BAB V

ANALISIS DAN PEMBAHASAN

Pada Bab Analisis dan Pembahasan ini dijabarkan tahapan penelitian analisis *pushover* mulai dari permodelan struktur sampai pembahasan dan kesimpulan berdasarkan landasan teori dan metodologi penelitian yang ada pada bab sebelumnya.

5.1 Dimensi Struktur Bangunan Blok B

Pada penelitian ini dimensi struktur didapat dengan cara melihat dan mengukur langsung ke lapangan dengan alat LEICA DISTO A3 yang telah dijelaskan pada sub bab 3.4.1. Sebagai gambaran, maka akan ditampilkan gambar potongan gedung Fakultas Hukum UII yang dapat dilihat pada Gambar 5.1 dan Gambar 5.2. Gambar struktur lengkap dapat dilihat pada lampiran 2: denah dan gambar struktur gedung FH UII pasca gempa.

Gambar 5. 1 Tampak atas bangunan gedung FH UII blok B

Gambar 5. 2 Gambar potongan bangunan gedung FH UII blok B

Hasil Pengukuran di lapangan untuk elemen struktur kolom, balok dan *xbracing* dapat dilihat pada Tabel 5.1 dan Tabel 5.2 di bawah ini.

Elemen struktur	Kodefikasi	Lantai ke-	H (m)	B (m)
		1	0.8	0.35
Kolom	K1	2	0.65	0.35
		3	0.55	0.35
		1	0.75	0.35
	B1	2	0.75	0.35
Dalah		3	0.75	0.35
Dalok	B2	1	0.5	0.3
		2	0.5	0.3
		3	0.5	0.3
	B-T1	1	0.4	0.25
Dalok taligga	B-T2	2	0.3	0.3

Tabel 5. 1 Dimensi Elemen Struktur Kolom dan Balok pada Blok B

Elemen struktur	Kodefikasi	Lantai ke-	H (m)	B (m)
Diagonal	D1		0.5	0.3
Kolom	K1	1	0.95	0.6
Balok	B1		0.85	0.35
Diagonal	D1		0.5	0.3
Kolom	K1	2	0.8	0.6
Balok	B1		0.5	0.3

Tabel 5. 2 Dimensi Elemen Struktur X-bracing pada Blok B

5.2 Pembebanan

perhitungan beban pada pelat lantai dan pelat atap berdasarkan pedoman perencanaan pembebanan untuk rumah dan gedung (SKBI 1.3.53.1987).

5.2.1 Beban Mati

Beban mati didefinisikan sebagai beban yang ditimbulkan oleh elemenelemen struktur bangunan. Beban ini dihitung oleh program SAP2000 V.14 secara otomatis.

5.2.2 Beban Mati Tambahan

1. Beban Mati Tambahan Balok

Beban mati tambahan yang digunakan adalah beban dinding pasangan batako 20 cm yaitu sebesar 0.2 t/m^2 .

- 2. Beban Mati Tambahan Pelat
 - a. Pelat Lantai

Pasir	$= 0,04 \text{ m x } 1,75 \text{ t/m}^3$	= 0,070 t/m ²
Spesi	$= 0,02 \text{ m x } 1,85 \text{ t/m}^3$	$= 0,037 \text{ t/m}^2$
Keramik	$= 0,015 \text{ t/m}^2$	$= 0,015 \text{ t/m}^2$
Plafon	$= 0,011 \text{ t/m}^2$	$= 0,011 \text{ t/m}^2$
ME	$= 0.025 \text{ t/m}^2$	$= 0,025 \text{ t/m}^2 +$
Total		$= 0,158 \text{ t/m}^2$

3. Beban Mati Tambahan Kolom

Beban mati tambahan pada kolom yaitu berupa beban atap yang diteruskan ke tiap titik kolom. Berikut di bawah ini adalah perhitungan pembebanan tambahan pada kolom akibat beban atap.

