domestik. Untuk bahan baku udara diambil dari lingkungan.

1.2 Kapasitas Perancangan

Pabrik Formaldehida dan Metanol dan udara dengan kapasitas 30.000 ton/tahun untuk pembangunan pada tahun 2021. Penentuan kapasitas dapat ditinjau dari beberapa pertimbangan, antara lain :

1.2.2 Kebutuhan Produk di Indonesia

a. Supply


• Impor

Data statistik yang diterbitkan Bapan Pusat Statistik (BPS) tentang kebutuhan Impor *Formaldehyde*, didapatkan data impor tahun 2010 sampai tahun 2015 seperti pada tabel 1.1

Tabel 1.1 Data Perkembangan Impor Formaldehida di Indonesia

Tahun	Impor (ton/tahun)
2010	415.077,00
2011	189.231,00
2012	5.326,00
2013	23,32
2014	3,29
2015	0,15

Dari data impot diatas dapat dibuat grafik Linear antara sumbu data tahun sumbu x dan data impor sumbu y, grafik dapat dilihat pada gambar 1.1

Gambar 1.1 Grafik Kebutuhan impor Formaldehyde

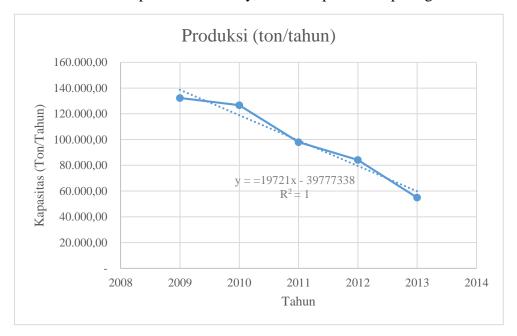
Perkiraan impor formaldehida pada tahun yang akan datang saat pembangunan pabrik dapat dihitung dengan menggunakan persamaan y=76,068x-153.202, dimana nilai x sebagai tahun dan y sebagai jumlah impor.

Dengan persamaan diatas diperkirakan untuk tahun 2021 kebutuhan impor formaldehida adalah sebesar :

$$y = 76,068x - 153.202$$

$$y = 76,068(2021) - 153.202$$

$$y = 531,4$$


Produksi

Produksi formaldehida dalam negeri menurut data statistik yang diterbitkan Badan Pusat Statistik (BPS) di Indonesia dari tahun 2009 sampai tahun 2013 dapat dilihat pada tabel 1.2

Tabel 1.2 Data Perkembangan Produksi Formaldehida di Indonesia

Tahun	Produksi (ton/tahun)
2009	132.246,37
2010	126.701,65
2011	97.981,25
2012	84.181,05
2013	54.903,65

Dari data produksi diatas dapat dibuat grafik linear antara data tahun sumbu x dan data produksi sumbu y, Grafik dapat dilihat pada gambar 1.2

Gambar 1.2 grafik produksi Formaldehida

Perkiraan produksi Formaldehida pada tahun yang akan datang dapat dihitung dengan menggunakan persamaan y= dimana x sebagai tahun dan y adalah sebagai jumlah konsumsi formaldehida. Dengan persamaan diatas diperkirakan konsumsi formaldehid pada tahun 2021 di Indonesia adalah sebesar :

$$y = 19721x - 39.777.338$$

 $y = 19721(2021) - 39.777.338$
 $y = 78.803$

Berdasarkan data impor dan produksi Formaldehida di Indonesia padatahun 2021 yang terlah diketahui, maka dapat ditentukan nilai supply formaldehida di Indonesia, yaitu:

b. Demand

Ekspor

Data statistik yang diterbitkan Bapan Pusat Statistik (BPS) tentang kebutuhan Impor *Formaldehyde*, didapatkan data ekspor tahun 2010 sampai tahun 2015 seperti pada tabel 1.3

Tabel 1.3 Data Perkembangan Ekspor Formaldehida di Indonesia

Tahun	Ekspor (ton/tahun)
2010	0
2011	0
2012	19,6
2013	83,6
2014	149,4
2015	55,8

Dari data ekspor diatas dapat dibuat grafik Linear antara sumbu data tahun sumbu x dan data ekspor sumbu y, grafik dapat dilihat pada gambar 1.3

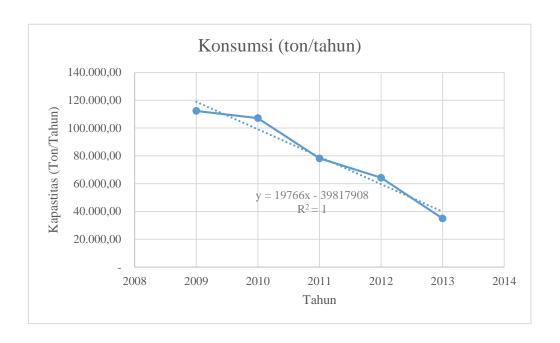
Gambar 1.3 Grafik Kebutuhan ekspor Formaldehyde

Perkiraan ekspor formaldehida pada tahun yang akan datang saat pembangunan pabrik dapat dihitung dengan menggunakan persamaan y = 22,606x - 45.443, dimana nilai x sebagai tahun dan y sebagai jumlah ekspor.

Dengan persamaan diatas diperkirakan untuk tahun 2021 kebutuhan ekspor formaldehida adalah sebesar :

$$y = 22,606x - 45.443$$

 $y = 22,606(2021) - 45.443$
 $y = 243,7$


• Konsumsi

Konsumsi formaldehida dalam negeri menurut data statistik yang diterbitkan Badan Pusat Statistik (BPS) di Indonesia dari tahun 2009 sampai tahun 2013 dapat dilihat pada tabel 1.2

Tabel 1.4 Data Perkembangan Konsumsi Formaldehida di Indonesia

Tahun	Konsumsi (ton/tahun)
2009	112.324,74
2010	107.146,72
2011	78.210,48
2012	64.246,71
2013	34.946,97

Dari data konsumsi diatas dapat dibuat grafik linear antara data tahun sumbu x dan data konsumsi sumbu y, Grafik dapat dilihat pada gambar 1.4

Gambar 1.4 grafik konsumsi Formaldehida

Perkiraan konsumsi Formaldehida pada tahun yang akan datang dapat dihitung dengan menggunakan persamaan y= 19766x - 39.817.908 dimana x sebagai tahun dan y adalah sebagai jumlah konsumsi formaldehida. Dengan persamaan diatas diperkirakan konsumsi formaldehid pada tahun 2021 di Indonesia adalah sebesar :

$$y = 19766x - 39.817.908$$

 $y = 19766(2021) - 39.817.908$
 $y = 129.421$

Berdasarkan data impor dan produksi Formaldehida di Indonesia padatahun 2021 yang terlah diketahui, maka dapat ditentukan nilai supply formaldehida di Indonesia, yaitu :

Berdasarkan proyeksi impor, ekspor, konsumsi dan produksi pada tahun 2021. Maka, peluang pasar untuk formaldehida dapat ditentukan kapasitas perancangan pabrik sebagai berikut :

Peluang =
$$Demand - Supply$$

= $129.421 - 79.334$
= 50.087

Kapasitas pabrik Formaldehyde yang akan didirikan diambil 60% dari kebutuhan di Indonesia sebesar : 60% x 50.087 = 30.052

Dari data dan hasil perhitungan perancangan pabrik formaldehida ini akan dibangun dengan kapasitas sebesar 30.000 ton/tahun.

1.2.2 Kapasitas Komersial

Penentuan kapasitas pabrik yang akan didirikan ini dipengaruhi oleh kapasitas pabrik sejenis yang sudah beroperasi. Berikut adalah perusahaan - perusahaan yang menghasilkan Formaldehida :

Tabel 1.5 Data produsen Formaldehida di Indonesia

Nama Perusahaan	Kapasitas (ton/tahun)
PT. Dofer Chemical	24.540
PT. Benua Multi Lestari	36.000
PT. Sabak Indah	36.000
PT. Duta Pertiwi Nusantara	30.000
PT. Kayulapis Indonesia (Jateng)	28.000
PT. Gelora Citra Kimia Abadi	28.000
PT. Kayulapis Indonesia (Irja)	38.000
PT. Duta Rendra Mulia	61.500
PT. Binajaya Roda Karya	60.000
PT. Susel Prima Permai	68.000
PT. Perawang Perkasa Industry	72.000
PT. Belawandeli Chemical	50.000
PT. Korindo Ariabima Sari	20.000
PT. Putra Sumber Kimindo	48.000
PT. Orica Resindo Mahakam	40.000
PT. Uforin Prajen Adhesive	33.500
PT. Wiranusa Trisatrya	45.000
PT. Susel Prima Permai	38.000
PT. Perawang Perkasa Industry	48.000

Nama Perusahaan	Kapasitas (ton/tahun)		
PT. Belawandeli Chemical	30.000		
PT. Korindo Ariabima Sari	15.000		
PT. Putra Sumber Kimindo	45.000		
PT. Orica Resindo Mahakam	35.000		
PT. Uforin Prajen Adhesive	30.000		
PT. Wiranusa Trisatrya	90.000		

(Sumber: http://www.dprin.go.id/)

Mengacu pada industri yang beroperasi tersebut maka pabrik Foemaldehida dengan kapasitas 30.000 ton/tahun sudah sesuai dengan kapasitas yang sudah beroperasi.

1.3 Tinjauan Pustaka

Formaldehyde adalah gas tidak berwarna dengan bau yang tajam. Gas formaldehyde larut dalam air, alkohol dan pelarut polar lainnya. Sebagai hasil dari struktur yang unik, formaldehyde memiliki tingkat reaktivitas kimia yang tinggi dan stabilitas termal yang baik dibandingkan dengan senyawa karbonil lainnya. Bentuk-bentuk komersial formalin termasuk formaldehida/larutan air, polimer, dan turunannya. (Syafriet, 1991)

Formaldehyde, H₂C=O, adalah suatu molekul reaktif yang pertama dalam rangkaian aldehida alifatik dan salah satu bahan kimia industri yang paling penting. Pada tahun 1983 berada di peringkat ke-26 yang diproduksi di Amerika

Serikat dengan output 5,4 miliar lb setara dengan 37 wt% larutan. Produk dari formaldehyde dapat digunakan secara ekstensif dalam industri mobil, konstruksi, kertas dan industri tekstil. (McKetta, 1983)

Beberapa jenis proses yang dapat digunakan untuk membuat formaldehida, adalah:

a. Proses Hidrokarbon

Proses hidrokarbon ini adalah proses yang dikembangkan pada awal perkembangan industri formaldehid. Proses ini merupakan proses oksidasi langsung dari hidrokarbon yang lebih tinggi. Biasanya yang digunakan adalah ethilen dengan katalis asam borat atau asam *phospat* atau garamnya dari campuran *clay* atau tanah *diatome*. Proses ini mempunyai kelemahan yang merupakan alasan mengapa proses ini tidak dikembangkan lagi, yaitu dihasilkan beberapa hasil samping yang terbentuk bersama-sama formaldehid, antara lain *asetaldehid*, *propane*, asam-asam organik. Sehingga tentu saja diperlukan pemurnian untuk mendapatkan formaldehid dengan kemurnian tertentu. Dengan demikian proses menjadi mahal dan hasilnya kurang memuaskan. (Ullmann vol 15, 1971)

b. Proses Silver Catalyst

Proses ini menggunakan katalis perak dengan reaktor *fixedbed multitube*.

Dalam industri produk *formaldehyde* berbahan baku metanol dengan mudah dioksidasi melalui katalis tembaga, namun saat ini hampir semuanya telah

diganti oleh katalis perak dengan umur sekitar 3-8 bulan. Reaksi dengan katalis perak (*silver catalyst*) terjadi pada tekanan yang lebih besar dari atmosfer. Pada proses ini menggunakan reaktor bertipe *fixed bed multitube* (Cheng, 1994).

Reaksi yang terjadi:

1. Oksidasi

$$CH_3OH + 1/2 O_2 \rightarrow HCHO + H_2O$$

2. Dehidrogenasi

$$CH_3OH \rightarrow HCHO + H_2$$

Secara keseluruhan reaksinya adalah reaksi eksotermis dan pada suhu yang tinggi yaitu 560 – 620 °C dan tekanan sedikit di atas tekanan atmosfer. Konversi yang terjadi sekitar 65 – 75% dan *yield* yang diperoleh sekitar 85 - 89,1%. Pada proses ini udara direaksikan dengan methanol dalam reaktor katalitik. Produk didinginkan dengan cepat dengan pendingin *dowterm* A, selanjutnya dialirkan ke menara absorber dimana *methanol*, *air* dan *formaldehyde* terkondensasi didasar menara. Untuk memurnikan produk sesuai dengan keinginan dilakukan pemurnian dengan proses destilasi. (Mc Ketta, 1983)

c. Proses Mixed Oxide (Haldor Topsoe)

Reaksi Haldor Topsoe (*mixed oxide catalyst*) yang berisi *molybdenum oxide* dan *iron oxide* dengan perbandingan rasio 1,5:3. Katalis

berbentuk granular atau *spherical* dan mempunyai umur sekitar 12 – 15 bulan. Reaksi terjadi pada suhu sekitar 280 – 590°C dan dengan tekanan mendekati tekanan atmosfer. *Excess* udara digunakan untuk memastikan konversi mendekati sempurna, sekitar 98,4%, dan untuk menghindari terjadinya *eksplosive* (range untuk metanol 6,7 – 36,5% vol. dalam udara). Yield yang diperoleh sekitar 94,4%. (McKetta, 1983)

Reaksi utama:

$$CH_3OH + 1/2 O_2 \rightarrow HCHO + H_2O$$

Reaksi samping:

$$CHOH + \frac{1}{2}O_2 \rightarrow CO + H_2O$$

Tabel 1.6 Perbedaan proses pembuatan Formaldehida

Parameter	Hidrokarbon	Silver Catalyst	Haldor Topsoe
Suhu Operasi	± 723° K	560 – 620 °C	280 – 590 °C
Tekanan Operasi	100 - 300 psi	1-1,5 atm	1,3 atm
Konversi	-	97-98%	98,4%
Katalis	Alumunium Phosphat	Silver Catalyst	Molybdenum oxide dan Iron oxide
Umur Katalis	-	3-8 bulan	12-15 bulan

Dari Tabel 1.6 dapat diketahui perbedaan antara proses Hidrokarbon, proses *Silver Catalist* dan *mixed oxide*. Dari ketiga proses tersebut *haldor topsoe (mixed oxide)* merupakan metodeyang tepat dalam rancangan pabrik *formaldehyde* dengan pertimbangan :

- 1. Suhu operasi proses haldor topsoe (*mixed oxide*) lebih rendah dibandingan dengan proses katalis perak. Hal ini mengakibatkan desain peralatan lebih hemat *heat exchanger* (kebutuhan pemanas).
- 2. Konversi metanol pada proses *mixed oxide* lebih tinggi dibandingkan dengan proses *silver catalyst*.
- 3. Katalis yang digunakan pada proses *haldor topsoe (mixed oxide)* berumur lebih panjang dibandingkan dengan katalis perak. Hal ini dikarenakan lamanya waktu penggunaan katalis *iron oxide* dan *molibdenum oxide* lebih lama dibandingkan dengan *silver catalyst* sehingga dapat menghemat biaya pengeluaran saat proses produksi.

BAB II

PERANCANGAN PRODUK

2.1 Spesifikasi produk

Formaldehida (37% berat)

• Rumus Molekul: HCHO

• Wujud : Cair

• Kelarutan : Mudah larut dalam air dan alkohol

• Berat Molekul : 30,026 kg/kmol

• Titik didih(1 atm): 98 °C

• Titik leleh(1 atm): -15 °C

• Densitas : $1,03 \text{ gr/cm}^3$

• Kelarutan : Mudah larut dalam air dan alkohol.

• Kemurnian : Formaldehida 37,1 % berat

H2O 61,6 – 62 % berat

Metanol 0.9 - 1.3 % berat

2.2 Spesifikasi Bahan Baku

2.2.1 Metanol

• Rumus Molekul: CH₃OH

• Wujud : Cair

• Bentuk : Jernih, tidak berwarna

• Berat Molekul : 32 kg/kmol

• Densitas (25 °C) : 0,79 g/cm³

• Titik didih(1 atm): 64,7 °C

• Titik leleh(1 atm): -97,68 °C

• Temperatur kritis: 239,49 °C

Viskositas(25 °C): 0,54 cP (cairan)

0,0097 cP (gas)

2.2.2 Udara

Udara terdiri dari campuran gas utama $N_2\,\text{dan}\,O_2\,\text{dengan}\,\text{komposisi}$

 $N_2 79\% \ dan \ 21\% \ O_2$

a. Oksigen:

• Rumus Molekul : O₂

Wujud : Gas tak berwarna, tak berbau

• Berat Molekul : 32 kg/kmol

• Titik didih(1 atm) : -183,81 °C

• Titik lebur(1 atm) : -218,78 °C

• Densitas (21 °C) : 1,33 g/cm³

- Kelarutan
 - a. Sedikit larut dalam etanol 95%
 - b. Larut dan menyatu dengan Ag
 - c. Larut pada air $(0 \, {}^{\circ}\text{C}) = 4,89 \, \text{cc}$
 - d. Larut pada air panas (30°C) = 2,6 cc
 - $(100 \, {}^{\circ}\text{C}) = 1.7 \, \text{cc}$

b. Nitrogen:

- ◆ Rumus Molekul : N₂
- Wujud : Gas tak berwarna, tak berbau
- ♦ Berat Molekul : 28 kg/kmol
- ◆ Titik didih(1 atm) : -195,65 °C
- Titik lebur(1 atm) : -209,86 °C
- ♦ Kelarutan :
 - a. Sedikit larut dalam etanol 95%
 - b. Larut pada air $(0 \, ^{\circ}\text{C}) = 2,35 \, \text{cc}$
 - d. Larut pada air panas $(20 \, ^{\circ}\text{C}) = 1,55 \, \text{cc}$

2.2.3 Air

- Rumus Molekul: H₂O
- Wujud : Cair
- Berat Molekul : 18 kg/kmol
- Titik didih : 100 °C

2.2.4 Katalis

Katalis yang digunakan adalah *Molybdenum Oxide* dan *Iron Oxide* dengan perbandingan (1,5:3).

a. Molybdenum Oxide

Sifat Fisis:

• Wujud : Padat

• Warna : Biru dan kuning

• Bau : Tidak Berbau

• Densitas : $4,69 \text{ gr/cm}^3$

◆ Kelarutan : 0,1066 gr/100 ml (18°C)

b. Iron Oxide

Sifat Fisis:

• Wujud : Padat

• Warna : Kuning, *orange*, merah, coklat atau hitam

• Bau : Tidak Berbau

• Densitas : Kuning = $4,10 \text{ gr/cm}^3$

Merah = $4,90 \text{ gr/cm}^3$

Hitam $= 4,60 \text{ gr/cm}^3$

• Kelarutan : Tidak larut dalam air

2.3 Pengendalian Kualitas

a. Pengendalian Kualitas Bahan Baku

Pengendalian kualitas pada *input* dalam sistem produksi merupakan pengendalian kualitas terhadap bahan baku yang digunakan dalam proses produksi. Penggunaan bahan baku merupakan salah satu faktor utama yang mempengaruhi proses produksi, dan sangat berpengaruh terhadap kualitas produk yang dihasilkan. Sehingga sebelum dilakukan proses produksi, dilakukan pengujian terhadap kualitas bahan baku yang diperoleh

b. Pengendalian Kualitas Produk

Pengendalian kualitas dalam sistem produksi merupakan pengendalian kualitas terhadap proses produksi untuk menjaga kualitas produk yang akan dihasilkan, dimulai dari bahan baku sampai menjadi produk. Sehingga diperlukan alat kontrol untuk setiap proses yang disebut instrumentasi.

Instrumentasi adalah peralatan yang dipakai di dalam suatu proses control untuk mengatur jalannya suatu proses agar diperoleh hasil sesuai dengan yang diharapkan. Instrumentasi berfungsi sebagai pengontrol (control), penunjuk (indicator), pencatat (recorder), dan pemberi tanda bahaya (alarm). Alat-alat instrumentasi dipasang pada setiap peralatan proses untuk mempermudah memantau dan mengontrol kondisi di lapangan. Dengan adanya instrumentasi, tindakan dapat segera dilakukan apabila terjadi kesalahan dalam proses. Pada dasarnya, tujuan pengendalian tersebut adalah agar kondisi proses di pabrik

mencapai tingkat kesalahan (*error*) paling minimum sehingga produk dapat dihasilkan secara optimal.

Instrumentasi yang umum digunakan adalah:

1. Temperature Controller (TC)

Instrumentasi yang digunakan untuk mengamati temperatur suatu alat.

2. Level Controller (LC)

Instumentasi yang digunakan untuk mengamati ketinggian cairan dalam suatu alat.

3. Pressure Controller (PC)

Instrumentasi yang digunakan untuk mengamati tekanan operasi suatu alat.

4. Flow Controller (FC)

Instrumentasi yang digunakan untuk mengamati laju alir larutan atau cairan yang melalui suatu alat.

BAB III

PERANCANGAN PROSES

3.1 Uraian Proses

Metanol diumpankan dalam sebuah *steam-heated vaporizer*, kemudian dialirkan kealat selanjutnya menuju reaktor. Aliran fluida melewati atas yang bereaksi ke bawah melalui *tube* dan pemindahan panas dari reaksi untuk sirkulasi media transfer pendingin melalui *shell* reaktor. *Catalyst* berbentuk granular atau *spherical yang berumur* 12-15 bulan. (*McKetta, 1983*).

Umpan fluida gas melewati *catalyst-filled tubes* dalam *heat-exchanging* reactor. Boiling heat transfer yang tinggi di luar tube dan merubah media transfer pendingin menjadi steam. Pada proses menggunakan excess udara dan di kontrol pada suhu isotermal 340°C. Setelah meninggalkan reactor, gas didinginkan pada suhu 110°C pada sebuah unit heat exchange (WHB) dan melewati bagian bawah menuju kolom absorber. (Ullmann, 1987).

Absorber dapat di desain menggunakan *type packed* atau *tray*. Absorber diperlukan untuk menghilangkan gas CO, CO2, O2, dan N2. Absorber bagian atas dijaga pada suhu yang rendah dalam menentukan penghilangan *formaldehyde* dari gas *overhead*. Bagian bawah dari absorber dijadikan produk akhir. Pembuatan *formaldehyde* proses haldor topsoe kondisi reaksi menghasilkan lebih banyak asam

formiat daripada proses *silver catalyst*, maka dibutuhkan sebuah alat yang bernama *deionizer* untuk menghilangkan asam formiat tersebut (*McKetta*, 1983).

Proses pembuatan *formaldehyde* dari bahan baku metanol dan udara berdasarkan proses haldor topsoe (*mixed oxide catalyst*) dibagi menjadi tiga tahap, yakni:

- a. Penyiapan bahan baku
- b. Pembentukan produk
- c. Pemurnian produk

3.1.1 Tahap Persiapan Bahan Baku

Tahap persiapan bahan baku bertujuan untuk mengubah fase metanol cair menjadi gas didalam alat *vaporizer*. Mengkondisikan temperatur umpan metanol dan udara sehingga sesuai dengan kondisi reaktor. Bahan baku utama berupa metanol dan udara. *Feed* pertama merupakan metanol yang diambil dari tangki penyimpanan pada kondisi cair dengan temperatur 30°C dan tekanan 1 atm. Metanol diumpankan kedalam *vaporizer* menggunakan pompa sehingga tekanan umpan metanol naik sampai dengan 1,3 atm. Pada alat *vaporizer*, mengubah fase metanol dari bentuk cair menjadi gas pada suhu 80°C. Uap *methanol* keluaran dari *vaporizer* kemudian diumpankan ke HE-01 untuk dinaikkan suhunya hingga mencapai suhu persiapan reaktor 300°C.

Feed kedua yaitu udara (N2 dan O2). Feed udara dengan tekanan 1 atm dan temperatur 30°C diumpankan kedalam dehumidifier dengan menggunakan blower sehingga tekanan udara naik menjadi 1,3 atm. Keluaran dari dehumidifier kemudian diumpankan ke HE-02. Dari exchanger suhu telah dinaikkan hingga mencapai suhu persiapan reaktor 300°C.

3.1.2 Tahap Pembentukan Produk

Pada tahap pembentukan produk ini umpan metanol dan udara yang telah disesuaikan kondisinya bereaksi di dalam reaktor *fixed bed multitube*.

Reaksi utama yang terjadi di dalam reaktor:

$$CH_3OH + 1/2 O_2 \rightarrow HCHO + H_2O$$

Reaksi samping:

$$CHOH + 1/2 O_2 \rightarrow CO + H_2O$$

Reaksi oksidasi metanol yang menghasilkan *formaldehyde* berlangsung dalam fase gas pada suhu 340°C dan tekanan 1,3 atm. Umpan fluida masuk ke dalam reaktor melalui *tube* yang berisi katalis, sedangkan media transfer pendingin melalui sisi *shell* reaktor.

Katalis yang digunakan adalah *iron oxide* (Fe2(MoO3)2) dan *molybdenum oxide* (MoO3) yang memiliki masa aktif sampai 15 bulan. Reaksi oksidasi metanol merupakan reaksi eksotermis sehingga selama reaksi berlangsung akan dilepas sejumlah panas.

Kenaikan temperatur yang terjadi dalam reaktor sangat dihindari, sehingga dibutuhkan media pendingin untuk menyerap panas yang terjadi selama reaksi berlangsung. Pendingin akan mempertahankan kondisi operasi reaktor yakni pada suhu 340°C dan tekanan 1,3 atm. Pada temperatur dan tekanan tersebut konversi metanol bisa mencapai 98,4%.

3.1.3 Tahap Pemurnian Produk

Tahap pemurnian produk bertujuan untuk memisahkan O₂, N₂, CO₂ di absorber. Produk keluaran dari reaktor diumpankan pada *Waste Heat Boiler* (WHB) menuju kolom absorpsi untuk melakukan pendinginan hingga suhu 110°C sebelum diumpankan ke absorber. Produk reaktor masuk ke dalam absorber pada suhu 110°C dan tekanan 1,3 atm. Komponen O2 dan N2 dipisahkan di absorber dengan pelarut air yang masuk pada suhu 30°C.

Air disemprotkan dari atas absorber. Absorber bekerja berdasarkan sifat kelarutan dimana formaldehida dan metanol akan larut dalam air sedangkan O₂, N₂, CO₂, Ar dan CO tidak larut dalam air. Gas yang tidak terserap oleh absorber akan dibuang sebagai *off gas*. Produk bawah dari absorber dialirkan menuju cooler untuk melakukan pendinginan hingga suhu 45°C, kemudian kemudian dialirkan menuju tangki penyimpan produk.

3.2 Spesifikasi Alat Proses

1. Tangki Penyimpanan Metanol, T-01

Fungsi : Menyimpan bahan baku metanol

Tipe Tangki : Cylindrical – Torispherical Roof – flat Bottom Tank

Bahan Konstruksi : Carbon Steel SA-283 Grade C

Tekanan Operasi : 1 atm

Volume Tangki : 744,548 m³

Tinggi Tangki : 21,676 ft

Diameter Tangki : 21,676 ft

Tebal *shell* : 3,7826 in

Tebal head Tangki : 4,0895 in

Jumlah : 1 unit

Harga : \$148.000

2. Blower

Fungsi : Menghisap udara dari lingkungan ke preheater

Jenis : Centrifugal Blower

Bahan Konstruksi : Carbon Steel SA-283 Grade C

Power Motor : 0,1066 hp

Jumlah : 1 unit

Harga : \$ 2.600

3. Pompa

Fungsi : Mengalirkan feed metanol dari tangki penyimpanan

menuju vaporizer

Tipe Pompa : Centrifugal pump

Bahan Konstruksi : Commercial Steel

Kapasitas Pompa : 0,0024 ft³/s

Power Pompa : 0,970 hp

Power Motor : 0,87 hp

Ukuran Pipa

D Nominal : 1,5 in

ID : 1,61 in

OD : 1,9 in

Schedule No. : 40

Harga : \$ 1.080

4. Dehumidifier

Fungsi : Menyerap *humidity* udara.

Bentuk : Silinder vertikal dengan tutup atas dan bawah

standard dished head

Jenis penyerap : Silica Gel

Tinggi tumpukan : 2,4499 m

Bahan Konstruksi : Carbon Steel SA-283 Grade C

Suhu Dehumidifier : 30 °C

Tekanan Dehumidifier: 1,3 atm

Diameter : 1,7867 m

Tinggi : 5,2566 m

Tebal *Head* : 0,378 in

Tebal *Shell* : 0,4375 in

Harga alat : \$ 50013,91

5. Vaporizer

Fungsi : Merubah fase metanol liquid menjadi uap

Jenis : *Shell and tube* (1-2 HE)

Bahan Konstruksi : Carbon Steel SA-283 Grade C

Luas Area : 1628,64 ft²

Nt : 522

Tube

OD, BWG : 1 in 14 BWG

ID : 0,83 in

Length : 12 ft

Pitch : 1,25 in triangular

 $\Delta P Tube$: 0,5335 psi

Shell

ID : 33 in

 ΔP Shell : 0,5786 psi

Fouling Factor : 0,1333 jam.ft².°F/Btu

Harga : \$ 55.043

6. Separator

Fungsi : Memisahkan fase uap dan fase cair

Vaporizer

Jenis : Vertikal Drum Separator

Ukuran : Diameter : 0,4583 m

Tinggi : 1,9568 m

Tebal *shell* : 3/16 in

Tebal *head* : 3/16 in

Bahan : Carbon Steel SA 283 Grade C

Harga : \$ 19.479

7. Preheater, HE-01

Fungsi : Menaikkan suhu umpan metanol sebelum masuk ke

reaktor

Jenis : Double Pipe Heat Exchanger

Bahan Konstruksi : Carbon Steel SA-283 Grade C

Luas Area : $2,6273 \text{ ft}^2$

Temperatur

 T_1 : 626 °F

 T_2 : 626 °F

 t_1 : 176 °F

 t_2 : 572 °F

Outer Pipe : 2,5

Inner Pipe : 1,25

Length : 12 ft

Jumlah *Hairpin* : 4

Fouling Factor : 0,002 jam.ft².°F/Btu

 ΔP annulus : 0,070 psi

 ΔP inner pipe : 1,988 psi

Harga : \$ 22.480

8. Preheater, HE-02

Fungsi : Menaikkan suhu umpan udara sebelum masuk ke

reaktor

Jenis : Double Pipe Heat Exchanger

Bahan Konstruksi : Carbon Steel SA-283 Grade C

Luas Area : 4,5872 ft²

Temperatur

 T_1 : 626 °F

 T_2 : 626 °F

 t_1 : 86 °F

 t_2 : 572 °F

Outer Pipe : 2,5

Inner Pipe : 1,25

Length : 12 ft

Jumlah *Hairpin* : 4

Fouling Factor : 0,002 jam.ft².°F/Btu

 ΔP annulus : 0,070 psi

 ΔP inner pipe : 1,988 psi

Harga : \$ 22.480

9. Reaktor

Fungsi : Mereaksikan metanol fase vapor dan udara dengan

bantuan dengan bantuan katalis Iron Molybdenum

Tipe Reaktor : Fixed Bed Multitube

Bahan Konstruksi : Carbon Steel SA-283 Grade C

Suhu Reaktor : 350 °C

Tekenan Reaktor : 1,3 atm

Tinggi : 2,8884 m

Diameter : 1,4442 m

Tebal *Shell* : 0,4375 in

Tebal Head: 0,0912 in

Nt : 322 buah

Katalis : Iron Molybdenum

Jumlah : 1 unit

Harga : \$ 130.100

10. WHB (Waste Heat Boiler)

Fungsi : Menurunkan suhu setelah keluar reaktor

Jenis : Shell and tube (1-2 HE)

Bahan Konstruksi : Carbon Steel SA-283 Grade C

Luas Area : $376,95 \text{ ft}^2$

Tube

OD, BWG : 1 in 14 BWG

ID : 0,834 in

Length : 12 ft

Jumlah tube : 232

Pitch : 1,25 in triangular

 $\Delta P tube : 0,043 psi$

Shell

ID : 23,25 in

 $\Delta P shell$: 0,38 psi

Fouling factor : 0,001 jam.ft².°F/Btu

Harga : \$ 22.480

11. Absorber

Fungsi : Untuk menghilangkan gas CO, CO₂, O₂, dan N₂

yang tidak ikut bereaksi

Bentuk : Silinder vertikal dengan tutup atas dan bawah

standard dished head

Bahan Konstruksi : Carbon Steel SA-21 Grade A

Suhu Absorber : 110 °C

Tekanan Absorber : 1,3 atm

Tinggi : 9,2665 m

Diameter : 1,8533 m

Tebal Head: 0,125 in

Tebal Shell : 0,1847 in

Harga : \$ 19.400

12. Cooler

Fungsi : Mendinginkan produk dari absorber

Jenis : Shell and tube (1-2 HE)

Bahan Konstruksi : Carbon Steel SA-283 Grade C

Tube

OD, BWG : 1 in 14 BWG

ID : 0,834 in

Length : 12 ft

Jumlah *Tube* : 232

Pitch : 1,25 in triangular

 $\Delta P tube : 0.017 psi$

Shell

ID : 23 in

 ΔP shell : 0,587 psi

Fouling factor : 0,001 jam.ft².°F/Btu

Harga : \$ 22.480

13. Expansion valve

Fungsi : Menurunkan tekanan formaldehid sebelum memasuki

tangki penyimpanan produk

Jenis : Globe valve

Ukuran pipa : ID = 1,049 in

Sch N = 40

NPS = 1 in

Bahan : Carbon steel

Harga : \$ 10,32

14. Tangki Penyimpanan Produk Akhir, T-02

Fungsi : Menyimpan produk akhir Formaldehid 37 %

 $\label{top:continuous} \textbf{Tipe Tangki} \qquad \qquad : \textit{Cylindrical} - \textit{Torispherical Roof-flat Bottom Tank}$

Bahan Konstruksi : Carbon Steel SA-283 Grade C

Tekanan Operasi : 1 atm

Kapasitas Tangki : 2302,4268 m³

Tinggi Tangki : 37,2746 ft

Diameter Tangki : 37,2746 ft

Tebal *shell* : 4,0895 in

Tebal head Tangki : 6,4222 in

Jumlah : 1 unit

Harga : \$ 179.400

BAB IV

PERANCANGAN PABRIK

4.1 Lokasi Pabrik

Pemilihan lokasi merupakan hal yang sangat penting dalam perancangan suatu pabrik, karena berhubungan langsung dengan nilai ekonomis dari pabrik yang akan didirikan. Pabrik Formaldehid dengan kapasitas produksi 30.000 ton/tahun direncanakan akan didirikan di Bontang – Kalimantan Timur, yang merupakan daerah kawasan industri.

Adapun pertimbangan-pertimbangan dalam pemilihan lokasi pabrik ini adalah sebagai berikut :

4.1.1 Faktor Primer Penentuan Lokasi Pabrik

Faktor primer merupakan faktor yang secara langsung mempengaruhi tujuan utama dari usaha pabrik. Tujuan utama ini meliputi proses produksi dan distribusi, adapun faktor-faktor primer yang berpengaruh secara langsung dalam pemilihan lokasi pabrik adalah :

1. Penyediaan Bahan Baku

Lokasi pabrik sebaiknya dekat dengan penyediaan bahan baku dan pemasaran produk untuk menghemat biaya transportasi. Pabrik juga sebaiknya dekat dengan pelabuhan laut jika ada bahan baku atau produk yang dikirim dari atau

ke luar negeri. Bahan baku pabrik Formaldehid ini adalah methanol yang diperoleh dari Kaltim Methanol Industri (KMI), Bontang.

2. Pemasaran

Pemasaran merupakan salah satu hal yang sangat mempengaruhi studi kelayakan proses. Dengan pemasaran yang tepat akan menghasilkan keuntungan dan menjamin kelangsungan proyek. Lokasi di kawasan Bontang relatif strategis untuk pemasaran produk terutama bagi pabrik-pabrik yang menggunakan Formaldehid.

3. Utilitas

Utilitas yang diperlukan adalah air, bahan bakar dan listrik. Kebutuhan air dapat dipenuhi dengan baik dan murah karena area kawasan ini memiliki sumber aliran sungai, yaitu sungai Sangatta. Sarana yang lain seperti bahan bakar dan listrik dapat diperoleh dengan cukup mudah.

4. Tenaga Kerja

Tenaga kerja merupakan modal utama pendirian suatu pabrik. Sebagian besar tenaga kerja yang dibutuhkan adalah tenaga kerja yang berpendidikan kejuruan atau menengah dan sebagian sarjana. Untuk memenuhinya dapat diperoleh dari daerah sekitar lokasi pabrik. Selain itu faktor kedisiplinan dan pengalaman kerja juga menjadi prioritas dalam perekrutan tenaga kerja, sehingga diperoleh tenaga kerja yang berkualitas.

5. Transportasi

Untuk mempermudah lalu lintas produk dan pemasarannya, pabrik didirikan di Bontang karena dekatnya lokasi pabrik dengan pelabuhan, serta jalan

raya yang memadai, sehingga diharapkan pemasaran *Formaldehid* baik ke daerah - daerah di pulau Jawa atau ke pulau - pulau lain di Indonesia maupun keluar negeri dapat berjalan dengan baik.

6. Letak Geografis

Daerah Bontang – Kalimantan Timur merupakan suatu daerah yang terletak di daerah kawasan industri dan pesisir pantai yang memiliki daerah alam yang sangat menunjang. Daerah Bontang dan sekitarnya telah direncanakan oleh pemerintah sebagai salah satu pusat pengembangan wilayah produksi industri.

Penentuan lokasi pabrik merupakan hal yang sangat penting yang akan menentukan kelancaran perusahaan dalam menjalankan operasinya. Dari pertimbangan tersebut maka area tanah yang tersedia memenuhi persyaratan untuk pembangunan sebuah pabrik.

4.1.2 Faktor Sekunder Penentuan Lokasi Pabrik

Faktor sekunder tidak secara langsung berperan dalam proses industri, akan tetapi sangat berpengaruh dalam kelancaran proses produksi dari pabrik itu sendiri. Adapun faktor-faktor sekunder adalah sebagai berikut :

1. Perluasan Areal Unit.

Pemilihan lokasi pabrik berada di kawasan pengembangan produksi Kalimantan Timur untuk kawasan Bontang, sehingga memungkinkan adanya perluasan areal pabrik dengan tidak mengganggu pemukiman penduduk.

2. Perizinan

Lokasi pabrik dipilih pada daerah khusus untuk kawasan industri, sehingga memudahkan dalam perijinan pendirian pabrik.