Dimensi (m)	2L 60/60/6	2L 50/50/5
t3	0.06	0.05
t2	0.129	0.109
tf	0.006	0.005
tw	0.006	0.005
dis	0.009	0.009

Tabel 5. 3 Detail profil baja

Tabel 5. 4 Data pembebanan atap

beban mati	genteng	50	kg/m2
	gording 8/12	9	kg/m
	usuk 5/7	3	kg/m
	reng 3/4	1	kg/m
beban hidup		100	kg/m2
beban angin		25	kg/m2

Kombinasi beban:

Comb 1 = 1,2 DEAD + 1,6 LIVE

Comb 2 = 1,2 DEAD + 1 LIVE + 1 WIND

Koefisien beban angin:

Desak = 0.8

Hisap = 0.4

Gambar 5. 3 Arah beban angin

a. Beban mati tambahan kolom di Blok B

Gambar 5. 4 Pemodelan rangka atap blok B

panjang kemiringan	= 6,90 m
sudut kemiringan	= 40 derajat

jumlah p	vias	= 4	
jarak ant	ar kuda-kuda	= 3,80 m	
luas area	a pembebanan	= (6,9/4) x 3,80	$= 6,56 \text{ m}^2$
genteng		$= 6,56 \text{ m}^2 \text{ x } 50 \text{ kg/m}^2$	= 327,75 kg
gording	8/12	= 3,8 m x 9 kg/m	= 34,20 kg
usuk 5/7		= 3,8 m x 3 kg/m	= 11,40 kg
reng ¾		= 3,8 m x 1 kg/m	= 3,8 kg
beban m	ati	= 327,75 + 34,20 + 11,40 + 3,8	= 377,15 kg
beban hi	dup	$= 6,56 \text{ m}^2 \text{ x } 100 \text{ kg/m}^2$	= 655,50 kg
beban an	ngin desak	$= 6,56 \text{ m}^2 \text{ x } 0,8 \text{ x } 25 \text{ kg/m}^2$	= 131,10 kg
beban an	ngin hisap	$= 6,56 \text{ m}^2 \text{ x } 0,4 \text{ x } 25 \text{ kg/m}^2$	= 65,55 kg
pendistri	ibusian beban a	angin:	
w1	(horizontal)	= 131,10 kg x sin 40	= 84,27 kg
	(vertikal)	= 131,10 kg x cos 40	= 100,43 kg
w3	(horizontal)	= 65,55 kg x sin 40	= 42,13 kg

	(vertikal)	= 65,55 kg x cos 40	= 50,21 kg
w2	(horizontal)	= 0,5 x (84,27 + 42,13)	= 63,20 kg
	(vertikal)	= 0,5 x (100,43 – 50,21)	= 25,11 kg

Dari hasil perhitungan pembebanan di atas kemudian didapat hasil analisis dengan SAP2000 yaitu berupa reaksi gaya *joints* (kN/titik kolom) untuk setiap jenis pembebanan yang dapat dilihat pada Gambar di bawah ini.

Gambar 5. 5 Reaksi gaya *Joints* hasil analisis dari beban mati (*dead*) pada rangka atap blok B

Gambar 5. 6 Reaksi gaya *Joints* hasil analisis dari beban hidup (*live*) pada rangka atap blok B

Gambar 5. 7 Reaksi gaya *Joints* hasil analisis dari beban angin (*wind*) pada rangka atap blok B

Dari hasil analisis rangka atap didapatkan reaksi gaya *joints* dari setiap jenis beban untuk kemudian dimasukkan sebagai pembebanan pada setiap titik kolom. Nilai dari setiap jenis beban yang dimasukkan adalah sebagai berikut.

Beban mati	= 18,93 kN/titik kolom (arah Z)
Beban hidup	= 28,93 kN/titik kolom (arah Z)
Beban angin	= 3,61 kN/titik kolom (arah Z)
	= 5,58 kN/titik kolom (arah X)

5.2.3 Beban Hidup

Beban hidup didefinisikan sebagai beban yang sifatnya tidak menetap/permanen. Beban hidup pelat lantai adalah 0,25 t/m² berdasarkan pedoman pembebanan untuk rumah dan gedung (SKBI 1.3.53.1987) dengan fungsi bangunan sebagai bangunan kuliah.

5.2.4 Beban Gempa

- 1. Menentukan parameter percepatan batuan dasar, yaitu S_s (pada periode pendek) dan S_1 (pada periode 1 detik).
 - $S_s = 0.9$ g berdasarkan Gambar 5.14 (SNI 1726 2012 Gambar 9 Hal 134)
 - $S_1 = 0.5$ g berdasarkan Gambar 5.15 (SNI 1726 2012 Gambar 10 Hal 135)

Gambar 5. 8 Peta Spektrum Respons Percepatan Perioda 0,2 detik (S_s) dengan Redaman 5% di batuan dasar (S_B) untuk Probabilitas terlampaui 2% dalam 50 tahun

Gambar 5. 9 Peta Spektrum Respons Percepatan Perioda 1 detik (S_1) dengan Redaman 5% di batuan dasar (S_B) untuk Probabilitas terlampaui 2% dalam 50 tahun

2. Menentukan koefisien situs untuk wilayah yang ditinjau, F_a dan F_v . Penetuan respons spectra percepatan gempa di permukaan tanah memerlukan suatu faktor amplifikasi periode pendek 0,2 detik (F_a) dan 1 detik (F_v).