Pengaturan tata letak pabrik merupakan bagian yang penting dalam proses pendirian pabrik, hal-hal yang perlu diperhatikan antara lain :

- a. Segi keamanan kerja terpenuhi.
- b. Pengoperasian, pengontrolan, pengangkutan, pemindahan maupun perbaikan semua peralatan proses dapat dilakukan dengan mudah dan aman.
- c. Pemanfaatan areal tanah seefisien mungkin.
- d. Transportasi yang baik dan efisien.

3. Prasarana dan Fasilitas Sosial

Prasarana seperti jalan dan transportasi lainnya harus tersedia. Selain itu fasilitas-fasilitas sosial seperti sarana pendidikan, ibadah, hiburan, bank dan perumahan sehingga dapat meningkatkan kesejahteraan dan taraf hidup.

4.2 Tata Letak Pabrik

Tata letak pabrik adalah tempat kedudukan dari bagian-bagian pabrik yang meliputi tempat bekerjanya karyawan, tempat peralatan, tempat penyimpanan bahan baku dan produk, dan sarana lain seperti utilitas, taman dan tempat parkir. Secara garis besar lay out pabrik dibagi menjadi beberapa daerah utama, yaitu:

1. Daerah administrasi/ perkantoran dan laboratorium

Daerah administrasi merupakan pusat kegiatan administrasi pabrik yang mengatur kelancaran operasi. Laboratorium sebagai pusat pengendalian kualitas dan kuantitas bahan yang akan diproses serta produk yang akan yang dijual.

2. Daerah Proses dan Ruang Kontrol

Merupakan daerah tempat alat-alat proses diletakkan dan proses berlangsung. Ruang control sebagai pusat pengendalian berlangsungnya proses.

- 3. Daerah pergudangan, umum, bengkel, dan garasi
- 4. Daerah Utilitas dan Power Station, Merupakan daerah dimana kegiatan penyediaan air dan tenaga listrik dipusatkan.

Adapun perincian luas tanah sebagai bagunan pabrik dapat dilihat pada tabel dibawah ini :

Tabel 4.1 Perincian luas tanah dan bangunan pabrik

Lokasi	Panjang, m	Lebar, m	Luas, m ²
Kantor utama	44	14	616
Pos Keamanan/satpam	8	4	32
Mess	16	36	576
Parkir Tamu	12	22	264
Parkir Truk	20	12	240
Ruang timbang truk	12	6	72
Kantor teknik dan produksi	20	14	280
Klinik	12	10	120
Masjid	14	12	168
Kantin	16	12	192
Bengkel	12	24	288

Lokasi	Panjang, m	Lebar, m	Luas, m ²
Unit pemadam kebakaran	16	14	224
Gudang alat	22	10	220
Laboratorium	12	16	192
Utilitas	24	10	240
Area proses	65	35	2275
Control Room	28	10	280
Control Utilitas	10	10	100
Jalan dan taman	60	40	2400
Perluasan pabrik	110	20	2200
Luas Tanah			10979
Luas Bangunan			6379

4.3 Tata Letak Alat Proses

Dalam perancangan tata letak peralatan proses pada pabrik ada beberapa hal yang perlu diperhatikan, yaitu:

1. Aliran bahan baku dan produk

Jalannya aliran bahan baku dan produk yang tepat akan memberikan keuntungan ekonomis yang besar, serta menunjang kelancaran dan keamanan produksi.

2. Aliran udara

Aliaran udara di dalam dan sekitar area proses perlu diperhatikan kelancarannya. Hal ini bertujuan untuk menghindari terjadinya stagnasi udara pada suatu tempat berupa penumpukan atau akumulasi bahan kimia berbahaya yang

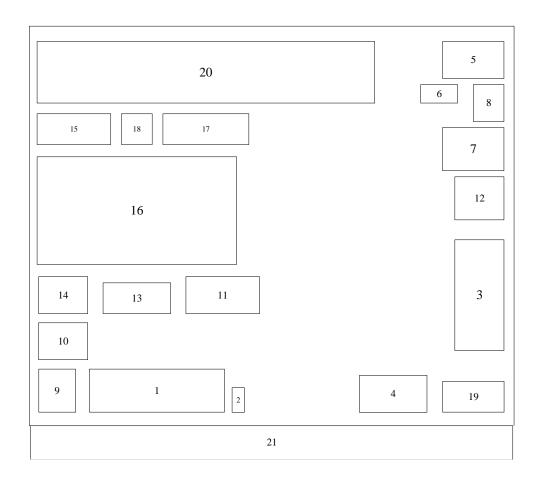
dapat membahayakan keselamatan pekerja, selain itu perlu memperhatikan arah hembusan angin.

3. Pencahayaan

Penerangan seluruh pabrik harus memadai. Pada tempat-tempat proses yang berbahaya atau beresiko tinggi harus diberi penerangan tambahan.

4. Lalu lintas manusia dan kendaraan

Dalam perancangan lay out peralatan, perlu diperhatikan agar pekerja dapat mencapai seluruh alat proses dengan cepat dan mudah agar apabila terjadi gangguan pada alat proses dapat segera diperbaiki, selain itu keamanan pekerja selama menjalankan tugasnya perlu diprioritaskan.


5. Pertimbangan Ekonomi

Dalam menempatkan alat – alat proses pada pabrik diusahakan agar dapat menekan biaya operasi dan menjamin kelancaran serta keamanan produksi pabrik sehingga dapat menggantungkan dari segi ekonomi.

6. Jarak antar alat proses

Untuk alat proses yang mempunyai suhu dan tekanan operasi tinggi, sebaiknya dipisahkan dari alat proses lainnya, sehingga apabila terjadi ledakan atau kebakaran pada alat tersebut, tidak membahayakan alat-alat proses lainnya.

LAY OUT PABRIK FORMALDEHID

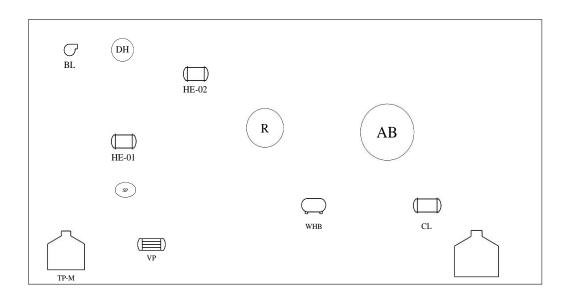
Gambar 4.1 Tata letak pabrik

Skala: (1:1000)

Keterangan gambar:

1. Kantor utama

11. Bengkel


2. Pos keamanan

12. Unit pemadam kebakaran

3. Mess

13. Gudang alat

- 4. Parkir tamu 14. Laboratorium
- 5. Parkir truk 15. Utilitas
- 6. Ruang timbang truk 16. Area proses
- 7. Kantor teknik dan produksi 17. Kontrol room
- 8. Klinik 18. Kontrol utilitas
- 9. Masjid 19. Taman
- 10. Kantin 20. Peluasan pabrik
 - 21. Jalan raya

Gambar 4.2 Tata letak alat proses

Skala (1:550)

Keterangan:

BL : Blower WHB : Waste heat boiler

DH: Dehumidifier CL: Cooler

HE: Heat exchanger R: Reaktor

TP : Tangki penampung AB : Absorber

SP : Separator

4.4 Alir Proses dan Material

4.4.1 Neraca Massa

4.4.1.1 Neraca Massa Total

Tabel 4.2 Neraca massa total

	aliran r	nasuk		aliran k	eluar
komponen	aliran 4		komponen	alira	n 6
	kg	Kmol		kg	kmol
O_2	167,5	5,2	CH ₃ OH	34,4	1,07
N_2	630,0	22,5	N_2	630,0	22,5
	aliran 5		O_2	2,7	0,1
CH ₃ OH	2149,9	67,2	CH ₂ O	1459,9	65,4
H ₂ O	3,6	0,2	CO	18,5	0,7
		H ₂ O	805,4	67,0	
Total	2950,9	95,1		2950,9	156,7

4.4.1.2 Neraca Massa Setiap Alat

1) Neraca Massa di Dehumidifier

Tabel 4.3 Neraca massa Dehumidifier

		alir masuk omponen aliran 1 komponer		alir keluar aliran 2	
•	kg	kmol	•	kg	kmol
H ₂ O	18,3	1,0	H ₂ O	18,3	1,0
N_2	630,0	22,5		aliran 3	
O_2	167,5	5,2	N_2	630,0	22,5
			O_2	167,5	5,2
Total	815,8	28,8		815,8	28,8

2) Neraca Massa di Vaporizer

Tabel 4.4 Neraca massa Vaporizer

aliran masuk			aliran keluar		
komponen	aliran 3		aliran	4	
	kg kmol		kg	kmol	
CH ₃ OH	2687,4	84,0	2687,4	84,0	
H ₂ O	4,5	0,2	4,5	0,2	
Total	2691,8	84,2	2691,8	84,2	

3) Neraca Massa di Separator

Tabel 4.5 Neraca massa Separator

komponen	aliran masuk aliran 5		aliran keluar (kebawah) aliran 6		aliran l (keat alira	tas)
	kg	kmol	kg	kmol	kg	kmol
CH ₃ OH	2687,4	84,0	2149,9	67,2	537,5	16,8
H ₂ O	4,5	0,2	3,6	0,2	0,9	0,0
Total	2691,8	84,2	2691,	,8	84,	,2

4) Neraca Massa di Reaktor

Tabel 4.6 Neraca massa Reaktor

komponen	aliran masuk aliran 4		komponen	aliran k alira	
	kg	kmol		kg	kmol
O_2	167,5	5,2	CH ₃ OH	34,4	1,07
N_2	630,0	22,5	N_2	630,0	22,5
	aliran 5		O_2	2,7	0,1
CH ₃ OH	2149,9	67,2	CH ₂ O	1459,9	65,4
H ₂ O	3,6	0,2	CO	18,5	0,7
		H ₂ O	805,4	67,0	
Total	2950,9	95,1		2950,9	156,7

5) Neraca Massa di Absorber

Tabel 4.7 Neraca massa Absorber

	aliran masuk			aliran k	eluar
komponen	alira	n 6	komponen alira		n 8
	kg	kmol		kg	kmol
CH ₃ OH	34,4	1,1	N_2	630,0	22,5
N_2	630,0	22,5	O_2	2,7	0,1
O_2	2,7	0,1	CO	18,5	0,7
CO	18,5	0,7			
CH ₂ O	1459,9	48,7			
H ₂ O	805,4	44,7			
	alirar	n 7		aliraı	n 9
H ₂ O	1016,7	56,5	CH ₃ OH	34,4	1,1
			CH ₂ O	1459,9	48,7
			H ₂ O	1822,2	101,2
Total	3967,7	174,2		3967,7	174,2

4.4.2 Neraca Panas

1) Neraca Panas di Vaporizer

Tabel 4.8 Neraca panas Vaporizer

Komponen	Input	Output
СН₃ОН	36218	3828962
H ₂ O	1489	428412
Q pemanas	4219668	-
Total	4257374	4257374

2) Neraca Panas di Reaktor

Tabel 4.9 Neraca panas Reaktor

Komponen	Input	Output
СН ₃ ОН	1368030	165324
H ₂ O	107441	1472181
O ₂	1778853	1521469
N ₂	5801047	6855940
CO ₂	9280	4888
Ar	70746	83616
CH ₂ O ₂	-	4574320
СНОН	-	1114154
Panas reaksi	43493926	-
pendingin	-	36837431
Total	52629323	52629323

3) Neraca Panas di Absorber

Tabel 4.10 Neraca panas Absorber

	Inp	out	Output		
Komponen	6	7	8	9	
	Q (kj/jam)	Q (kj/jam)	Q (kj/jam)	Q (kj/jam)	
CH ₃ OH	41323	-	41323	-	
СНОН	287748	-	287748	-	
H ₂ O	386504	1082775	1469279	-	
CH ₂ O ₂	73129	-	73129	-	
O_2	398423	-	-	398423	
N_2	2055738	-	-	2055738	
CO_2	792	-	-	792	
Ar	17494			17494	
Total	3261153	1082775	1871480	2472447	
	4343927		4343	3927	

4.5 Perawatan (Maintenance)

Maintenance berguna untuk menjaga saran atau fasilitas peralatan pabrik dengan cara pemeliharaan dan perbaikan alat agar produksi dapat berjalan dengan lancar dan produktifitas menjadi tinggi sehingga akan tercapai target produksi dan spesifikasi produk yang diharapkan.

Perawatan preventif dilakukan setiap hari untuk menjaga dari kerusakan alat dan kebersihan lingkungan alat. Sedangkan perawatan periodik dilakukan secara terjadwal sesuai dengan buku petunjuk yang ada. Penjadwalan tersebut dibuat sedemikian rupa sehingga alat-alat mendapat perawatan khusus secara bergantian. Alat - alat berproduksi secara kontinyu dan akan berhenti jika terjadi kerusakan.

Perawatan alat - alat proses dilakukan dengan prosedur yang tepat. Hal ini dapat dilihat dari penjadwalan yang dilakukan pada setiap alat. Perawatan mesin tiap-tiap alat meliputi :

1. Over head 1 x 1 tahun

Merupakan perbaikan dan pengecekan serta *leveling* alat secara keseluruhan meliputi pembongkaran alat, pergantian bagian-bagian alat yang sudah rusak, kemudian kondisi alat dikembalikan seperti kondisi semula.

2. Repairing

Merupakan kegiatan *maintenance* yang bersifat memperbaiki bagianbagian alat. Hal ini biasanya dilakukan setelah pemeriksaan.

Faktor-faktor yang mempengaruhi maintenance:

a. Umur alat

Semakin tua umur alat semakin banyak pula perawatan yang harus diberikan yang menyebabkan bertambahnya biaya perawatan.

b. Bahan baku

Penggunaan bahan baku yang kurang berkualitas akan meyebabkan kerusakan alat sehingga alat akan lebih sering dibersihkan.

c. Tenaga manusia

Pemanfaatan tenaga kerja terdidik, terlatih dan berpengalaman akan menghasilkan pekerjaan yang baik pula.

4.6 Pelayanan Teknik (Utilitas)

4.6.1 Utilitas secara umum

Dalam suatu pabrik, peran dari utilitas sebagai unit pendukung operasional suatu proses produksi sangatlah penting. Semua sarana pendukung operasional suatu proses produksi tersebut disediakan dan disiapkan oleh suatu unit atau pabrik yang secara umum disebut pabrik utilitas. Dengan kata lain, utilitas merupakan suatu pabrik yang menyiapkan sarana pendukung suatu proses produksi pada suatu pabrik. Sarana utilitas pada pabrik Formaldehyde diantaranya adalah:

1. Air Kebutuhan

Air pada pabrik Formaldehyde dipenuhi dari air sungai. Air digunakan untuk menghasilkan air pendingin, air deminiralisasi untuk mensupplay alat *Waste Heat Boiler* (WHB) yang menghasilkan steam dan air untuk keperluan sanitasi.

2. Steam

Steam dihasilkan dari unit *Waste Heat Boiler* (WHB) dan digunakan untuk proses produksi, yaitu: - *Heater*, sebagai media pemanas untuk O₂, N₂, CH₃OH dan H₂O sebelum masuk reaktor - Vaporizer, yang digunakan untuk mengubah larutan metanol dari fase liquid menjadi fase gas.

3. Listrik

Kebutuhan listrik pabrik dipenuhi dari PT.PLN Persero. Listrik pada pabrik digunakan untuk penerangan pabrik, dan proses produksi sebagai tenaga

penggerak beberapa peralatan proses seperti pompa dan peralatan proses

kontrol.

4.6.2 Syarat untuk kebutuhan air pada pabrik Formaldehyde

1. Air sanitasi

Air sanitasi digunakan untuk keperluan karyawan, laboratorium,

perkantoran, pemadam kebakaran. Pada umumnya air sanitasi harus memenuhi

syarat kualitas yang ditentukan sebagai berikut :

a. Syarat fisik:

• Suhu : Dibawah suhu udara sekitar

• Warna : Jernih

• Rasa : Tidak berasa

• Bau : Tidak berbau

• Kekeruhan : Kurang dari 1 mgr SiO₂ / liter

b. Syarat kimia:

• pH : 6.5 - 8.5

• Kesadahan kurang dari 70 CaCO₃

• Tidak mengandung zat terlarut berupa zat organik dan zat anorganik

• Tidak mengandung zat-zat beracun

• Tidak mengandung logam berat, seperti Pb, Ag, Cr, Hg

55

c. Syarat Biologi:

- Tidak mengandung kuman dan bakteri, terutama bakteri patogen
- Bakteri Escherichia Coli kurang dari 1/100 ml.

2. Air Pendingin

Tugas unit penyediaan air pendingin adalah untuk menyediakan air pendingin yang memenuhi syarat-syarat sebagai air pendingin untuk keperluan operasional pada Reaktor, *Cooler*, dan Absorber. Adapun faktor-faktor digunakannya air pendingin adalah sebagai berikut:

- Air merupakan materi yang mudah didapat dalam jumlah besar
- Mudah diatur dan dijernihkan
- Tidak mudah menyusut dengan adanya perubahan temperatur dingin
- Tidak terdekomposisi
- Dapat menyerap jumlah panas yang besar per satuan volume

Syarat kualitas cooling water:

- a. Tidak mengandung *Hardness* dan Silika karena dapat menimbulkan kerak
- b. Tidak mengandung besi karena dapat menimbulkan korosi
- c. Tidak mengandung minyak karena menyebabkan terganggunya *film corossion* pada inhibitor, menurunkan heat transfer dan memicu pertumbuhan mikroorganisme.

3. Air Demineralisasi

Air umpan *Waste Heat Boiler* (WHB) adalah air yang akan menjadi fase uap di dalam *shell and tube* boiler, dimana telah mengalami perlakuan khusus antara lain penjernihan, pelunakan, dan deminiralisasi. Walaupun air terlihat bening atau jernih, namun pada umumnya masih mengandung larutan garam dan asam yang dapat merusak peralatan *Waste Heat Boiler* (WHB). Hal-hal yang perlu diperhatikan dalam pengolahan Air Umpan *Waste Heat Boiler* (WHB):

a. Zat-zat penyebab korosi

Korosi dalam ketel disebabkan karena tidak sempurnanya pengaturan pH dan penghilangan oksigen, penggunaan kembali air kondensat yang banyak mengandung bahanbahan pembentuk karat dan korosi yang terjadi selama ketel tidak dioperasikan.

b. Zat penyebab 'scale foaming'

Pembentukan kerak disebabkan adanya kesadahan dan suhu tinggi yang biasanya berupa garam-garam karbonat dan silika.

c. Zat penyebab foaming

Air yang diambil kembali dari proses pemanasan biasanya menyebabkan busa (*foam*) pada *Waste Heat Boiler* (WHB), karena adanya zat-zat organik, anorganik dan zat tidak terlarut dalam jumlah besar. Efek pembusaan terutama terjadi pada alkalinitas tinggi. Sebelum air dari unit pengolahan air digunakan sebagai umpan *Waste Heat Boiler* (WHB), dilakukan pelunakan air. Adapun tujuannya adalah untuk mengurangi ion Mg²⁺ dan Ca²⁺ yang mudah sekali membentuk kerak. Kerak akan

menghalangi perpindahan proses panas sehingga akan menyebabkan *overheating* yang memusat dan menyebabkan pecahnya pipa.

4.6.3 Tahapan proses pengolahan air pada pabrik formaldehyde

1. Penyaringan dan Pemisahan

Tahap ini menggunakan strainer yang berfungsi untuk menyaring kotoran dari air sungai yang berukuran besar. Kemudian di pompa masuk ke dalam skimming tank untuk memisahkan air dengan minyak yang ikut terhisap dan kotoran yang larut dalam air dan mengendap (*slurry*).

2. Koagulasi dan Flokulasi

Proses koagulasi dalam pengolahan air adalah proses pengumpulan partikel kecil menjadi partikel yang lebih besar sehingga selanjutnya dapat dipisahkan dari air melalui proses sedimentasi, filtrasi ataupun membran. Pengumpulan dan perbesaran partikel dalam proses koagulasi dan flokulasi dilakukan dengan penambahan koagulan. Proses koagulasi dilakukan dengan menambahkan koagulan dan dilakukan pemutaran cepat. Sedangkan proses flokulasi adalah proses pembesaran partikel setelah proses koagulasi. Proses ini dilakukan dengan pengadukan lambat (Pizzi, 1979). Umumnya koagulan yang dipakai berupa tawas Al₂(SO₄)₃ atau PAC. Setelah ditambahkan koagulan tawas ataupun PAC pH air akan turun dan suasana menjadi asam sehingga pada proses flokulasi biasanya terdapat proses netralisasi.

3. Pengendapan

Proses pengendapan padatan yang terbentuk dari proses flokulasi dan koagulasi secara gravitasi. Alat yang digunakan berupa *setlling tank* (Pizzi, 1979). Alat yang digunakan untuk prose sedimentasi ini disebut *clarifier*.

4. Filtrasi

Proses ini merupakan proses penyaringan setelah proses sedimentasi menggunakan filter. Pada proses ini terjadi penyaringan pertikel yang belum dapat terendapkan pada *clarifier*. Pada filter tersusun beberapa adsorben seperti karbon aktif, pasir, pasir silika dan antracit. Adsorben disusun dengan urutan tertentu pada filter agar air yang keluar dari filter merupakan air bersih. Selain memisahkan pertikel yang belum terendapkan, adanya adsorben pada filter mampu memisahkan ion besi dan mangan pada air.

5. Demineralizing Plant

Proses ini digunakan untuk menghilangkan ion-ion yang tidak diinginkan dalam air seperti: arsen, nitrat, kalsium dan magnesium (hardness). Dalam ion exchange ini digunakan kation dan anion untuk menghilangkan ion-ion dalam air (Pizzi, 1979). Proses ion exchange ini digunakan untuk air yang akan digunakan untuk Waste Heat Boiler (WHB). Air umpan Waste Heat Boiler (WHB) memiliki syarat khusus. Keberadaaan ion besi, arsen, nitrat, kalsium dan magnesium dapat merusak dan mempercepat kerak pada Waste Heat Boiler (WHB). Pada pabrik formaldehyde steam yang dihasilkan merupakan steam yang berasal dari Waste Heat Boiler (WHB). Sehingga syarat air umpan Waste Heat Boiler (WHB) sangat ketat berbeda dengan boiler penghasil steam. Air umpan Waste Heat Boiler (WHB)

harus melalui proses demineralisasi. Proses demineralisasi terdiri atas kolom kation yang berisi resin kation dan kolom anion berisi resin anion. Pada kolom kation ionion positif dalam air (Ca²⁺, Mg²⁺, Na²⁺) akan diikat oleh resin kation, sedangkan ionion negatif dalam air (HCO³⁻, Cl⁻, SO4²⁻) selanjutnya akan diikat oleh resin anion. Regenerasi resin kation menggunakan larutan HCl sedangkan untuk regenerasi resin anion menggunakan larutan NaOH (Imafuku, 1999).

6. Deaerator dan Proses Boiler

Air demin dipompa ke Deaerator, untuk menghilangkan kandungan gas Waste Heat Boiler (WHB). Air didalam tube boiler (tipe pipa air) dan didalam shell dialiri fluida panas, sehinggga terbentuklah steam/uap. Uap yang terbentuk kemudian didistribusikan ke alat yang membutuhkan yaitu vaporizer dan preheater.

4.6.4 Utilitas pada pabrik formaldehyde

Pabrik formaldehyde dari bahan metanol dan udara menggunakan proses sintesis memiliki sarana utilitas berupa air, steam serta listrik. Berikut kebutuhan utilitas pada pabrik formaldehyde :

1. Air Kebutuhan

Air pada pabrik formaldehyde dipenuhi dari air sungai dengan debit 1000 liter/detik yang terlebih dulu di treatment. Air digunakan untuk menghasilkan steam dari unit *Waste Heat Boiler* (WHB), pendingin untuk cooler, dan untuk keperluan sanitasi.

a. Air Sanitasi

Air sanitasi digunakan untuk keperluan karyawan, laboratorium, perkantoran, pemadam kebakaran dan keperluan lainnya. Berikut jumlah air sanitasi yang dibutuhkan pada pabrik formaldehyde:

Tabel 4.11 Kebutuhan air sanitasi

KEBUTUHAN	JUMLAH AIR (kg/jam)	
Domestik dan kantor	1500	
Laboratorium	225	
Kantin dan tempat ibadah	250	
Poliklinik	225	
TOTAL	2200	

b. Air Pendingin

Jumlah kebutuhan untuk air pendingin didapatkan dari Appendiks Bperhitungan neraca panas. Air pendingin ini diperlukan pada beberapa alat di bawah ini:

Tabel 4.12 Kebutuhan air pendingin

NAMA ALAT	JUMLAH AIR PENDINGIN (kg/jam)
Cooler	10962
TOTAL	10962

c. Air Waste Heat Boiler (WHB)

Air umpan *Waste Heat Boiler* (WHB)adalah air umpan yang dilunakkan dari kandungan mineral yang terdapat dalam air tersebut. Walaupun air sudah kelihatan jernih tetapi pada umumnya masih mengandung garam dan asam yang

dapat merusak boiler. Proses pelunakan pada air boiler disebut sebagai proses demineralisasi.

2. Steam

Kebutuhan air alat *Waste Heat Boiler* (WHB) dan pendingin reaktor sama dengan steam yang dihasilkan. Steam yang dihasilkan dari unit alat *Waste Heat Boiler* (WHB) dan reaktor steam biasanya digunakan sebagai media pemanas dalam proses produksi. Kebutuhan steam pada pabrik formaldehyde dari metanol dan udara adalah : (Tuliskan P dan T steam)

Tabel 4.13 Kebutuhan steam

NAMA ALAT	JUMLAH UAP (kg/jam)
WHB	53285
TOTAL	53285

3. Air Proses

Jumlah kebutuhan untuk air proses didapatkan dari Appendiks Aperhitungan neraca massa. Air proses ini diperlukan pada beberapa alat di bawah ini :

Tabel 4.14 Kebutuhan air proses

NAMA ALAT	JUMLAH AIR (kg/jam)
Absorber	1642,8
TOTAL	1642,8

4. Listrik

Listrik pada pabrik digunakan untuk penerangan pabrik, dan proses produksi sebagai tenaga penggerak beberapa peralatan proses seperti pompa dan peralatan proses kontrol. Tenaga listrik untuk pabrik ini dipenuhi oleh jaringan PT.PLN Persero dan sebagai cadangan digunakan generator untuk mengatasi keadaan bila sewaktu-waktu terjadi gangguan PLN.

Tabel 4.15 Kebutuhan listrik

No	Keperluan	Kebutuhan (Kw)
1	Kebutuhan Plant	
	a. Proses	6
	b. Utilitas	42
2	Laboratorium dan Bengkel	40
3	Instrumentasi	10
4	Listrik Penerangan	100
Total		198

5. Unit Pengadaan Udara Tekan

Kebutuhan udara tekan untuk prarancangan pabrik formaldehid ini diperkirakan sebesar 100 m³/jam, tekanan 100 psi dan suhu 30 °C. Alat untuk menyediakan udara tekan berupa kompresor yang dilengkapi dengan dryer yang berisi silica gel untuk menyerap kandungan air sampai maksimal 84 ppm.

Spesifikasi Kompresor yang dibutuhkan:

Kode : CU-01

Fungsi : Memenuhi kebutuhan udara tekan

Jenis : Single Stage Reciprocating Compressor

Jumlah : 1 buah

Kapasitas : 100 m³/jam

Tekanan suction : 1 atm (14,7 psi)

Tekanan discharge: 100 psi (6,8027 atm)

Suhu udara : 30 °C

Efisiensi : 80 %

Daya kompresor: 7 HP

4.7 Struktur Organisasi

4.7.1 Bentuk Organisasi Perusahaan

Pabrik Formaldehyde yang akan didirikan ini direncanakan berbentuk Perseroan Terbatas (PT). Perseroan Terbatas (PT) merupakan bentuk perusahaan yang mendapatkan modalnya dari penjualan saham dimana tiap sekutu turut mengambil bagian sebanyak satu saham atau lebih. Dalam Perseroan Terbatas (PT) pemegang saham hanya bertanggung jawab menyetor penuh jumlah yang disebutkan dalam tiap saham.

Untuk perusahaan - perusahaan skala besar, biasanya menggunakan bentuk Perseroan Terbatas (PT/korporasi). Perseroan Terbatas (PT) merupakan asosiasi pemegang saham yang diciptakan berdasarkan hukum dan dianggap sebagai badan hukum.

Alasan dipilihnya bentuk perusahaan (PT) ini adalah didasarkan atas beberapa faktor sebagai berikut :

1. Mudah mendapatkan modal, yaitu dengan menjual saham perusahaan.

- 2. Tanggung jawab pemegang saham terbatas, sehingga kelancaran produksi hanya dipegang oleh pimpinan perusahaan.
- Kelangsungan hidup perusahaan lebih terjamin, karena tidak terpengaruh berhentinya pemegang saham, direksi beserta stafnya atau karyawan perusahaan.

4. Efisiensi dari manajemen

Para pemegang saham dapat memilih orang yang ahli sebagai dewan komisaris dan direktur yang cukup cakap dan berpengalaman.

5. Lapangan usaha lebih luas

Suatu PT dapat menarik modal yang sangat besar dari masyarakat, sehingga dengan modal ini PT dapat memperluas usahanya.

- Merupakan badan usaha yang memiliki kekayaan tersendiri yang terpisah dari kekayaan pribadi.
- 7. Mudah mendapatkan kredit dari bank dengan jaminan perusahaan.
- 8. Mudah bergerak di pasar global.

Ciri-ciri Perseroan Terbatas (PT) adalah :

- Perusahaan didirikan dengan akta notaris berdasarkan kitab undang undang hukum dagang.
- 2. Pemilik perusahaan adalah pemilik pemegang saham.
- Biasanya modal ditentukan dalam akta pendirian dan terdiri dari saham saham.
- 4. Perusahaan dipimpin oleh direksi yang dipilih oleh para pemegang saham.

 Pembinaan personalia sepenuhnya diserahkan kepada direksi dengan memperhatikan undang - undang pemburuhan.

4.7.2 Bentuk Organisasi Perusahaan

Untuk menjalankan segala aktivitas di dalam perusahan secara efisien dan efektif, diperlukan adanya struktur organisasi. Struktur organisasi merupakan salah satu unsur yang sangat diperlukan dalam suatu perusahaan. Dengan adanya struktur yang baik maka para atasan dan para karyawan dapat memahami posisi masing - masing. Dengan demikian struktur organisasi suatu perusahaan dapat menggambarkan bagian, posisi, tugas, kedudukan, wewenang dan tanggung jawab dari masing - masing personil dalam perusahaan tersebut.

Untuk mendapatkan suatu sistem organisasi yang terbaik maka perlu diperhatikan beberapa azas yang dapat dijadikan pedoman antara lain:

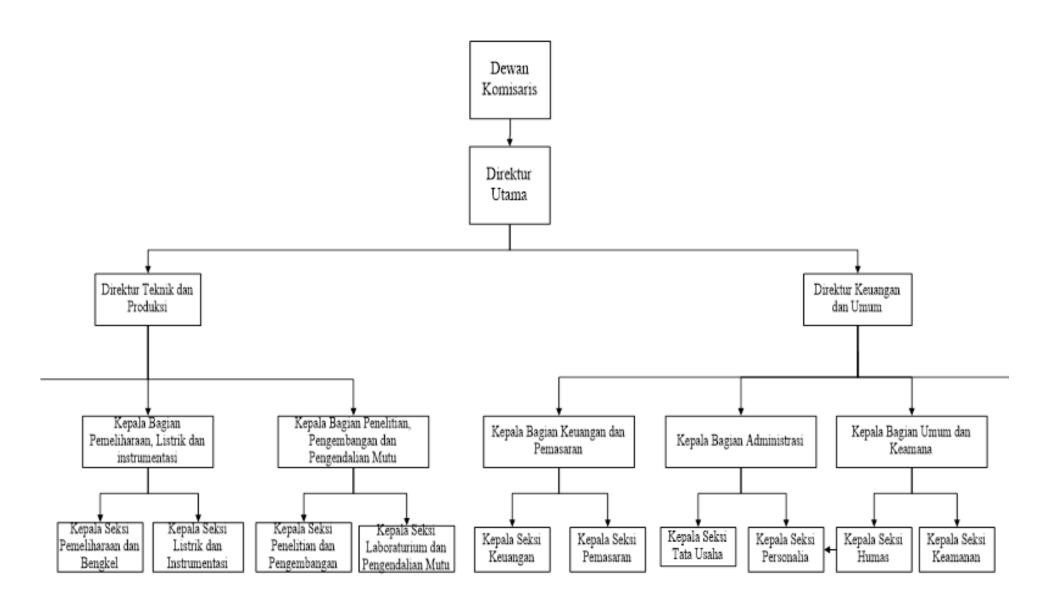
- 1. Perumusan tujuan perusahaan dengan jelas
- 2. Pendelegasian wewenang
- 3. Pembagian tugas kerja yang jelas
- 4. Kesatuan perintah dan tanggung jawab
- 5. Sistem pengontrol atas pekerjaan yang telah dilaksanakan
- 6. Organisasi perusahaan yang fleksibel.

Dengan berpedoman terhadap azas - azas tersebut, maka diperoleh bentuk struktur organisasi yang baik, yaitu : sistem line dan staf. Pada sistem ini, garis kekuasaan sederhana dan praktis. Demikian pula kebaikan dalam pembagian tugas kerja seperti yang terdapat dalam sistem organisasi fungsional, sehingga seorang karyawan hanya bertanggung jawab pada seorang atasan saja. Sedangkan untuk mencapai kelancaran produksi maka perlu dibentuk staf ahli yang terdiri atas orangorang yang ahli dalam bidangnya. Staf ahli akan memberi bantuan pemikiran dan nasehat pada tingkat pengawas demi tercapainya tujuan perusahaan.

Ada dua kelompok orang-orang yang berpengaruh dalam menjalankan organisasi garis dan staf ini, yaitu :

- Sebagai garis atau line yaitu orang-orang yang menjalankan tugas pokok organisasi dalam rangka mencapai tujuan.
- Sebagai staf yaitu orang orang yang melakukan tugasnya dengan keahlian yang dimilikinya, dalam hal ini berfungsi untuk memberikan saran-saran kepada unit operasional.

Pemegang saham sebagai pemilik perusahaan, dalam pelaksanaan tugas sehari - harinya diwakili oleh seorang Dewan Komisaris, sedangkan tugas menjalankan perusahaan dilaksanakan oleh seorang Direktur Utama yang dibantu oleh Direktur Teknik dan Produksi serta Direktur Administrasi, Keuangan dan Umum. Dimana Direktur Teknik dan Produksi membawahi bidang produksi, pengendalian, utilitas dan pemeliharaan. Sedangkan Direktur Administrasi, Keuangan dan Umum membawahi bidang pembelian dan pemasaran, administrasi, keuangan dan umum, serta penelitian dan pengembangan. Direktur ini membawahi beberapa kepala bagian yang bertanggung jawab atas bawahannya sebagai bagian dari pendelegasian wewenang dan tanggung jawab. Masing-masing kepala bagian akan membawahi beberapa seksi yang dikepalai oleh kepala seksi dan masing-


masing seksi akan membawahi dan mengawasi para karyawan perusahaan pada masing-masing bidangnya. Karyawan perusahaan akan dibagi dalam beberapa kelompok regu yang dipimpin oleh masing-masing kepala regu, dimana kepala regu akan bertanggung jawab kepada pengawas pada masing-masing seksi.

Sedangkan untuk mencapai kelancaran produksi maka perlu dibentuk staf ahli yang terdiri dari orang-orang yang ahli di bidangnya. Staf ahli akan memberikan bantuan pemikiran dan nasehat kepada tingkat pengawas, demi tercapainya tujuan perusahaan.

Manfaat adanya struktur organisasi tersebut adalah sebagai berikut :

- Menjelaskan mengenai pembatasan tugas, tanggung jawab dan wewenang.
- 2. Sebagai bahan orientasi untuk pejabat.
- 3. Penempatan pegawai yang lebih tepat.
- 4. Penyusunan program pengembangan manajemen.
- Mengatur kembali langkah kerja dan prosedur kerja yang berlaku bila terbukti kurang lancar.

Berikut gambar struktur organisasi pabrik Formaldehid dari metanol dan udara dengan kapasitas 30.000 ton/tahun

Gambar 4.3 Struktur organisasi

4.7.3 Tugas dan Wewenang

4.7.3.1 Pemegang Saham

Pemegang saham adalah beberapa orang yang mengumpulkan modal untuk kepentingan pendirian dan berjalannya operasi perusahaan yang mempunyai bentuk Perseroan Terbatas (PT) adalah Rapat Umum Pemegang Saham (RUPS). Pada RUPS tersebut para pemegang saham berwenang:

- 1. Mengangkat dan memberhentikan Dewan Komisaris
- 2. Mengangkat dan memberhentikan direktur
- Mengesahkan hasil-hasil usaha serta neraca perhitungan untung rugi tahunan dari perusahaan.

4.7.3.2 Dewan Komisaris

Dewan Komisaris merupakan pelaksana tugas sehari - hari daripada pemilik saham, sehingga dewan komisaris akan bertanggung jawab terhadap pemilik saham.Tugas-tugas Dewan Komisaris meliputi:

- Menilai dan menyetujui rencana direksi tentang kebijaksanaan umum, target perusahaan, alokasi sumber – sumber dana dan pengarah pemasaran.
- 2. Mengawasi tugas tugas direktur.
- 3. Membantu direktur dalam tugas tugas penting.

4.7.3.3 Dewan Direksi

Direktur Utama merupakan pimpinan tertinggi dalam perusahaan dan bertanggung jawab sepenuhnya terhadap maju mundurnya perusahaan. Direktur Utama bertanggung jawab kepada Dewan Komisaris atas segala tindakan dan

kebijaksanaan yang diambil sebagai pimpinan perusahaan. Direktur Utama membawahi Direktur Teknik dan Produksi serta Direktur Administrasi, Keuangan dan Umum.

Tugas Direktur Utama antara lain:

- Tugas kebijakan perusahaan dan mempertanggung jawabkan pekerjaannya pada pemegang saham pada akhir masa jabatannya.
- Menjaga stabilitas organisasi perusahaan dan membuat kontinuitas hubungan yang baik antara pemilik saham, pimpinan, konsumen dan karyawan.
- Mengangkat dan memberhentikan kepala bagian dengan persetujuan rapat pemegang saham.
- 4. Mengkoordinir kerjasama dengan Direktur Teknik dan Produksi serta Administrasi, Keuangan dan Umum.

Tugas Direktur Teknik dan Produksi antara lain:

- Bertanggung jawab kepada Direktur Utama dalam bidang produksi dan teknik.
- Mengkoordinir, mengatur dan mengawasi pelaksanaan pekerjaan kepala kepala bagian yang menjadi bawahannya.