 $F_a = 1,2$ berdasarkan Tabel 5.7 (SNI 1726 2012 Tabel 4 Hal 22)

 F_v = 1,5 berdasarkan Tabel 5.8 (SNI 1726 2012 Tabel 5 Hal 22)

	Parameter res	Parameter respons spectral percepatan gempa (MCE _R) terpetakan pada perioda			
Kelas Situs		per	ndek, T=0,2 detik	, S _s	
	$S_s \leq 0,25$	$S_{s} = 0,5$	$S_s = 0,75$	$S_{s} = 1,0$	$S_s \ge 1,25$
SA	0,8	0,8	0,8	0,8	0,8
SB	1,0	1,0	1,0	1,0	1,0
SC	1,2	1,2	1,1	1,0	1,0
SD	1,6	1,4	1,2	1,1	1,0
SE	2,5	1,7	1,2	0,9	0,9
SF			SS ^b		

Tabel 5. 5 Faktor Amplifikasi untuk Periode Pendek (Fa)

Catatan:

- a) Untuk nilai-nilai antara S_s dapat dilakukan interpolasi linier
- b) SS= Situs yang memerlukan investigasi geoteknik spesifik dan analisis respons situs-spesifik

Kalas Situs	Parameter respons spectral percepatan gempa (MCE _R) terpetakan pada perioda						
Kelas Situs	pendek, T=0,2 d	pendek, T=0,2 detik, S _s					
	$S_1 \leq 0, 1$		$S_1 \leq 0,1$		$S_1 \leq 0,1$		
SA	0,8	SA	0,8	SA	0,8		
SB	1,0	SB	1,0	SB	1,0		
SC	1,7	SC	1,7	SC	1,7		
SD	2,4	SD	2,4	SD	2,4		
SE	3,5	SE	3,5	SE	3,5		
SF			SS ^b				

Tabel 5. 6 Faktor Amplifikasi untuk Periode 1 detik (F_{ν})

Catatan:

a) Untuk nilai-nilai antara S_s dapat dilakukan interpolasi linier

b) S_S = Situs yang memerlukan investigasi geoteknik spesifik dan analisis respons situs-spesifik (SNI 03-1726-2012)

3. Menentukan koefisien risiko terpetakan, yaitu C_{rs} dan $C_{rl.}$

Crs, periode 0,2 detik	= 1 berdasarkan	Gambar	5.16	(SNI	1726	2012
	Gambar 12 Hal 13	37)				
Cr1, periode 1 detik	= 1 berdasarkan	Gambar	5.17	(SNI	1726	2012
	Gambar 13 Hal 13	38)				

SNI 1726:2012 106" E 1157 8 125° E 115* E 110° E ŶΕ Keterangan (C es) 0.8 - 0.85 0.9 - 0.95 1 - 1.05 1 1 - 1.15 1.2 - 1.25 1.3 - 1.4 1.4 - 1.5 0.85 - 0.9 0.95-1 1.05 - 1.1 1 15 - 1 2 1.25 - 1.5

Gambar 5. 10 Koefisien C_{rs} (untuk periode pendek 0,2 detik)

Gambar 5. 11 Koefisien C_{rl} (untuk periode panjang 1 detik)

 Menentukan parameter percepatan spectral respon pada periode pendek (S_{Ms}) dan periode 1 detik (S_{M1}) berdasarkan MCE_R. Menurut SNI 1726 2012 pasal 6.2, nilai S_{Ms} dan S_{M1} ditentukan sebagai berikut.

a.
$$S_{Ms} = F_a$$
. S_s . $Crs \ 0,2$ detik
= 1,2. 0,9. 1,0
= 1,08
b. $S_{M1} = F_v$. S_1 . $Crs \ 1$ detik
= 1,5. 0,5. 1,0
= 0,75

 Menentukan parameter percepatan spectral respons rencana pada periode pendek (S_{DS}) dan periode 1 detik (S_{D1}). Menurut SNI 1726 2012 pasal 6.3, nilai S_{DS} dan S_{D1} ditentukan sebagai berikut.

a.
$$S_{DS} = 2/3. S_{Ms}$$

= 2/3. 1,08
= 0,72
b. $S_{DI} = 2/3. S_{MI}$
= 2/3. 0,75
= 0,5

6. Menentukan S_{DSr} dan S_{D1r}

Nilai *S*_{DSr} dan *S*_{D1r} ditentukan sebagai berikut.