Tugas Direktur Administrasi, Keuangan dan Umum antara lain:

 Bertanggung jawab kepada Direktur Utama dalam bidang administrasi, keuangan dan umum, pembelian dan pemasaran, serta penelitian dan pengembangan. 2. Mengkoordinir, mengatur dan mengawasi pelaksanaan pekerjaan kepala -

kepala bagian yang menjadi bawahannya.

4.7.3.4 Staff Ahli

Staf ahli terdiri dari tenaga ahli yang bertugas membantu direksi dalam

menjalankan tugasnya baik yang berhubungan dengan teknik maupun administrasi.

Staf ahli bertanggung jawab kepada Direktur Utama sesuai dengan bidang

keahliannya masing-masing.

Tugas dan wewenang:

1. Memberikan nasehat dan saran dalam perencanaan pengembangan

perusahaan.

2. Memperbaiki proses dari pabrik atau perencanaan alat dan pengembangan

produksi.

3. Mempertinggi efisiensi kerja.

4.7.3.5 Kepala Bagian

1) Kepala Bagian Produksi

Bertanggung jawab kepada Direktur Teknik dan Produksi dalam bidang mutu

dan kelancaran produksi.

Kepala Bagian Produksi membawahi:

a. Seksi Proses

Tugas Seksi Proses meliputi:

72

- Menjalankan tindakan seperlunya pada peralatan produksi yang mengalami kerusakan, sebelum diperbaiki oleh seksi yang berwenang.
- 2. Mengawasi jalannya proses produksi.

b. Seksi Pengendalian

Tugas Seksi Pengendalian meliputi:

Menangani hal-hal yang dapat mengancam keselamatan pekerja dan mengurangi potensi bahaya yang ada.

c. Seksi Laboratorium

Tugas Seksi Laboratorium meliputi:

- 1. Mengawasi dan menganalisa mutu bahan baku dan bahan pembantu.
- 2. Mengawasi dan menganalisa produk.
- 3. Mengawasi kualitas buangan pabrik.

2) Kepala Bagian Produksi

Tugas Kepala Bagian Teknik antara lain:

- Bertanggung jawab kepada Direktur Teknik dan Produksi dalam bidang utilitas dan pemeliharaan.
- 2. Mengkoordinir kepala kepala seksi yang menjadi bawahannya.

Kepala Bagian Teknik membawahi:

a. Seksi Pemeliharan

Tugas Seksi Pemeliharan antara lain:

- 1. Melaksanakan pemeliharaan fasilitas gedung dan peralatan table pabrik.
- 2. Memperbaiki kerusakan peralatan pabrik.

b. Seksi Utilitas

Tugas Seksi Utilitas antara lain:

Melaksanakan dan mengatur sarana utilitas memenuhi kebutuhan proses, air, steam, dan tenaga listik.

3) Kepala Bagian Pembelian dan Pemasaran

Tugas Kepala Bagian Pembelian dan Pemasaran antara lain:

- Bertanggung jawab kepada Direktur Administrasi, Keuangan dan Umum dalam bidang pengadaan bahan baku dan pemasaran hasil produksi.
- 2. Mengkoordinir kepala kepala seksi yang menjadi bawahannya.

Kepala bagian pembelian dan pemasaran membawahi:

a. Seksi Pembelian

Tugas Seksi Pembelian antara lain:

- Melaksanakan pembelian barang dan peralatan yang dibutuhkan perusahaan.
- Mengetahui harga pemasaran dan mutu bahan baku serta mengatur keluar masuknya bahan dan alat dari gudang.

b. Seksi Pemasaran

Tugas Seksi Pemasaran antara lain:

- 1. Merencanakan strategi penjualan hasil produksi.
- 2. Mengatur distribusi barang dari gudang.
- 4) Kepala Bagian Keuangan, Administrasi, dan Umum

Tugas Kepala Bagian Administrasi, Keuangan dan Umum antara lain:

- Bertanggung jawab kepada Direktur Administrasi, Keuangan dan Umum dalam bidang administrasi dan keuangan, personalia dan humas, serta keamanan.
- 2. Mengkoordinir kepala kepala seksi yang menjadi bawahannya.

Kepala bagian administrasi, keuangan dan umum membawahi:

a. Seksi Administrasi dan Keuangan

Tugas Seksi Administrasi dan Keuangan antara lain:

Menyelenggarakan pencatatan hutang piutang, administrasi persediaan kantor dan pembukuan serta masalah pajak.

b. Seksi Personalia

Tugas Seksi Personalia antara lain:

 Membina tenaga kerja dan menciptakan suasana kerja yang sebaik mungkin antara pekerja dan pekerjaannya serta lingkungannya supaya tidak terjadi pemborosan waktu dan biaya.

- Mengusahakan disiplin kerja yang tinggi dalam menciptakan kondisi kerja yang dinamis.
- 3. Melaksanakan hal hal yang berhubungan dengan kesejahteraan karyawan.

c. Seksi Humas

Tugas Seksi Humas antara lain:

Mengatur hubungan antara perusahaan dengan masyarakat di luar lingkungan perusahaan.

d. Seksi Keamanan

Tugas Seksi Keamanan antara lain:

- 1. Menjaga semua bangunan pabrik dan fasilitas yang ada di perusahaan
- Mengawasi keluar masuknya orang-orang baik karyawan maupun bukan ke dalam lingkungan perusahaan
- 3. Menjaga dan memelihara kerahasiaan yang berhubungan dengan intern perusahaan.
- 5) Kepala Bagian Penelitian dan Pengembangan

Tugas Kepala Bagian Penelitian dan Pengembangan antara lain:

- Bertanggung jawab kepada Direktur Administrasi, Keuangan dan Umum dalam bidang penelitian dan pengembangan produksi.
- 2. Mengkoordinir kepala kepala seksi yang menjadi bawahannya.

Kepala Bagian Penelitian dan Pengembangan membawahi:

- a. Seksi Penelitian
- b. Seksi Pengembangan

4.7.3.6 Kepala Seksi

Kepala seksi adalah pelaksana pekerjaan dalam lingkungan bidangnya sesuai dengan rencana yang telah diatur oleh kepala bagian masing-masing agar diperoleh hasil yang maksimum dan efektif selama berlangsungnya proses produksi. Setiap kepala seksi bertanggung jawab terhadap kepala bagiannya masing-masing sesuai dengan seksinya.

4.7.3.7 Status Karyawan

Sistem upah karyawan dibuat berbeda-beda tergantung pada status karyawan, kedudukan, tanggung jawab dan keahlian. Menurut status karyawan ini dapat dibagi menjadi 3 golongan, sebagai berikut:

1. Karyawan Tetap

Karyawan yang diangkat dan diberhentikan dengan Surat Keputusan (SK) Direksi dan mendapat gaji bulanan sesuai dengan kedudukan, keahlian dan masa kerja.

2. Karyawan Harian

Karyawan yang diangkat dan diberhentikan tanpa Surat Keputusan Direksi dan mendapat upah harian yang dibayar tiap akhir pekan.

3. Karyawan Borongan

Karyawan yang digunakan oleh pabrik/perusahaan bila diperlukan saja.

Karyawan ini menerima upah borongan untuk suatu pekerjaan.

4.7.4 Catatan

4.7.4.1 Cuti Tahunan

Karyawan mempunyai hak cuti tahunan selama 12 hari setiap tahun. Bila dalam waktu 1 tahun hak cuti tersebut tidak dipergunakan maka hak tersebut akan hilang untuk tahun itu.

4.7.4.2 Hari Libur Nasional

Bagi karyawan harian (non shift), hari libur nasional tidak masuk kerja. Sedangkan bagi karyawan shift, hari libur nasional tetap masuk kerja dengan catatan hari itu diperhitungkan sebagai kerja lembur (*overtime*).

4.7.4.3 Kerja Lembur (*Overtime*)

Kerja lembur dapat dilakukan apabila ada keperluan yang mendesak dan atas persetujuan kepala bagian.

4.7.4.3 Sistem Gaji Karyawan

Gaji karyawan dibayarkan setiap bulan pada tanggal 1. Bila tanggal tersebut merupakan hari libur, maka pembayaran gaji dilakukan sehari sebelumnya.

Tabel 4.16 Gaji karyawan

Jabatan	Gaji per Bulan (Rp)
Direktur Utama	45,000,000.00
Direktur Teknik dan Produksi	40,000,000.00
Direktur Keuangan dan Umum	35,000,000.00
Staff Ahli	15,000,000.00
Ka. Bag. Pembelian dan Pemasaran	16,000,000.00
Ka. Bag. Administrasi, Keuangan dan umum	16,000,000.00
Ka. Bag. Teknik	16,000,000.00
Ka. Bag. Produksi	16,000,000.00
Ka. Sek. Personalia dan Humas	16,000,000.00
Ka. Sek. Keamanan	12,500,000.00
Ka. Sek. Pembelian dan Pemasaran	12,500,000.00
Ka. Sek. Administrasi dan Keuangan	12,500,000.00
Ka. Sek. Proses	12,500,000.00
Ka. Sek. Pengendalian	12,500,000.00
Ka. Sek. Laboratorium	12,500,000.00
Ka. Sek. Utilitas dan Pemelisharaan	12,500,000.00
Ka.Sek. Penelitian dan Pengembangan	12,500,000.00
Karyawan Personalia dan Humas	5,000,000.00
Karyawan Keamanan	3,000,000.00
Karyawan Pembelian dan Pemasaran	5,000,000.00
Karyawan Administrasi dan Keuangan	5,000,000.00
Foremen Proses	5,000,000.00
Karyawan Proses	5,000,000.00
Foreman Teknik	5,000,000.00
Karyawan Teknik	5,000,000.00

Jabatan	Gaji per Bulan (Rp)
Foreman Utilitas	5,000,000.00
Karyawan Utilitas	5,000,000.00
Karyawan Pengendalian	5,000,000.00
Karyawan Laboratorium	5,000,000.00
Karyawan Pemeliharaan	5,000,000.00
Karyawan KKK	5,000,000.00
Sekretaris	5,000,000.00
Medis	5,000,000.00
Paramedis	5,000,000.00
Sopir	3,000,000.00
Cleaning Service	3,000,000.00

4.7.4.5 Jam Kerja Karyawan

Berdasarkan jam kerjanya, karyawan perusahaan dapat digolongkan menjadi 2 golongan karyawan non-shift (harian) dan karyawan shift.

a. Jam kerja karyawan non-shift

Karyawan *non shift* adalah para karyawan yang tidak menangani proses produksi secara langsung. Yang termasuk para karyawan *non shift* adalah: Direktur Utama, Direktur Teknik dan Produksi, Direktur Administrasi, Keuangan dan Umum, Kepala Bagian serta bawahan yang berada di kantor. Karyawan *non shift* dalam satu minggu bekerja selama 5 hari dengan jam kerja sebagai berikut:

Senin – Kamis

Jam Kerja : $08.00 - 12.00 \, dan \, 13.00 - 16.00$

Istirahat : 12.00 - 13.00

Jumat

Jam Kerja : $08.00 - 11.30 \, dan \, 13.30 - 17.00$

Istirahat : 11.30 - 13.30

hari Sabtu dan Minggu libur

b. Jam kerja karyawan shift

Karyawan shift adalah karyawan yang langsung menangani proses produksi

atau mengatur bagian-bagian tertentu dari pabrik yang mempunyai hubungan

dengan masalah keamanan dan kelancaran produksi. Yang termasuk karyawan shift

ini adalah operator produksi, bagian teknik, bagian gudang dan bagian-bagian yang

harus siaga untuk menjaga keselamatan serta keamanan pabrik. Para karyawan akan

bekerja secara bergantian sehari semalam. Karyawan shift dibagi dalam 3 shift

dengan pengaturan sebagai berikut :

Jadwal kerja karyawan shift dibagi menjadi :

a. Shift Pagi : 08.00 – 16.00

b. Shift Sore : 16.00 - 24.00

c. Shift Malam : 24.00 – 08.00

Karyawan shift ini dibagi menjadi 4 regu, yaitu 3 regu bekerja dan 1 regu

istirahat yang dilakukan secara bergantian. Setiap regu mendapatkan giliran 6 hari

kerja dan satu hari libur untuk setiap shift dan masuk lagi untuk shift berikutnya.

Untuk hari libur atau hari besar yang ditetapkan oleh pemerintah, regu yang

bertugas tetap masuk. Jadwal kerja masing-masing regu disajikan dalam tabel 4.16

sebagai berikut:

81

Tabel 4.17 Jadwal kerja masing-masing regu

Hari/Regu	1	2	3	4	5	6	7	8	9	10	11	12
1	P	P	P	L	S	S	S	L	M	M	M	L
2	S	S	L	M	M	M	L	P	P	P	L	S
3	M	L	P	P	P	L	S	S	S	L	M	M
4	L	P	P	P	L	S	S	S	L	M	M	M

Keterangan:

P = Shift Pagi M = Shift Malam

S = Shift Siang L = Libur

4.7.5 Penggolongan Jabatan dan Keahlian

4.7.5.1 Jabatan dan Keahlian

Masing-masing jabatan dalam struktur organisasi diisi oleh orang-orang dengan spesifikasi pendidikan yang sesuai dengan jabatan dan tanggung jawab. Jenjang pendidikan karyawan yang diperlukan berkisar dari Sarjana S-1 sampai lulusan SMP. Perinciannya sebagai berikut:

Tabel 4.18 Jabatan dan Keahlian

No	Jabatan Jabatan Gan Keaniian Keahlian				
1	Direktur Utama	Magister Teknik Kimia			
2	Direktur Teknik dan Produksi	Sarjana Teknik Kimia			
3	Direktur Administrasi, Keuangan dan Umum	Sarjana Ekonomi			
		Sarjana Teknik Kimia dan			
4	Staf Ahli	Ekonomi			
5	Kepala Bagian Produksi	Sarjana Teknik Kimia			
6	Kepala Bagian Teknik	Sarjana Teknik Mesin			
7	Kepala Bagian Pembelian dan Pemasaran	Sarjana Ekonomi			
8	Kepala Bagian Administrasi, Keuangan dan Umum	Sarjana Ekonomi			
9	Kepala Bagian Penelitian dan Pengembangan	Sarjana Teknik Kimia			
10	Kepala Seksi Personalia dan Humas	Sarjana Sosial			
11	Kepala Seksi Keamanan	Ahli Madya			
12	Kepala Seksi Penelitian dan Pengembangan	Sarjana Teknik Kimia			
13	Foreman Proses	Ahli Madya Teknik Kimia			
14	Kepala Seksi Pembelian dan Pemasaran	Sarjana Industri/Ekonomi			
15	Kepala Seksi Administrasi dan Keuangan	Sarjana Industri/Ekonomi			
16	Kepala Seksi Proses	Sarjana Teknik Kimia			
17	Kepala Seksi Pengendalian	Sarjana Teknik Kimia			
18	Kepala Seksi Laboratorium	Sarjana Teknik Kimia			
19	Kepala Seksi Utilitas dan Pemeliharaan	Sarjana Teknik Kimia			
20	Operator Proses	Ahli Madya Teknik Kimia			
21	Foreman Teknik	Ahli Madya Teknik Mesin			
22	Operator Teknik	Ahli Madya Teknik Mesin			
23	Foreman Utilitas	Ahli Madya Teknik Kimia			
24	Operator Utilitas	Ahli Madya Teknik Kimia			
25	Karyawan Pembelian dan Pemasaran	Ahli Madya Teknik Industri / Ekonomi			
26	Karyawan Administrasi dan Keuangan	Ahli Madya Ekonomi			
27	Karyawan Penelitian dan Pengembangan	Ahli Madya Teknik Kimia			
28	Karyawan Personalia dan Humas	Ahli Madya Sosial			
29	Karyawan Keamanan	Lulusan SMA			
30	Karyawan Proses	Ahli Madya Teknik Kimia			
31	Karyawan Pengendalian	Ahli Madya Teknik Kimia			
32	Karyawan Laboratorium	Ahli Madya Teknik Kimia			
33	Karyawan Utilitas dan Pemeliharaan	Ahli Madya Teknik Kimia			
34	Sekretaris	Ahli Madya Sekretaris			
34	Sekretaris	Ahli Madya Sekretaris			
35	Medis	Dokter			
36	Paramedis	Sarjana Keperawatan			
37	Sopir	Lulusan SMP			
38	Cleaning Service	Lulusan SMP			

4.7.6 Manajemen Produksi

Manajemen produksi merupakan salah satu bagian dari manajemen perusahaan yang fungsi utamanya adalah menyelenggarakan semua kegiatan untuk memroses bahan baku dengan mengatur penggunaan faktor - faktor produksi sedemikian rupa sehingga proses produksi berjalan sesuai dengan yang direncanakan.

Manajemen produksi meliputi manajemen perencanaan dan pengendalian produksi. Tujuan perencanaan dan pengandalian produksi adalah mengusahakan agar diperoleh kualitas produksi yang sesuai dengan rencana dan dalam jangka waktu yang tepat. Dengan meningkatkan kegiatan produksi maka selayaknya untuk diikuti dengan kegiatan perencanaan dan pengendalian agar dapat dihindarkan terjadinya penyimpangan - penyimpangan yang tidak terkendali.

Perencanaan ini sangat erat kaitannya dengan pengendalian. Dimana perencanaan merupakan tolak ukur bagi kegiatan operasional, sehingga penyimpangan yang terjadi dapat diketahui dan selanjutnya dikendalikan ke arah yang sesuai.

1. Perencanaan Produksi

Dalam menyusun rencana produksi secara garis besar ada dua hal yang perlu dipertimbangkan yaitu faktor eksternal dan internal. Yang dimaksud faktor eksternal adalah faktor yang menyangkut kemampuan pasar terhadap jumlah produk yang dihasilkan, sedang faktor internal adalah kemampuan pabrik.

a. Kemampuan Pasar

Dapat dibagi dua kemungkinan:

- Kemampuan pasar lebih besar dibandingkan kemampuan pabrik, maka rencana produksi disusun secara maksimal.
- 2) Kemampuan pasar lebih kecil dibandingkan kemampuan pabrik.

Ada tiga alternatif yang dapat diambil:

- Rencana produksi sesuai dengan kemampuan pasar atau produksi diturunkan sesuai dengan kemampuan pasar, dengan mempertimbangkan untung dan rugi.
- 2) Rencana produksi tetap dengan mempertimbangkan bahwa kelebihan produksi disimpan dan dipasarkan tahun berikutnya.
- 3) Mencari daerah pemasaran lain.

b. Kemampuan Pabrik

Pada umumnya kemampuan pabrik ditentukan oleh beberapa faktor antara lain:

1) Material (Bahan Baku)

Dengan pemakaian yang memenuhi kualitas dan kuantitas maka akan mencapai target produksi yang diinginkan.

2) Manusia (Tenaga Kerja)

Kurang terampilnya tenaga kerja akan menimbulkan kerugian pabrik, untuk itu perlu dilakukan pelatihan atau *training* pada karyawan agar keterampilan meningkat.

3) Mesin (Peralatan)

Ada dua hal yang mempengaruhi kehandalan dan kemampuan peralatan, yaitu jam kerja mesin efektif dan kemampuan mesin. Jam kerja mesin efektif adalah kemampuan suatu alat untuk beroperasi pada kapasitas yang diinginkan pada periode tertentu.

2. Pengendalian Produksi

Setelah perencanaan produksi dijalankan perlu adanya pengawasan dan pengendalian produksi agar proses berjalan dengan baik. Kegiatan proses produksi diharapkan menghasilkan produk yang mutunya sesuai dengan standard dan jumlah produksi yang sesuai dengan rencana serta waktu yang tepat sesuai jadwal. Untuk itu perlu dilaksanakan pengendalian produksi sebagai berikut:

a. Pengendalian kualitas

Penyimpangan kualitas terjadi karena mutu bahan baku jelek, kesalahan operasi dan kerusakan alat. Penyimpangan dapat diketahui dari hasil monitor / analisa pada bagian laboratorium pemeriksaan.

b. Pengendalian kuantitas

Penyimpangan kuatitas terjadi karena kesalahan operator, kerusakan mesin, keterlambatan pengadaan bahan baku, perbaikan alat terlalu lama dan lain-lain. Penyimpangan tersebut perlu diidentifikasi penyebabnya dan diadakan evaluasi. Selanjutnya diadakan perencanaan kembali sesuai dengan kondisi yang ada.

c. Pengendalian waktu

Untuk mencapai kuantitas tertentu perlu adanya waktu tertentu pula.

d. Pengendalian bahan proses

Bila ingin dicapai kapasitas produksi yang diinginkan, maka bahan untuk proses harus mencukupi. Karenanya diperlukan pengendalian bahan proses agar tidak terjadi kekurangan.

4.8 Evaluasi Ekonomi

Dalam pra rancangan pabrik diperlukan analisa ekonomi untuk mendapatkan perkiraan (estimation) tentang kelayakan investasi modal dalam suatu kegiatan produksi suatu pabrik, dengan meninjau kebutuhan modal investasi, besarnya laba yang diperoleh, lamanya modal investasi dapat dikembalikan dan terjadinya titik impas dimana total biaya produksi sama dengan keuntungan yang diperoleh. Selain itu analisa ekonomi dimaksudkan untuk mengetahui apakah pabrik yang akan didirikan dapat menguntungkan dan layak atau tidak untuk didirikan. Dalam evaluasi ekonomi ini faktor - faktor yang ditinjau adalah:

- 1. Return On Investment
- 2. Pay Out Time
- 3. Discounted Cash Flow
- 4. Break Even Point
- 5. Shut Down Point

Sebelum dilakukan analisa terhadap kelima faktor tersebut, maka perlu dilakukan perkiraan terhadap beberapa hal sebagai berikut:

1. Penentuan modal industri (*Total Capital Investment*)

Meliputi:

- a. Modal tetap (Fixed Capital Investment)
- b. Modal kerja (Working Capital Investment)
- 2. Penentuan biaya produksi total (*Total Production Cost*)

Meliputi:

- a. Biaya pembuatan (Manufacturing Cost)
- b. Biaya pengeluaran umum (General Expenses)
- 3. Pendapatan modal

Untuk mengetahui titik impas, maka perlu dilakukan perkiraan terhadap:

- a. Biaya tetap (Fixed Cost)
- b. Biaya variabel (*Variable Cost*)
- c. Biaya mengambang (*Regulated Cost*)

4.8.1 Penaksiran Harga Peralatan

Harga peralatan akan berubah setiap saat tergantung pada kondisi ekonomi yang mempengaruhinya. Untuk mengetahui harga peralatan yang pasti setiap tahun sangatlah sulit, sehingga diperlukan suatu metode atau cara untuk memperkirakan harga alat pada tahun tertentu dan perlu diketahui terlebih dahulu harga indeks peralatan operasi pada tahun tersebut.

Pabrik Formaldehid beroperasi selama satu tahun produksi yaitu 330 hari, dan tahun evaluasi pada tahun 2021. Di dalam analisa ekonomi harga – harga alat maupun harga – harga lain diperhitungkan pada tahun analisa. Untuk mancari harga pada tahun analisa, maka dicari index pada tahun analisa.

Harga indeks tahun 2021 diperkirakan secara garis besar dengan data indeks dari tahun 1987 sampai 2021, dicari dengan persamaan regresi linier.

Tabel 4.19 Harga indek

		CEPCI
NO	TAHUN (X)	(Y)
1	1987	323,8
2	1988	342,5
3	1989	355,4
4	1990	357,6
5	1991	361,3
6	1992	358,2
7	1993	359,2
8	1994	368,1
9	1995	381,1
10	1996	381,7
11	1997	386,5
12	1998	389,5
13	1999	390,6
14	2000	394,1
15	2001	394,3
16	2002	395,6
17	2003	402

		CEPCI
NO	TAHUN (X)	(Y)
18	2004	444,2
19	2005	268,2
20	2006	499,6
21	2007	525,4
22	2008	575,4
23	2009	521,9
24	2010	550,8
25	2011	585,7
26	2012	584,6
27	2013	567,3
28	2014	576,1
29	2015	556,8
30	2016	541,7

Sumber: http/www.chemengonline.com


Persamaan yang diperoleh adalah : y = 9,2525 x + 18081

Dengan menggunakan persamaan diatas dapat dicari harga indeks pada tahun perancangan, dalam hal ini pada tahun 2021 adalah:

Tabel 4.20 Harga indeks pada tahun perancangan

		INDEX
NO	TAHUN (X)	(Y)
1	2017	581,29
2	2018	590,54
3	2019	599,80
4	2020	609,05
5	2021	618,30

Jadi indeks pada tahun 2021 = **618,30**

Gambar 4.4 Indeks harga

Harga – harga alat dan lainnya diperhitungkan pada tahun evaluasi. Selain itu, harga alat dan lainnya ditentukan juga dengan referensi Peters & Timmerhaus, pada tahun 1990 dan Aries & Newton, pada tahun 1955. Maka harga alat pada tahun evaluasi dapat dicari dengan persamaan :

$$Ex = Ey \frac{Nx}{Ny}$$
 (Aries & Newton, 1955)

Dalam hubungan ini:

Ex: Harga pembelian pada tahun 2021

Ey : Harga pembelian pada tahun referensi (1955, 1990 dan 2007)

Nx : Index harga pada tahun 2018

Ny : Index harga pada tahun referensi (1955, 1990 dan 2013)

4.8.2 Dasar Perhitungan

Kapasitas produksi *Formaldehid* = 30.000 ton/tahun

Satu tahun operasi = 330 hari

Umur pabrik = 10 tahun

Pabrik didirikan pada tahun = 2021

Kurs mata uang = 1 US = Rp 15.197,-

Harga bahan baku (metanol) = Rp 37.878.701.959 /tahun

Harga bahan pembantu:

• Katalis (*Iron Molybdenum Oxyde*) = Rp 1.267.351 /tahun

Harga Jual = Rp 6.083 / kg

4.8.3 Perhitungan Biaya

4.8.3.1 Capital Investment

Capital Investment adalah banyaknya pengeluaran-pengeluaran yang diperlukan untuk mendirikan fasilitas—fasilitas pabrik dan untuk mengoperasikannya.

Capital *investment* terdiri dari:

a. Fixed Capital Investment

Fixed Capital Investment adalah biaya yang diperlukan untuk mendirikan fasilitas–fasilitas pabrik.

b. Working Capital Investment

Working Capital Investment adalah biaya yang diperlukan untuk menjalankan usaha atau modal untuk menjalankan operasi dari suatu pabrik selama waktu tertentu.

4.8.3.2 Manufacturing Cost

Manufacturing Cost merupakan jumlah Direct, Indirect dan Fixed Manufacturing Cost, yang bersangkutan dalam pembuatan produk.

Menurut Aries & Newton (Tabel 23), Manufacturing Cost meliputi:

a.Direct Cost

Direct Cost adalah pengeluaran yang berkaitan langsung dengan pembuatan produk.

b.Indirect Cost

Indirect Cost adalah pengeluaran—pengeluaran sebagai akibat tidak langsung karena operasi pabrik.

c.Fixed Cost

Fixed Cost adalah biaya-biaya tertentu yang selalu dikeluarkan baik pada saat pabrik beroperasi maupun tidak atau pengeluaran yang bersifat tetap tidak tergantung waktu dan tingkat produksi.

4.8.3.3 General Expense

Genaral Expense atau pengeluaran umum meliputi pengeluaran-pengeluaran yang berkaitan dengan fungsi perusahaan yang tidak termasuk Manufacturing Cost.

4.8.4 Analisa Kelayakan

Untuk dapat mengetahui keuntungan yang diperoleh tergolong besar atau tidak, sehingga dapat dikategorikan apakah pabrik tersebut potensial atau tidak, maka dilakukan suatu analisa atau evaluasi kelayakan.

Beberapa cara yang digunakan untuk menyatakan kelayakan adalah:

4.8.4.1 Percent Return On Investment

Return On Investment adalah tingkat keuntungan yang dapat dihasilkan dari tingkat investasi yang dikeluarkan.

$$ROI = \frac{Keuntungan}{Fixed Capital} \times 100 \%$$

4.8.4.2. *Pay Out Time* (POT)

Pay Out Time (POT) adalah:

- ➤ Jumlah tahun yang telah berselang, sebelum didapatkan suatu penerimaan yang melebihi investasi awal atau jumlah tahun yang diperlukan untuk kembalinya *Capital Investment* dengan *profit* sebelum dikurangi depresiasi.
- ➤ Waktu minimum teoritis yang dibutuhkan untuk pengembalian modal tetap yang ditanamkan atas dasar keuntungan setiap tahun ditambah dengan penyusutan.

➤ Waktu pengembalian modal yang dihasilkan berdasarkan keuntungan yang diperoleh. Perhitungan ini diperlukan untuk mengetahui dalam berapa tahun investasi yang telah dilakukan akan kembali.

POT =
$$\frac{Fixed \text{ Capital Investment}}{(KeuntunganTahunan + \text{ Depresiasi})}$$

4.8.4.3 Break Even Point (BEP)

Break Even Point (BEP) adalah:

- ➤ Titik impas produksi (suatu kondisi dimana pabrik tidak mendapatkan keuntungan maupun kerugian).
- Titik yang menunjukkan pada tingkat berapa biaya dan penghasilan jumlahnya sama. Dengan BEP kita dapat menetukan harga jual dan jumlah unit yang dijual secara secara minimum dan berapa harga serta unit penjualan yang harus dicapai agar mendapat keuntungan.
- Kapasitas produksi pada saat sales sama dengan total cost. Pabrik akan rugi jika beroperasi dibawah BEP dan akan untung jika beroperasi diatas BEP.

BEP =
$$\frac{(Fa + 0.3 \text{ Ra})}{(Sa - \text{Va} - 0.7 \text{ Ra})} \times 100 \%$$

Dalam hal ini:

Fa: Annual Fixed Manufacturing Cost pada produksi maksimum

Ra: Annual Regulated Expenses pada produksi maksimum

Va : Annual Variable Value pada produksi maksimum

Sa: Annual Sales Value pada produksi maksimum

4.8.4.4 Shut Down Point (SDP)

Shut Down Point (SDP) adalah:

- ➤ Suatu titik atau saat penentuan suatu aktivitas produksi dihentikan.

 Penyebabnya antara lain *Variable Cost* yang terlalu tinggi, atau bisa juga karena keputusan manajemen akibat tidak ekonomisnya suatu aktivitas produksi (tidak menghasilkan *profit*).
- Persen kapasitas minimal suatu pabrik dapat mancapai kapasitas produk yang diharapkan dalam setahun. Apabila tidak mampu mencapai persen minimal kapasitas tersebut dalam satu tahun maka pabrik harus berhenti beroperasi atau tutup.
- Level produksi di mana biaya untuk melanjutkan operasi pabrik akan lebih mahal daripada biaya untuk menutup pabrik dan membayar *Fixed Cost*.
- ➤ Merupakan titik produksi dimana pabrik mengalami kebangkrutan sehingga pabrik harus berhenti atau tutup.

SDP =
$$\frac{(0.3 \text{ Ra})}{(Sa - \text{Va} - 0.7 \text{ Ra})} \times 100 \%$$

4.8.4.5 Discounted Cash Flow Rate Of Return (DCFR)

Discounted Cash Flow Rate Of Return (DCFR) adalah:

Analisa kelayakan ekonomi dengan menggunakan DCFR dibuat dengan menggunakan nilai uang yang berubah terhadap waktu dan dirasakan atau investasi yang tidak kembali pada akhir tahun selama umur pabrik.

> Laju bunga maksimal dimana suatu proyek dapat membayar pinjaman

beserta bunganya kepada bank selama umur pabrik.

> Merupakan besarnya perkiraan keuntungan yang diperoleh setiap tahun,

didasarkan atas investasi yang tidak kembali pada setiap akhir tahun

selama umur pabrik.

Persamaan untuk menentukan DCFR:

$$(FC+WC)(1+i)^{N} = C \sum_{n=0}^{\infty} (1+i)^{N} + WC + SV$$

Dimana:

FC : Fixed capital

WC: Working capital

SV : Salvage value

C : Cash flow

: profit after taxes + depresiasi + finance

n : Umur pabrik = 10 tahun

i : Nilai DCFR

4.8.5 Hasil Perhitungan

Perhitungan rencana pendirian pabrik Formaldehid memerlukan rencana

PPC, PC, MC, serta General Expense. Hasil rancangan masing-masing disajikan

pada tabel sebagai berikut:

97

Tabel 4.21 Physical Plant Cost

No	Jenis	Biaya (\$)	Biaya (Rp)
1	Purchase equipment cost	1921943,3827	Rp29.208.000.000
2	Delivered equipment cost	480485,8457	Rp7.302.000.000
3	Instalation cost	826435,6545	Rp12.559.000.000
4	Piping cost	1619093,1541	Rp24.605.000.000
5	Instrumentation cost	288291,5074	Rp4.381.000.000
6	Insulation cost	153755,4706	Rp2.336.000.000
7	Electrical cost	192194,3383	Rp2.920.000.000
8	Building cost	1469114,478	Rp22.327.000.000
9	Land and yard improvement	577946,668	Rp8.783.000.000
	TOTAL	7529260,4992	Rp114.424.000.000

Tabel 4.22 Direct Plant Cost (DPC)

No	Jenis	Biaya (\$)	Biaya (Rp)
1	Physical Plan Cost (PPC)	7529260,4992	Rp114.424.000.000
2	20% dari PPC	1505852,1	Rp22.884.000.000
TOTAL		9035112,5991	Rp137.308.000.000

Tabel 4.23 Fixed Capital Investment (FCI)

NO	Komponen	BIAYA(\$)	BIAYA(Rp)
1	Direct Plant Cost	9035112,5991	Rp137.308.000.000
2	Contractor's fee	3614045,0396	Rp54.923.000.000
3	Contigency	903511,2599	Rp13.730.000.000
	TOTAL	13552668,8986	Rp205.963.000.000

Tabel 4.24 $Direct\ Manufacturing\ Cost\ (DMC)$

NO	Komponen	BIAYA(\$)	BIAYA(Rp)
1	Raw Material	2492554,2	Rp37.879.000.000
2	Tenaga Kerja	613926,8618	Rp9.330.000.000
3	Supervisor	61392,68618	Rp933.000.000
4	Maintenance	271053,378	Rp4.119.000.000
5	Plant Supplies	40658,0067	Rp617.000.000
6	Royalties and Patents	120088,0015	Rp1.825.000.000
7	Utility	Rp1.931.203	Rp29.348.000.000
	TOTAL	5530875,83	Rp84.054.000.000

Tabel 4.25 Indirect Manufacturing Cost (IMC)

NO	Komponen	BIAYA(\$)	BIAYA(Rp)
1	pay roll overhead	92089,02927	Rp1.400.000.000
2	laboratory	61392,68618	Rp933.000.000
3	palant overhead	306963,4309	Rp4.665.000.000
4	packaging and shipping	600440,0076	Rp9.125.000.000
TOTAL		1060885,154	Rp16.122.000.000

Tabel 4.26 Fixed Manufacturing Cost (FMC)

NO	Komponen	BIAYA(\$)	BIAYA(Rp)
1	depresiation	1084213,512	Rp16.477.000.000
2	property taxes	135526,689	Rp2.059.000.000
3	insurance	135526,689	Rp2.059.000.000
	TOTAL	1355266,89	Rp20.596.000.000

Tabel 4.27 Total Manufacturing Cost (MC)

NO	Komponen	BIAYA(\$)	BIAYA(Rp)
1	Direct Manufaturing cost	5530875,83	Rp84.054.000.000
2	Indirect Manufaturing cost	1060885,154	Rp16.122.000.000
3	Fixed Manufacturing Cost	1355266,89	Rp20.596.000.000
	TOTAL	7947027,873	Rp120.772.000.000

Tabel 4.28 Working Capital (WC)

NO	Komponen	BIAYA(\$)	BIAYA(Rp)
1	Raw Material Inventory	2746,616198	Rp41.000.000
2	In Process Inventory	1444914,159	Rp21.958.000.000
3	Product Inventory	2889828,318	Rp43.917.000.000
4	Extended Credit	4366836,419	Rp66.363.000.000
5	Available Cash	2889828,318	Rp43.917.000.000
	TOTAL	11594153,83	Rp176.199.000.000

Tabel 4.29 General Expense (GE)

NO	Komponen	BIAYA(\$)	BIAYA(Rp)
1	administration	238410,8362	Rp3.623.000.000
2	sales expanse	397351,3937	Rp6.038.000.000
3	Researched	278145,9756	Rp.4.227.000.000
4	Finance	258988,4144	Rp3.935.000.000
	TOTAL	1172896,62	Rp17.824.000.000

Tabel 4.30 Total Biaya Produksi

NO	Komponen	BIAYA(\$)	BIAYA(Rp)
1	Manufacturing Cost	7947027,873	Rp120.772.000.000
2	General Expanse	1172896,62	Rp17.824.000.000
	TOTAL	9119924,493	Rp138.597.000.000

Tabel 4.31 Fixed cost (Fa)

NO	Komponen	BIAYA(\$)	BIAYA(Rp)
1	depresiasi	1084213,512	Rp16.477.000.000
2	property taxes	135526,689	Rp2.059.000.000
3	insurance	135526,689	Rp2.059.000.000
TOTAL		1355266,89	Rp20.596.000.000

Tabel 4.32 Variable cost (Va)

NO	Komponen	BIAYA(\$)	BIAYA(Rp)
1	Raw Material	2492554,2	Rp37.879.000.000
2	Packaging and Shipping	600440,0076	Rp9.125.000.000
3	Utilities	1931202,696	Rp29.348.000.000
4	Royalties and Patents	120088,0015	Rp1.825.000.000
Total		5144284,905	Rp78.178.000.000

Tabel 4.33 Regulated cost (Ra)

NO	Komponen	BIAYA(\$)	BIAYA(Rp)	
1	Payroll Overhead	92089,02927	Rp1.399.000.000	
2	Supervisor	61392,68618	Rp933.000.000	
3	Plant Overhead	306963,4309	Rp4.665.000.000	
4	Laboratory	61392,68618	Rp933.000.000	
5	General Expense	1172896,62	Rp17.824.000.000	
6	Maintenance	271053,378	Rp4.119.000.000	
7	Plant Supplies	40658,0067	Rp617.000.000	
	Total	2620372,699	Rp39.822.000.000	