- a. $S_{DSr} = S_{DS} \ge C_{rs} = 0,72 \ge 1,0 = 0,72$
- b. $S_{D1r} = S_{D1} \ge C_{r1} = 0.5 \ge 1.0 = 0.5$
- 7. Desain respon spektrum

Nilai Ts dan T_0 ditentukan sebagai berikut.

$$Ts = S_{D1r} / S_{DSr} = 0.5 / 0.72 = 0.6944$$

T0 = 0.2 x Ts = 0.2 x 0.6944 = 0.13889

Setelah mengetahui periode fundamental struktur tersebut maka untuk menentukan grafik desain respon spektrum menggunakan ketentuan sebagai berikut.

a. Untuk perioda yang lebih kecil dari T_0 , respon spektrum percepatan desain, S_a , harus diambil dari Persamaan 3-6 sebagai berikut.

$$S_a = S_{DS} \left(0, 4 + 0, 6 \, \frac{T}{T0} \right)$$

- b. Untuk perioda lebih besar dari atau sama dengan T_0 dan lebih kecil dari atau sama dengan T_s , spektrum respons percepatan desain, S_a , sama dengan S_{DS} .
- c. Untuk perioda lebih besar dari T_s , spektrum respon percepatan desain, S_a , diambil berdasarkan Persamaan 3-7 sebagai berikut.

$$S_a = \left(\frac{SD1}{T}\right)$$

Dari ketentuan yang digunakan di atas, maka diperoleh data periode dan percepatan respon spektra pada Tabel 5.7 dan grafik respon spektrum desain pada Gambar 5.12.

Periode	Percepatan respon spektra	Periode	Percepatan respon spektra	Periode	Percepatan respon spektra
T (det)	Sa (g)	T (det)	Sa (g)	T (det)	Sa (g)
0	0.288	1.464444	0.341426404	2.804444	0.178288431
0.01	0.319104	1.474444	0.339110776	2.814444	0.177654955
0.02	0.350208	1.484444	0.336826347	2.824444	0.177025964
0.03	0.381312	1.494444	0.334572491	2.834444	0.176401411
0.04	0.412416	1.504444	0.332348597	2.844444	0.17578125
0.05	0.44352	1.514444	0.330154072	2.854444	0.175165434
0.06	0.474624	1.524444	0.327988338	2.864444	0.174553918
0.07	0.505728	1.534444	0.325850833	2.874444	0.173946656
0.08	0.536832	1.544444	0.323741007	2.884444	0.173343606
0.09	0.567936	1.554444	0.321658327	2.894444	0.172744722
0.1	0.59904	1.564444	0.319602273	2.904444	0.172149962
0.138889	0.72	1.574444	0.317572336	2.914444	0.171559283
0.148889	0.72	1.584444	0.315568022	2.924444	0.170972644
0.158889	0.72	1.594444	0.31358885	2.934444	0.170390004
0.168889	0.72	1.604444	0.311634349	2.944444	0.169811321
0.178889	0.72	1.614444	0.309704061	2.954444	0.169236555
0.188889	0.72	1.624444	0.307797538	2.964444	0.168665667
0.198889	0.72	1.634444	0.305914344	2.974444	0.168098618
0.208889	0.72	1.644444	0.304054054	2.984444	0.167535369
0.218889	0.72	1.654444	0.302216253	2.994444	0.166975881