4.8.6 Analisa Keuntungan

Harga jual produk *Formaldehyde* = Rp 6.083,00 /kg

Annual Sales (Sa) = Rp 182.499.000.000

 $Total\ Cost$ = Rp 138.597.000.000

Keuntungan sebelum pajak = Rp 43.902.000.000

Pajak Pendapatan = 50%

Keuntungan setelah pajak = Rp 21.951.000.000

4.8.7 Hasil Kelayakan Ekonomi

4.8.7.1 Percent Return On Investment (ROI)

$$ROI = \frac{Keuntungan}{Fixed Capital} \times 100 \%$$

ROI sebelum pajak = 21,3 %

ROI sesudah pajak = 11,7 %

4.8.7.2 *Pay Out Time (POT)*

$$POT = \frac{Fixed \text{ Capital Investment}}{(Keuntungan \text{Tahunan } + \text{ Depresiasi})}$$

POT sebelum pajak = 3 tahun

POT sesudah pajak = 5 tahun

4.8.7.3 Break Even Point (BEP)

BEP =
$$\frac{(Fa + 0.3 \text{ Ra})}{(Sa - \text{Va} - 0.7 \text{ Ra})} \times 100 \%$$

$$BEP = 42,6 \%$$

4.8.7.4 Shut Down Point (SDP)

SDP =
$$\frac{(0.3 \text{ Ra})}{(Sa - \text{Va} - 0.7 \text{ Ra})} \times 100 \%$$

4.8.7.5 Discounted Cash Flow Rate (DCFR)

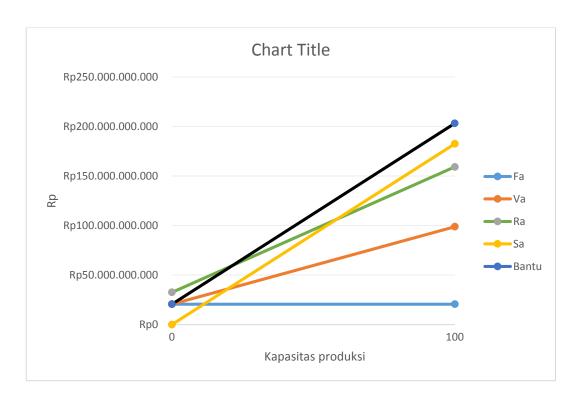
Umur pabrik = 10 tahun

Fixed Capital Investment = Rp 205.963.000.000

Working Capital = Rp 176.199.000.000

SalvageValue (SV) = Rp 16.477.000.000

CF = Rp 42.364.000.000


Discounted cash flow dihitung secara trial & error

$$(FC+WC)(1+i)^{N} = C \sum_{n=0}^{n=N-1} (1+i)^{N} + WC + SV$$

$$R=S$$

Dengan trial & error diperoleh nilai i = 7,6 %

- Infaq & Zakat = 10% = Rp2.195.148.000
- Keuntungan setelah pajak infaq&zakat = Rp19.756.334.520

Gambar 4.7 Grafik hubungan harga vs kapasitas

BAB V

PENUTUP

5.1 Kesimpulan

Pabrik *Formaldehyde* dari metanol dan udara dengan kapasitas 30.000 ton/tahun, dapat digolongkan sebagai pabrik beresiko rendah karena :

- Berdasarkan tinjauan proses, kondisi operasi, sifat-sifat bahan baku dan produk, serta lokasi pabrik, maka pabrik *Formaldehyde* dari methanol dan udara ini tergolong pabrik beresiko rendah karena dijalankan pada variabel suhu dan tekanan operasi rendah.
- 2. Berdasarkan hasil analisis ekonomi adalah sebagai berikut :
 - 1) Keuntungan yang diperoleh:

Keuntungan sebelum pajak Rp 43.902.000.000 /tahun, dan keuntungan setelah pajak (50%) sebesar Rp 21.951.000.000 /tahun.

- 2) Return On Investment (ROI):
 - Presentase ROI sebelum pajak sebesar 21,3 %, dan ROI setelah pajak sebesar 10,7 %.
- 3) Pay Out Time (POT):
 - POT sebelum pajak selama 3 tahun dan POT setelah pajak selama 5 tahun.
- 4) Break Event Point (BEP) pada 42,6 %, dan Shut Down Point (SDP) pada 15,63 %.

5) Discounted Cash Flow Rate (DCFR) sebesar 7,6 %.

Dari hasil analisis ekonomi di atas dapat disimpulkan bahwa pabrik *Formaldehyde* dari metanol dan udara dengan kapasitas 30.000 ton/tahun ini layak dan menarik untuk dikaji lebih lanjut.

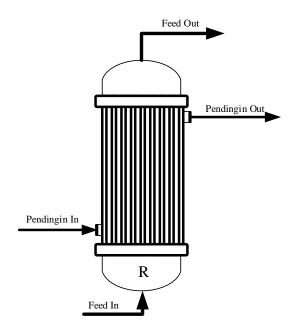
5.2 Saran

Perancangan suatu pabrik kimia diperlukan pemahaman konsep - konsep dasar yang dapat meningkatkan kelayakan pendirian suatu pabrik kimia diantaranya sebagai berikut :

- Optimasi pemilihan seperti alat proses atau alat penunjang dan bahan baku perlu diperhatikan sehingga akan lebih mengoptimalkan keuntungan yang diperoleh.
- 2. Produk *Formaldehyde* dapat direalisasikan sebagai sarana untuk memenuhi kebutuhan di masa mendatang yang jumlahnya semakin meningkat.

DAFTAR PUSTAKA

- Aries, R.S., and Newton, R.D., 1955, *Chemical Engineering Cost Estimation*, Mc Graw Hill Handbook Co., Inc., New York
- Biro Pusat Statistik, 2004-2007, "Statistik Perdagangan Luar Negeri Indonesia", Indonesia foreign, Trade Statistic Import, Yogyakarta
- Brown, G.G., Donal Katz, Foust, A.S., and Schneidewind, R., 1978, *Unit Operation*, Modern Asia Edition, John Wiley and Sons, Ic., New York
- Brownell, L.E., and Young, E.H., 1959, *Process Equipment Design*, John Wiley and Sons, Inc., New York
- Coulson, J.M., and Richardson, J.F., 1983, *Chemical Engineering*, Vol 1 \$ 6, Pergamon Internasional Library, New York
- Faith, W.L., and Keyes, D.B., 1961, *Industrial chemical*, John Wiley and Sons, Inc., New York
- Fromment, F.G., and Bischoff, B.K., 1979, *Chemical Reactor Analysis and Design*,


 John Wiley and Sons, Inc., New York
- Holman, J., 1981, *Heat Transfer*, Mc Graw Hill Book Co., Inc., New York
- Kern, D.Q., 1983, Process Heat Transfer, Mc Graw Hill Book Co., Inc., New York
- Levenspiel, O., 1972, *Chemical Reaction Engineering*, 2nd ed., John Wiely and Sons, Inc., New York
- Ludwig, E.E., 1964, Applied Process Design for Chemical and Petrochemical Plants, Gulf Publishing, Co., Houston

- Mc Cabe, Smith, J.C., and Harriot, 1985, *Unit Operation of Chemical Engineering*, 4th ed., Mc Graw Hill Book Co., Inc., New York
- Perry, R.H., and Green, D.W., 1986, *Perry's Chemical Engineer's Handbook*, 6th ed., Mc Graw Hill Book Co., Inc., New York
- Peters, M.S., and Timmerhaus, K.D., 1980, *Plant Design and Economics for Chemical Engineers*, 3rd ed., Mc Graw Hill Book Co., Inc., New York

REAKTOR

Jenis : Reaktor Fixed Bed Multitube

Fungsi : Tempat berlangsungnya reaksi antara metanol dan

oksigen menjadi formaldehid

Kondisi Operasi : Suhu = $350 \, {}^{\circ}\text{C}$

Tekanan = 1.3 atm

Reaksi = Eksotermis

Tujuan

- 1. Menentukan jenis reaktor
- 2. Menghitung pressure drop
- 3. Menghitung berat katalis
- 4. Menghitung waktu tinggal dalam reaktor
- 5. Menentukan dimensi reactor

Reaksi utama:

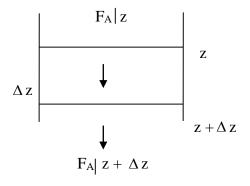
$$CH_3OH + \frac{1}{2}O_2 \xrightarrow{98,4} CHOH + H_2O$$

Reaksi samping:

$$CHOH + \frac{1}{2}O_2 \rightarrow CO + H_2O$$

1. Menentukan jenis reaktor

Dipilih reaktor fixed bed multitube dengan pertimbangan sebagai berikut:


- a. zat pereaksi berupa fasa gas dengan katalis padat
- b. umur katalis panjang 12-15 bulan
- c. tidak diperlukan pemisahan katalis dari gas keluaran reaktor
- d. pengendalian suhu relatif mudah karena menggunakan tipe shell and tube (Hill, hal 425-431)

2. Persamaan – persamaan Matematis Reaktor

a. Neraca massa reaktor

Reaksi berlangsung dalam keadaan steady state dalam reaktor setebal ΔZ dengan konversi X. Neraca massa CH3OH pada elemen volume :

Input - Output - Yang bereaksi = 0

Input - Output - Yang Bereaksi = 0

FA _Z - (FA <sub>Z+
$$\Delta$$
Z</sub> + (\downarrow ra) Δ v) = 0

$$\Delta \mathbf{v} = \frac{\pi D i^2}{4} \, \varepsilon \, \Delta \mathbf{z}$$

 Δv = volume gas diantara katalis pada elemen volum

FA
$$_{\rm Z}$$
 - FA $|_{{\rm Z}+\Delta {\rm Z}}$ - (-|ra) $\pi/4~{\rm Di}^2~\varepsilon$. $\Delta {\rm Z}~=~0$

FA
$$z+\Delta z = \frac{-\text{FA}}{2} z = (-\text{ra}) \pi/4 \text{ Di}^2 \varepsilon$$

$$\frac{-FA}{\Lambda Z} = \frac{-rA.\pi Di^2}{4} \varepsilon$$

Dimana $F_A = -F_{AO} (1 - X_A)$

$$\Delta F_A = - FAo. \Delta X_A$$

FAo .
$$\frac{\Delta XA}{\Delta Z} = \frac{-(rA)\pi Di^2}{4} \varepsilon$$

$$\frac{\Delta XA}{\Delta Z} = \frac{-(rA)\pi Di^2}{4FAo} \varepsilon$$

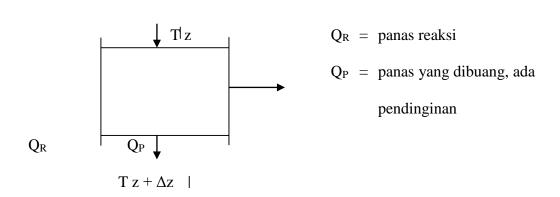
$$\operatorname{Lim} \Delta Z \qquad 0 \longrightarrow$$

$$\frac{dXA}{dz} = \frac{(-rA)\pi Di^2 \varepsilon}{4FAo}$$

dimana: $\frac{dXA}{dz}$ = perubahan konversi persatuan panjang

 ε = porositas

 $(-r_A)$ = kecepatan reaksi = k C_A . C_B


Z = tebal tumpukan katalisator

Di = diameter dalam pipa

Tabel 1. Neraca massa di reaktor

komponen	aliran r alira		komponen	aliran keluar aliran 6		
	kg	kmol		kg	kmol	
O_2	167,5	5,2	CH ₃ OH	34,4	1,07	
N_2	630,0	22,5	N_2	630,0	22,5	
	aliran 5		O_2	2,7	0,1	
CH ₃ OH	2149,9	67,2	CH ₂ O	1459,9	65,4	
H ₂ O	3,6	0,2	СО	18,5	0,7	
			H ₂ O	805,4	67,0	
Total	2950,9	95,1		2950,9	156,7	

b. Neraca panas elemen volume

$$\Sigma \text{ m.Cp } (T_Z \text{ - } To) | - \left[(\Sigma \text{ m.Cp }) \left(T_{Z + \Delta Z} - T | o \right) + Q_R + Q_P \right]$$

$$\Sigma$$
 m.Cp (T $_Z$ - T $_{Z} \downarrow_{\Delta Z}$) = \mathbb{Q}_R + \mathbb{Q}_P

$$(\Sigma \text{ m.Cp}) (-\Delta T) = Q_R + Q_P$$

$$Q_R = \Delta H_R F_{Ao} \Delta X_A$$

$$Q_P = UA (T - T_S)$$

$$A = \pi Do \Delta z$$

$$Q_P = U \pi Do \Delta z (T - T_S)$$

$$(\Sigma \text{ m.Cp}) (-\Delta T) = \Delta HR$$
. Fao . $\Delta XA + U.\pi.Do.\Delta Z (T-Ts)$

 $: \Delta Z$

$$(\Sigma \text{ m.Cp}) \left(\frac{-\Delta T}{\Delta Z} \right) = \Delta HR \cdot \text{Fao} \cdot \left(\frac{\Delta XA}{\Delta Z} \right) + \text{U.}\pi.\text{Do.}\Delta Z \text{ (T-Ts)}$$

$$\left(\frac{-\Delta T}{\Delta Z}\right) = \Delta HR \cdot Fao \cdot \left(\frac{\Delta XA}{\Delta Z}\right) + U.\pi.Do.\Delta Z (T-Ts)$$
(\Sigma m.Cp)

$$\lim \Delta Z$$
 0 \longrightarrow

$$\frac{dT}{dZ} = \Delta HR \cdot Fao \cdot \left(\frac{dXA}{dZ}\right) + U.\pi.Do.\Delta Z (T-Ts)$$
(\Sigmu m.Cp)

Dimana:

 $\frac{dT}{dZ}$ = Perubahan Suhu persatuan panjang katalis

 ΔH_R = Panas Reaksi

U = Overall heat transfer coefficient

Do = Diameter luar

T = Suhu gas

Ts = Suhu penelitian

Ts = Kapasitas panas

c. Neraca panas untuk pendingin

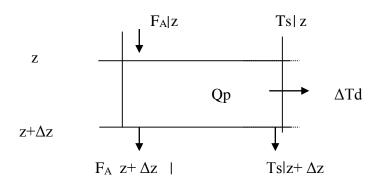
Pendingin yang dipakai adalah Dowtherm A yang stabil pada suhu 93,3 – 540 °C

Komposisi Dowtherm A: -73,5 % Diphenyl Oxyde

- 26,5 % Diphenyl

Sifat-sifat fisis Dowtherm A (T dalam K) dari Hidrocarbon Processing.

Cp =
$$0.11152 + 3.402 \cdot 10^{-4} \text{ T, cal/g.K}$$


$$\rho = 1.4 - 1.0368 \cdot 10^{-3} \,\mathrm{T} \,\mathrm{, gr/cm^3}$$

$$\mu = 35,5808 - 0,04212 \text{ T}, \text{ gr/cm.Jam}$$

$$k = 0.84335 - 5.8076 \cdot 10^{-4}, cal/J.Cm.K$$

Aliran pendingin dalam reaktor searah dengan aliran gas

Neraca Panas pada elemen volum

mp.Cpp (Ts
$$_Z$$
 –T $_o$) $\not\models$ Qp – mp Cpp (Ts $_{z+\Delta z}$ – Tb) = 0

mp.Cpp (Ts
$$_{Z}$$
 - Ts $_{z}$ $\mid_{+\Delta z}$) = \downarrow Qp

$$(\operatorname{Ts}_{Z} - \operatorname{Ts}_{z}|_{+\Delta z}) = \frac{U.\pi.Do.\Delta z.(T - Ts)}{(m.Cp)p}$$

$$(\operatorname{Ts}_{Z} - \operatorname{Ts}_{z}|_{+\Delta z}) / \Delta z = - \frac{U.\pi.Do.(T - Ts)}{(m.Cp)p}$$

- (Ts
$$_{z+\Delta z}$$
 - T\$ $_{z}$) / $\Delta z \neq -\frac{U.\pi.Do.(T-Ts)}{(m.Cp)p}$

$$\frac{\Delta Ts}{\Delta Z} = \frac{U.\pi.Do(T-Ts)}{(m.Cp) p}$$

$$\lim \Delta Z = 0 \longrightarrow$$

$$\frac{dTs}{dZ} = \frac{U.\pi.Do(T-Ts)}{(m.Cp)p}$$

d. Penurunan tekanan

Dalam pipa = penurunan tekanan dalam pipa berisi katalisator (Fixed bed) digunakan rumus 11.6 (chapter 11 hal 492 "Chemical Reactor Design For Process Plants".

$$\frac{dP}{dZ} = \frac{G}{\rho g D p} \cdot \frac{1 - \varepsilon}{\varepsilon^3} \cdot \left[\frac{150(1 - \varepsilon)\mu}{D p} + 1,75G \right]$$

Dimana:

G = Kecepatan aliran massa gas dalam pipa, gr/cm³

 ρ = Densitas gas, gr/cm³

Dp = Densitas pertikel katalisator, cm

G = Gaya Gravitasi, cm/det²

 ε = Porosity tumpukan katalisator

 μ = Viskositas gas, gr/cm jam

3. Data – data sifat fisis bahan

a. Menentukan umpan Yi masuk

		Massa	Mol		
Komponen	\mathbf{BM}	(kg/jam)	(kmol/jam)	Yi	Yi × Bmi
СНзОН	32	3998,3165	124,9474	0,1047	3,3488
СНОН	18	0	0,0000	0,0000	0,0000
H ₂ O	30	210,4377	7,0146	0,0059	0,1763
CO	28	0	0,0000	0,0000	0,0000
O 2	32	7118,9012	222,4657	0,1863	5,2172
N ₂	28	23220,0290	829,2868	0,6946	30,5612
CO ₂	44	14,0182	0,3186	0,0003	0,0107
Ar	39,95	396,2635	9,9190	0,00831	0,3319
Total			1193,9520	1	39,6460

b. Menentukan volume gas reaktor

$$PV = nRT$$

$$n = 331,6533 \text{ mol/dtk}$$

$$R = 82,05 \text{ atm.cm}^3/\text{mol.}^{\circ}\text{K}$$

$$P = 1.3 atm$$

$$V = \frac{nRT}{P} = 11994280,8147 \text{ cm}^3/\text{dtk}$$

c. Menetukan densitas umpan

$$\rho = \frac{P.\,BM}{RT} = \frac{(1.3\;atm)\left(39,6460\frac{gr}{mol}\right)}{\left(82,05\;atm.\frac{cm^3}{mol.\,K}\right)(573K)} = 0,00110\;\frac{gr}{cm^3}$$

8

d. Menentukan viskositan umpan

$$\mu_{gas} = A + BT + CT^2$$

Formula	A	В	C
Formaldehide	-6,439	4,4802E-01	-1,0130E-04
Metanol	-14,236	3,8935E-01	-6,2762E-05
Oksigen	44,224	5,6200E-01	-1,1300E-04
Nitrogen	42,606	4,7500E-01	-9,8800E-05
Hidrogen	27,258	2,1200E-01	-3,2800E-05
Air	-36,826	4,2900E-01	-1,6200E-05

(Chemical properties handbook, Mc Graw-hill Carl L.yaws)

Komponen	Yi	m (cP)	m×yi
СНзОН	0,1047	188,2550	19,7009
H ₂ O	0,0059	217,0167	1,2750
O ₂	0,1863	203,6721	37,9496
N ₂	0,6946	329,1488	228,6179
Total		938,0926	287,5434

 $\mu \ gas = 0,0000655549 \ kg/m.s$

= 0,000655549 g/cm.s

e. Menentukan konduktivitas gas umpan

$$k_{gas} = A + BT + CT^2$$

Formula	A	В	C
Formaldehide	0,00171	1,9431E-05	9,5287E-08
Metanol	0,00234	5,4340E-06	1,3154E-07
Oksigen	0,00121	8,6157E-05	-1,3348E-08
Nitrogen	0,00309	7,5930E-05	-1,1014E-08