Tabel 5. 7 Hasil perhitungan respon spektrum desain

Periode	Percepatan respon spektra	Periode	Percepatan respon spektra	Periode	Percepatan respon spektra
T (det)	Sa (g)	T (det)	Sa (g)	T (det)	Spekera Sa (g)
0.228889	0.72	1.664444	0.300400534	3.004444	0.166420118
0.238889	0.72	1.674444	0.298606503	3.014444	0.165868043
0.248889	0.72	1.684444	0.296833773	3.024444	0.165319618
0.258889	0.72	1.694444	0.295081967	3.034444	0.164774808
0.268889	0.72	1.704444	0.293350717	3.044444	0.164233577
0.278889	0.72	1.714444	0.291639663	3.054444	0.163695889
0.288889	0.72	1.724444	0.289948454	3.064444	0.163161711
0.298889	0.72	1.734444	0.288276746	3.074444	0.162631008
0.308889	0.72	1.744444	0.286624204	3.084444	0.162103746
0.318889	0.72	1.754444	0.2849905	3.094444	0.161579892
0.328889	0.72	1.764444	0.283375315	3.104444	0.161059413
0.338889	0.72	1.774444	0.281778334	3.114444	0.160542276
0.348889	0.72	1.784444	0.280199253	3.124444	0.16002845
0.358889	0.72	1.794444	0.278637771	3.134444	0.159517901
0.368889	0.72	1.804444	0.277093596	3.144444	0.159010601
0.378889	0.72	1.814444	0.275566442	3.154444	0.158506516
0.388889	0.72	1.824444	0.274056029	3.164444	0.158005618
0.398889	0.72	1.834444	0.272562084	3.174444	0.157507875
0.408889	0.72	1.844444	0.271084337	3.184444	0.157013259
0.418889	0.72	1.854444	0.269622528	3.194444	0.156521739
0.428889	0.72	1.864444	0.2681764	3.204444	0.156033287
0.438889	0.72	1.874444	0.266745702	3.214444	0.155547874
0.448889	0.72	1.884444	0.265330189	3.224444	0.155065472
0.458889	0.72	1.894444	0.263929619	3.234444	0.154586053
0.468889	0.72	1.904444	0.262543757	3.244444	0.154109589
0.478889	0.72	1.914444	0.261172374	3.254444	0.153636053
0.488889	0.72	1.924444	0.259815242	3.264444	0.153165419
0.498889	0.72	1.934444	0.258472142	3.274444	0.152697659
0.508889	0.72	1.944444	0.257142857	3.284444	0.152232747
0.518889	0.72	1.954444	0.255827175	3.294444	0.151770658
0.528889	0.72	1.964444	0.254524887	3.304444	0.151311365
0.538889	0.72	1.974444	0.253235791	3.314444	0.150854844
0.548889	0.72	1.984444	0.251959686	3.324444	0.15040107
0.558889	0.72	1.994444	0.250696379	3.334444	0.149950017
0.568889	0.72	2.004444	0.249445676	3.344444	0.149501661
0.578889	0.72	2.014444	0.248207391	3.354444	0.149055979
0.588889	0.72	2.024444	0.246981339	3.364444	0.148612946
0.694444	0.72	2.034444	0.24576734	3.374444	0.148172539

Lanjutan Tabel 5.7 Hasil perhitungan respon spektrum desain

Periode	Percepatan	Periode	Percepatan	Periode	Percepatan
I chloue	respon spektra	I elloue	respon spektra	I erioue	spektra
T (det)	Sa (g)	T (det)	Sa (g)	T (det)	Sa (g)
0.704444	0.70977918	2.044444	0.244565217	3.384444	0.147734734
0.714444	0.699844479	2.054444	0.243374797	3.394444	0.147299509
0.724444	0.690184049	2.064444	0.24219591	3.404444	0.146866841
0.734444	0.680786687	2.074444	0.241028388	3.414444	0.146436707
0.744444	0.671641791	2.084444	0.239872068	3.424444	0.146009085
0.754444	0.662739323	2.094444	0.23872679	3.434444	0.145583953
0.764444	0.654069767	2.104444	0.237592397	3.444444	0.14516129
0.774444	0.645624103	2.114444	0.236468734	3.454444	0.144741074
0.784444	0.637393768	2.124444	0.235355649	3.464444	0.144323284
0.794444	0.629370629	2.134444	0.234252993	3.474444	0.143907899
0.804444	0.621546961	2.144444	0.233160622	3.484444	0.143494898
0.814444	0.613915416	2.154444	0.232078391	3.494444	0.143084261
0.824444	0.606469003	2.164444	0.23100616	3.504444	0.142675967
0.834444	0.599201065	2.174444	0.229943792	3.514444	0.142269997
0.844444	0.592105263	2.184444	0.22889115	3.524444	0.14186633
0.854444	0.585175553	2.194444	0.227848101	3.534444	0.141464948
0.864444	0.57840617	2.204444	0.226814516	3.544444	0.141065831
0.874444	0.571791614	2.214444	0.225790266	3.554444	0.140668959
0.884444	0.565326633	2.224444	0.224775225	3.564444	0.140274314
0.894444	0.559006211	2.234444	0.223769269	3.574444	0.139881878
0.904444	0.552825553	2.244444	0.222772277	3.584444	0.139491631
0.914444	0.546780073	2.254444	0.22178413	3.594444	0.139103555
0.924444	0.540865385	2.264444	0.220804711	3.604444	0.138717633
0.934444	0.535077289	2.274444	0.219833903	3.614444	0.138333846
0.944444	0.529411765	2.284444	0.218871595	3.624444	0.137952177
0.954444	0.523864959	2.294444	0.217917676	3.634444	0.137572608
0.964444	0.51843318	2.304444	0.216972035	3.644444	0.137195122
0.974444	0.513112885	2.314444	0.216034566	3.654444	0.136819702
0.984444	0.507900677	2.324444	0.215105163	3.664444	0.136446331
0.994444	0.502793296	2.334444	0.214183722	3.674444	0.136074992
1.004444	0.497787611	2.344444	0.213270142	3.684444	0.135705669
1.014444	0.492880613	2.354444	0.212364323	3.694444	0.135338346
1.024444	0.488069414	2.364444	0.211466165	3.704444	0.134973005
1.034444	0.483351235	2.374444	0.210575573	3.714444	0.134609632
1.044444	0.478723404	2.384444	0.209692451	3.724444	0.13424821
1.054444	0.474183351	2.394444	0.208816705	3.734444	0.133888724
1.064444	0.469728601	2.404444	0.207948244	3.744444	0.133531157
1.074444	0.465356774	2.414444	0.207086977	3.754444	0.133175496

Lanjutan Tabel 5.7 Hasil perhitungan respon spektrum desain

Periode	Percepatan respon spektra	Periode	Percepatan respon spektra	Periode	Percepatan respon spektra
T (det)	Sa (g)	T (det)	Sa (g)	T (det)	Spendu Sa (g)
1.084444	0.461065574	2.424444	0.206232814	3.764444	0.132821724
1.094444	0.456852792	2.434444	0.205385669	3.774444	0.132469826
1.104444	0.452716298	2.444444	0.204545455	3.784444	0.132119789
1.114444	0.448654038	2.454444	0.203712087	3.794444	0.131771596
1.124444	0.444664032	2.464444	0.202885482	3.804444	0.131425234
1.134444	0.440744368	2.474444	0.202065559	3.814444	0.131080687
1.144444	0.436893204	2.484444	0.201252236	3.824444	0.130737943
1.154444	0.433108758	2.494444	0.200445434	3.834444	0.130396986
1.164444	0.429389313	2.504444	0.199645075	3.844444	0.130057803
1.174444	0.425733207	2.514444	0.198851083	3.854444	0.129720381
1.184444	0.422138837	2.524444	0.19806338	3.864444	0.129384704
1.194444	0.418604651	2.534444	0.197281894	3.874444	0.12905076
1.204444	0.415129151	2.544444	0.19650655	3.884444	0.128718535
1.214444	0.411710887	2.554444	0.195737277	3.894444	0.128388017
1.224444	0.408348457	2.564444	0.194974003	3.904444	0.128059192
1.234444	0.405040504	2.574444	0.194216659	3.914444	0.127732047
1.244444	0.401785714	2.584444	0.193465176	3.924444	0.127406569
1.254444	0.398582817	2.594444	0.192719486	3.934444	0.127082745
1.264444	0.39543058	2.604444	0.191979522	3.944444	0.126760563
1.274444	0.392327812	2.614444	0.191245219	3.954444	0.126440011
1.284444	0.389273356	2.624444	0.190516511	3.964444	0.126121076
1.294444	0.386266094	2.634444	0.189793336	3.974444	0.125803746
1.304444	0.38330494	2.644444	0.18907563	3.984444	0.125488009
1.314444	0.380388842	2.654444	0.188363332	3.994444	0.125173853
1.324444	0.377516779	2.664444	0.18765638	4.004444	0.124861265
1.334444	0.37468776	2.674444	0.186954715	4.014444	0.124550235
1.344444	0.371900826	2.684444	0.186258278	4.024444	0.124240751
1.354444	0.369155045	2.694444	0.18556701	4.034444	0.123932801
1.364444	0.366449511	2.704444	0.184880855	4.044444	0.123626374
1.374444	0.363783347	2.714444	0.184199754	4.054444	0.123321458
1.384444	0.361155698	2.724444	0.183523654	4.064444	0.123018043
1.394444	0.358565737	2.734444	0.182852499	4.074444	0.122716117
1.404444	0.356012658	2.744444	0.182186235	4.084444	0.122415669
1.414444	0.353495679	2.754444	0.181524808	4.094444	0.122116689
1.424444	0.351014041	2.764444	0.180868167	4.104444	0.121819166
1.434444	0.348567002	2.774444	0.18021626	4.114444	0.121523089
1.444444	0.346153846	2.784444	0.179569034	4.124444	0.121228448
1.454444	0.343773873	2.794444	0.178926441	4.134444	0.120935232