Hidrogen	0,03951	4,5918E-04	-6,4933E-08
Air	0,00053	4,7093E-05	4,9551E-08

(Chemical properties handbook,Mc Graw-hill Carl L.yaws)

Komponen	yi	k _{gas} (W/m.K)	yi.k _{gas} (W/m.K)
Formaldehide	0,1056	4,41E-02	4,66E-03
Metanol	0,0000	4,86E-02	0,00E+00
Oksigen	0,1879	4,62E-02	2,74E-04
Nitrogen	0,7006	4,30E-02	3,01E-02
Hidrogen	0,0000	2,81E-01	0,00E+00
Air	0,0059	4,38E-02	8,23E-03
Total		5,07E-01	4,33E-02

f. Menentukan kapasitas panas campuran gas

$$Cp = A + BT + CT^2 + DT^3 + ET^4$$

		1			
Formula	A	В	C	D	E
Formaldehide	34,428	-0,029779	1,5104E-04	-1,2733E-07	3,3887E-11
	,	,	,	,	,
Metanol	40,046	-0,038287	2,4529E-04	-2,1679E-07	5,9909E-11
		·	·	·	
Oksigen	29,526	-0,0088999	3,8083E-05	-3,2629E-08	8,8607E-12
		·	·	·	
Nitrogen	29,342	-0,0035395	1,0076E-05	-4,3116E-09	2,5935E-13
Hidrogen	25,399	0,020178	-3,8549E-05	3,1880E-08	-8,7585E-12
Air	33,933	-0,0084186	2,9906E-05	-1,7825E-08	3,6934E-12

(Chemical properties handbook,Mc Graw-hill Carl L.yaws)

Komponen	yi	BM	Ср	Ср	Ср	Cpi = yi.Cp
1		(kg/kmol)	joule/mol.K	kjoule/kmol.K	kjoule/kg.K	kjoule/kg.K
Formaldehide	0,1056	30	4,88E+01	4,88E+01	1,6272	0,1718

Metanol	0,0000	32	6,80E+01	6,80E+01	2,1250	0,000
Oksigen	0,1879	32	3,22E+01	3,22E+01	1,0065	0,1892
Nitrogen	0,7006	28	3,00E+01	3,00E+01	1,0730	0,7517
Hidrogen	0,0000	2	2,94E+01	2,94E+01	14,6986	0,0000
Air	0,0059	18	3,65E+01	3,65E+01	2,0301	0,0120
Total	1,0000	142	2,45E+02	2,45E+02	22,5604	1,1247

g. Menentukan panas reaksi

Reaksi yang terjadi bersifat eksotermis, panas yang dikeluarkan adalah sebagai berikut:

$$\Delta H_{R} = \Delta H_{R298} + \int\limits_{298}^{T} \Delta C p.dT$$
 (Chemical properties handbook,Mc Graw-hill Carl L.yaws)

formula	A	В	С	D	Е
Formaldehide	34,428	-0,029779	1,5104E-04	-1,2733E-07	3,3887E-11
Metanol	40,046	-0,038287	2,4529E-04	-2,1679E-07	5,9909E-11
Oksigen	29,526	-0,0088999	3,8083E-05	-3,2629E-08	8,8607E-12
Nitrogen	29,342	-0,0035395	1,0076E-05	-4,3116E-09	2,5935E-13
Hidrogen	25,399	0,020178	-3,8549E-05	3,1880E-08	-8,7585E-12
Air	33,933	-0,0084186	2,9906E-05	-1,7825E-08	3,6934E-12

(Chemical properties handbook, Mc Graw-hill Carl L.yaws)

Komponen	ΔHf (kj/mol)	ΔHf (kJ/kmol)	ΔH(J/mol)	ΔH(kJ/kmol)	
Formaldehide	-115,9	-115900	11184,27726	11184,27726	
Metanol	-201,17	-201170	13008,75492	13008,75492	
Oksigen	0	0	9594,507889	9594,507889	
Nitrogen	0	0	0	0	
Hidrogen	0	0	0	0	
Air	-241,8	-241800	0	0	
Total			33787,54007		

Dari data didapat:

$$\Delta HR_{298} = -156,5565 \text{ kJ/mol}$$

h. Data sifat katalis (Iron Molybdenum Oxide)

Jenis : MoO3

Ukuran : D = 0.35 cm

Density : $4,692 \text{ gr/cm}^3$

Bulk density : $3,00544 \text{ gr/cm}^3$

4. Dimensi reaktor

a. Menentukan ukuran dan jumlah tube

Diameter pipa reaktor dipilih berdasarkan pertimbangan agar perpindahan panas berjalan dengan baik. Mengingat reaksi yang terjadi eksotermis, untuk itu dipilih aliran gas dalam pipa turbulen agar koefisien perpindahan panas lebih panas lebih besar.

Pengaruh ratio Dp / Dt terhadap koefisien perpindahan panas dalam pipa yang berisi butir-butir katalisator dibandingkan dengan pipa kosong yaitu hw/h telah diteliti oleh Colburn's (smith hal 571) yaitu :

Dp/Dt	0,05	0,1	0,15	0,2	0,25	0,3
hw/h	5,5	7	7,8	7,5	7	6,6

dipilih Dp/Dt = 0.15

dimana:

hw = koefisien perpindahan panas dalam pipa berisi katalis

h = koefisien perpindahan panas dalam pipa kosong

Dp = diameter katalisator

Dt = diameter tube

Sehingga:

Dp/Dt = 0.15

Dp = 0.35 cm

Dt = 0.35/0.15 = 2.3333 cm = 0.91862 in

Dari hasil perhitungan tersebut, maka diambil ukuran pipa standar agar koefisien perpindahan panasnnya baik.

Dari table 11 Kern dipilih pipa dengan spesifikasi sebagai berikut :

Nominal pipe size = 1 in

Outside diameter = 1,32 in = 3,3528 cm

Schedule number = 40

Inside diameter = 1,049 in = 2,6645 cm

Flow area per pipe $= 0.864 \text{ in}^2$

Surface per in ft $= 0.344 \text{ ft}^2/\text{ft}$

Aliran dalam pipa turbule dipilih $N_{Re} = 2500$

$$N_{Re} = \frac{G_g D_t}{\mu_g}$$

$$G_t = \frac{\mu_g N_{Re}}{D_t}$$

Dalam hubungan ini:

$$\mu g = viskositas umpan = 0,000694 g/cm.dtk$$

Dt = Diameter tube =
$$2,6645$$
 cm

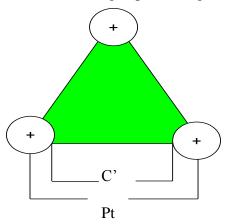
$$G_t = \frac{(0,000694)(2500)}{2,6645} = 0,6514 \frac{gr}{cm^2.s} = 23450,4 \frac{kg}{m^2.jam}$$

Digunakan 1 buah reaktor:

$$G = 1169,0983 \text{ g/s}$$

$$At = \frac{1169,0983}{0,6514} = 809,0505 \text{ cm}^2$$

Luas penampang pipa
$$= \left(\frac{\pi}{4}\right)ID^2 = \left(\frac{3,14}{4}\right)2,6645^2$$


$$= 5,5727 \text{ cm}^2$$

Jumlah pipa dalam reaktor =
$$Nt = \frac{At}{A_0}$$

$$=\frac{1794,7472}{5.5727}=322,06061$$
 buah = 322 buah

b. Menghitung diameter dalam reaktor

Direncanakan tube disusun dengan pola triangular pitch.

Menghitung Diameter dan Tinggi Reaktor

Asumsi liquid menempati 80% dari volume reaktor, maka

$$v = (100/80) x (Vkatalis + Vfeed)$$

= 4,734861653 m3

Diambil:
$$L/D = 2$$

$$L = 2D$$

$$Vreaktor = \frac{1}{4} \times \pi DL$$

$$4,734861653 = 1/4 \times 3,14 \times 2D^3$$

$$D = 1,4442 \text{ m} = 56,8582 \text{ in}$$

$$L = 2,8884 \text{ m} = 113,7163 \text{ in}$$

c. Menghitung tebal dinding reaktor

Tebal dinding reaktor (shell) dihitung dengan persamaan:

$$t_s = \frac{P.r}{f.E - 0.6.P} + C$$
 (Brownell, pers.13 – 1, p.254)

Dimana:

 t_s = tebal shell, in

E = efisiensi pengelasan

f = maksimum allowable stress bahan yang digunakan

(Brownell, tabel 13-1, p.251)

r = jari-jari dalam shell, in

C = faktor korosi, in

Bahan yang digunakan Carbon Steel SA 283 Grade C

$$E = 0.85$$

$$f = 12650 \text{ psi}$$

$$C = 0.125$$

r =
$$ID/2 = (56,8582/2)$$
 in

$$P = 19,1046 \text{ psi}$$

Jadi
$$P = (120/100) \times P = 38,2092 \text{ psi}$$

maka ts
$$= \frac{38,2092.(56,8582/2)}{12650.0.85 - 0,6.38,2092} + 0,125$$

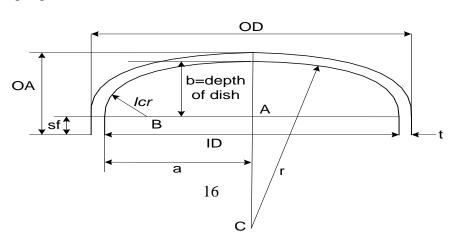
$$= 0,4050$$
 in

dipilih tebal dinding reaktor standar 0,4375 in

Diameter luar reaktor = $IDs' + (2 \times Tebal \text{ standar})$

$$= 56,8582 + (2 \times 0,4375)$$

= 57,7332 in


= 1,4664 m

5. Menghitung head reaktor

a. Menghitung tebal head reaktor

Bentuk head: Elipstical Dished Head

Bahan yang digunakan: Carbon Steel SA 283 Grade C

Keterangan gambar:

ID = diameter dalam head

OD = diameter luar head

a = jari-jari dalam head

t = tebal head

r = jari-jari luar dish

icr = jari-jari dalam sudut icr

b = tinggi head

sf = straight flange

OA = tinggi total head

Tebal head dihitung berdasarkan persamaan:

$$t_h = \frac{P.r.w}{2.f.E - 0.2.P}$$
 (Brownell, 1979)

P = tekanan design, psi = 38,2092 psi

w = 1,8041 in

IDs = diameter dalam reactor, in = 56,8582 in

F = maksimum allowable stress, psi = 12650 psi

E = efisiensi pengelasan = 0,85

C = faktor korosi, in = 0.125

maka th =
$$\frac{38,2092 \times 56,8582 \times 1,8041}{2 \times 12650 \times 0,85 - 0,2 \times 38,2092} + 0,125$$

= 0.0912 in

b. Menghitung tinggi head reaktor

ODs
$$= 57,733 \text{ in}$$

$$= 0,4375 \text{ in}$$

didapat : irc =
$$3,375$$
 in

$$r = 60 in$$

$$a = IDs/2 = 29,4291 in$$

$$AB = a - irc = 26,0541 in$$

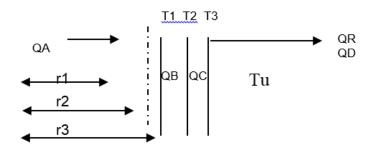
$$BC = r - irc = 56,6250 in$$

$$AC = (BC^2 - AB^2)^{1/2} = 50,275in$$

$$b = r - AC = 9,725 \text{ in}$$

Dari tabel 5.6 Brownell p.88 dengan th 7/16 in didapat sf = 1,5-3,5 in perancangan digunakan sf = 2,5 in

Tinggi head reaktor dapat dihitung dengan persamaan:


hH =
$$th + b + sf$$

= $(0,0912 + 9,725 + 2,5)$ in
= $12,3162$ in
= $0,313$ m

6. Tebal Isolasi Reaktor

Asumsi:

1. Suhu dalam reaktor = suhu permukaan dinding dalam shell = suhu pendingin rata-rata

2. Keadaan steady state QA=QB=QC=(QD+QR)

Keterangan:

 $r_1 = jari-jari dalam reaktor$

 $r_2 = jari-jari luar reaktor$

r₃ =jari-jari isolator luar

QA = Perp. Konveksi dari gas ke dinding dalam reaktor

QB = Perp. Konduksi melalui dinding reaktor

QC = Perp. Konduksi melalui isolator

QD = Perp. konveksi dari permukaan luar isolator

QR = Perp. Panas radiasi

T1 = Suhu dinding dalam reaktor

T2 = Suhu dinding luar reaktor

T3 = Suhu isolator luar

Tu = Suhu udara luar

- sifat-sifat fisis bahan

* bahan isolasi : asbestos, dengan sifat-sifat fisis (kern) :

$$kis = 0,17134 \text{ W/m.}^{\circ}\text{C}$$

 $\epsilon = 0.96$

* carbon steel: ks = 45 W/m.K

* sifat-sifat fisis udara pada suhu Tf (Holman,1988. Daftar A-5)

v = 1,70080E-05

 $k = 0.027225 \text{ W/m.}^{\circ}\text{C}$

Pr = 0.70482

 $\beta = 3,1949E-03$

$$\mu = 1,906 \text{ x } 10^{-5} \text{ kg/m.s}$$

$$g = 9,8 \text{ m/s}^2$$

$$Cp = 1,0066 \text{ kj/kg.K}$$

 $\mathbf{r}_3 = \mathbf{r}_2 + \mathbf{x}$

 $r_1 = 0,7220 \text{ m}$

 $r_2 = 0,7332 \text{ m}$

1. Perpindahan panas konduksi

$$Q_{B} = \frac{2.\pi . k_{s}.L.(T_{1} - T_{2})}{\ln \binom{r_{2}}{r_{1}}}$$
(a)

$$Q_{C} = \frac{2.\pi . k_{is} . L. (T_{2} - T_{3})}{\ln \binom{r_{3}}{r_{2}}}$$
(b)

2. Perpindahan panas konveksi

$$Q_D = hc.A.(T_3 - T_4)$$

 $Q_D = hc.2.\pi.r_3.L.(T_3 - T_4)$ (c)

Karena $Gr_L.Pr > 10^9$, sehingga:

$$hc = 1.31.(\Delta T)^{\frac{1}{3}}$$

$$Gr_L = \frac{g.\beta.(T_3 - T_u).L^3}{v^2}$$

3. Panas Radiasi

$$Q_R = \varepsilon.\sigma.A.(T_3^4 - T_4^4)$$

$$Q_R = \varepsilon.\sigma.2.\pi.r_3.L.(T_3^4 - T_4^4)$$
.....(d)

$$\sigma = 5,669 \times 10^{-8} \text{ w/m}^2.\text{k}^4$$

Meghitung Bilangan Grasshof:

$$Gr = \frac{g \times \beta (T3 - Tu)L^3}{v^2}$$

Gr = 5,1987,E+09

Menghitung Bilangan Nusselt:

$$Nu = 0.1 \cdot (gr \times pr)^{1/3}$$

Nu = 154,1710

Menghitung koefisien perpindahan panas konveksi (hc)

$$Nu = \frac{hc. L}{k}$$
$$hc = \frac{Nu. k}{L}$$

= 1,7472 W/m2.K

Menghitung perpindahan panas radiasi (hr):

$$hr = \frac{\varepsilon. \sigma. (T3^4 - Tu^4)}{(T3 - T4)}$$

= 6,6821 W/m2.K

Menentukan suhu T2 dari neraca panas tiap lapisan :

$$Qb = \frac{2\pi L(T_1 - T_2)ks}{ln_{r_1}^{r_2}} \qquad (1)$$

$$Qc = \frac{2\pi L(T2 - T3)kis}{ln\frac{r3}{r2}} \qquad (2)$$

$$Qd = (hc + hr)2\pi R_3 . L(T3 - Tu)$$
 (3)

Karena steady state maka Qb=Qc=Qd

Qb=Qd, maka:

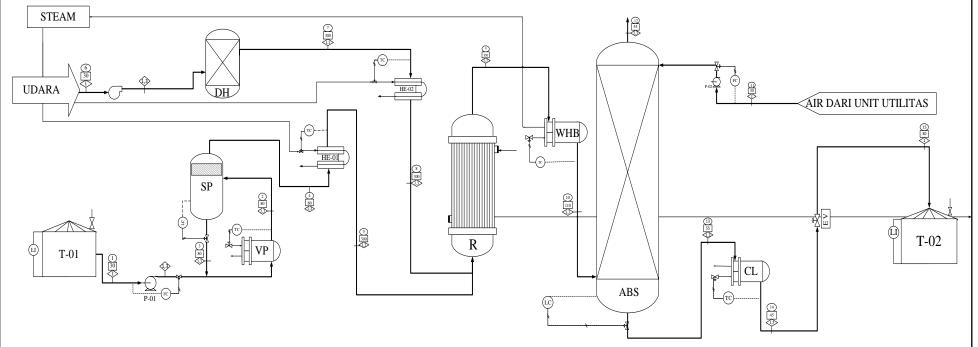
$$R3 = \frac{(T1 - T2)ks}{(hc + hr)(T3 - Tu)\ln(\frac{r2}{r1})}$$

R3 = 0,954226998

$$R3' = \frac{(T2 - T3)kis}{(hc + hr)(T3 - Tu)\ln(\frac{r3}{r2})}$$

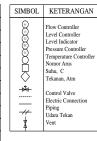
R3' = 0.9641

Kemudian trial nilai T2 sampai R3 = R3'


Dari trial, diperoleh:

$$T2 = 572,9450 \text{ K}$$

$$R3 = 0.9542 \text{ m}$$


LAMPIRAN B : PEFD

V		No. Arus													
Komponen	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CH ₃ OH	2687,4	2687,4	537,5	2149,9	2149,9	-	-	-	34,4	34,4	-	-	34,4	34,4	34,4
СНОН	-	-	-	-	-	-	-	-	1459,9	1459,9	-	-	1459,9	1459,9	1459,9
H ₂ O	4,5	4,5	0,9	3,6	3,6	18,3	-	-	805,4	805,4	1642,8	-	2448,2	2448,2	2448,2
O ₂	-	-	-	-	-	167,5	167,5	167,5	2,7	2,7	-	2,7	-	-	-
N₂	-	-	-	-	-	630,0	630,0	630,0	630,0	630,0	-	630,0	-	-	-
CO	-	-	-	-	-	-	-	-	18,5	18,5	-	18,5	-	-	-
Total	2691,8	2691,8	84,2	2691,8	2691,8	851,8	797,5	797,5	2950,9	2950,9	1642,8	651,1	3942,5	3942,5	3942,5

	ALAT	KETERANGAN					
	T	Tangki					
	P	Pompa					
	BL Blower						
	DH	Dehumidifier					
-	VP	Vaporizer					
-	HE	Heat Exchanger					
	R	Reaktor					
J	ABS	Absorber					
	EV	Expansion Valve					
	CL	Cooler					
	•	•					

JURUSAN TEKNIK KIMIA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS ISLAM INDONESIA YOGYAKARTA

PROCESS ENGINEERING FLOW DIAGRAM
PABRIK FORMALDEHIDA DARI METANOL DAN UDARA
KAPASITAS 30.000 TON/TAHUN

Dikerjakan oleh :

1. Raida Raudhatussyarifah (14521192) 2. Karima Haq (14521197)

Dosen Pembimbing I: Dosen Pembimbing II:

Ir. Dulmalik, M.M. Muflih Arisa Adnan S.T.,M.Sc.