Lanjutan Tabel 5.7 Hasil perhitungan respon spektrum desain

Gambar 5. 12 Respon Spektra hasil desain untuk Wilayah Kota Yogyakarta, Tanah Sedang, T = 0,43616 detik

8. Menentukan koefisien modifikasi respons (*R*)

Berdasarkan Tabel 5.8 (SNI 1726 2012 Tabel 9 Hal 36) didapat nilai R = 8.

Sistem penahan gaya seismik	Koefisien modifikas i respons,	Fakto r kuat lebih sistem	Faktor pembesara n defleksi	Batasan sistem struktur dan batasan tinggi struktur, h _n , (m) ^c				
	R ^a	Ω_{o}^{g}	C_d^b	В	C	Dd	Ed	Fe
C. Sistem Rangka Pemikul Momen								
1. Rangka baja pemikul momen khusus	8	3	5.5	TB	TB	TB	TB	TB
2. Rangka batang baja pemikul momen khusus	7	3	5.5	TB	TB	48	30	TI
3. Rangka baja pemikul momen menengah	4.5	3	4	TB	TB	10 ^{n,i}	TI ⁿ	TI^i
4. Rangka baja pemikul momen biasa	3.5	3	3	TB	TB	TI ⁿ	TI ⁿ	ΤI ⁱ
5. Rangka beton bertulang pemikul momen khusus	8	3	5.5	TB	TB	ТВ	TB	TB

Tabel 5. 8 Faktor R, Cd dan Ω_0 untuk sistem penahan gaya gempa

Sistem penahan gaya seismik	Koefisien modifikas i respons,	Fakto r kuat lebih sistem	Faktor pembesara n defleksi	Batasan sistem struktur batasan tinggi struktur, (m) ^c		dan , h _n ,		
				K	ategori	desain	seismi	ik
	R ^a	Ω_o^g	C_d^b	В	С	Dd	Ed	Fe
6. Rangka beton								
bertulang pemikul	5	3	4.5	TB	TB	ΤI	ΤI	TI
momen menengah								
7. Rangka beton								
bertulang pemikul	3	3	2.5	TB	TI	ΤI	ΤI	ΤI
momen biasa								
8. Rangka baja dan								
beton komposit	8	3	5.5	TB	TB	TB	TB	TB
pemikul momen khusus								
9. Rangka baja dan								
beton komposit	5	3	45	TB	TB	ТΙ	ТΙ	тт
pemikul momen	5	5	т.5	10	10	11	11	11
menengah								

Lanjutan Tabel 5.8 Faktor R, Cd dan Ω_0 untuk sistem penahan gaya gempa

9. Menentukan faktor keutamaan gempa (I_e)

Berdasarkan Tabel 5.9 (SNI 1726 2012 Tabel 1 Hal 15) untuk gedung sekolah dan fasilitas pendidikan termasuk kategori resiko IV dan Tabel 5.12 (SNI 1726 2012 Tabel 2 Hal 15) didapatkan nilai $I_e = 1,5$.

Tabel 5. 9 Kategori risiko bangunan gedung dan non gedung untuk beban gempa

Ionic Pomonfoston	
Jenis remamaatan	Risiko
Gedung dan non gedung yang ditujukan sebagai fasilitas yang penting, termasuk,	
tapi tidak dibatasi untuk:	
- Bangunan-bangunan monumental	
- Gedung sekolah dan fasilitas pendidikan	
- Rumah sakit dan fasilitas kesehatan lainnya yang memiliki fasilitas bedah	
dan unit gawat darurat	IV
- Tempat perlindungan terhadap gempa bumi, angin badai, dan tempat	
perlindungan lainnya	
- Fasilitas pemadam kebakaran, ambulans, dan kantor polisi, serta garasi	
kendaraan darurat	

Lanjutan Tabel 5.9 Kategori risiko bangunan gedung dan non gedung untuk beban gempa

Jenis Pemanfaatan	Kategori
	Risiko
- Fasilitas kesiapan darurat, komunikasi, pusat operasi dan fasilitas lainnya	
untuk tanggap darurat	
- Pusat pembanngkit energi dan fasilitas publik lainnya yang dibutuhkan	
pada saat keadaan darurat	
- Struktur tambahan (termasuk menara telekomunikasi, tangki	
penyimpanan bahan bakar, menara pendingin, struktur stasiun listrik,	IV
tangki air pemadam kebakaran atau struktur rumah atau struktur	
pendukung air atau material atau peralatan pemadam kebakaran) yang	
disyaratkan untul beroperasi pada saat keadaan darurat.	
Gedung dan non gedung yang dibutuhkan untuk mempertahankan fungsi struktur	
hangunan lain yang masuk ke dalam kategori risiko IV	
bungunun fum yang masuk ke dalam kategon nsiko iv.	

Tabel 5. 10 Faktor keutamaan gempa, Ie

Kategori Risiko	Faktor Keutamaan Gempa, <i>I_e</i>
I atau II	1,0
III	1,25
IV	1,50

10. Menentukan periode fundamental struktur (T_a)

Perioda fundamental pendekatan bangunan dihitung dengan cara mencari nilai C_t dan x pada Tabel 5.11 (SNI 1726 2012 Tabel 15 Hal 56) didapatkan $C_t = 0,0466$ dan x = 0,9.

Tabel 5. 11 Nilai parameter	perioda	pendekatan	$C_t d$	lan	x
-----------------------------	---------	------------	---------	-----	---

Tipe Struktur	C_t	X
Sistem rangka pemikul momen di mana rangka memikul		
100 persen gaya gempa yang disyaratkan dan tidak		
dilingkupi atau dihubungkan dengan komponen yang		
lebih kaku dan akan mencegah rangka dari defleksi jika		
dikenai gaya gempa:		

Tipe Struktur	C_t	X
Rangka baja pemikul momen	0.0724	0.8
Rangka beton pemikul momen	0.0466	0.9
Rangka baja dengan bresing eksentris	0.0731	0.75
Rangka baja dengan bresing terkekang terhadap tekuk	0.0731	0.75
Semua sistem struktur lainya	0.0488	0.75

Lanjutan Tabel 5.11 Nilai parameter perioda pendekatan Ct dan x

Menurut SNI 1726 2012 pasal 7.8.2.1, perioda fundamental pendekatan struktur (T_a) ditentukan dengan Persamaan berikut.

 $T_{\rm a} = Ct. \ h_n^x = 0,0466. \ 12^{0.9} = 0,436163 \ \text{detik}$

Tmaks = Cu. Ta = 1,4. 0,43616 = 0,6106285 detik

Tc kondisi eksisting = 0,473657 detik (dari analisis modal di SAP200)

Tc kondisi pasca perbaikan perkuatan = 0,331402 detik (dari analisis modal di SAP200)

Tpakai kondisi eksisting = 0,473657 detik

Tpakai kondisi pasca perbaikan perkuatan = 0,436163 detik

11. Menentukan eksponen yang terkait dengan perioda struktur (k)

Berdasarkan SNI 1726 2012 Hal 57 untuk struktur yang mempunyai periode sebesar 0,5 detik atau kurang, k = 1.

12. Menentukan koefisien respons seismic (C_s)

Ditentukan dengan Persamaan sebagai berikut.

a. Menentukan nilai C_{s1}

$$C_{sI} = \frac{S_{DSR}}{\left(\frac{R}{I}\right)} = \frac{0.72.1.5}{8} = 0.135$$
 (kondisi eksisting eksisting dan pasca

perbaikan perkuatan)

Nilai Cs dari Persamaan diatas tidak melebihi:

b. Menentukan nilai C_{S2}

$$C_{s2} = \frac{S_{D1R}}{T(\frac{R}{I})} = \frac{0.5}{0.473657 \cdot \frac{8}{1.5}} = 0.197928$$
 (kondisi eksisting)

 $C_{s2} = \frac{S_{D1R}}{T(\frac{R}{I})} = \frac{0.5}{0.436163 \cdot \frac{8}{1.5}} = 0.214942$ (kondisi pasca perbaikan

perkuatan)

Nilai Cs juga tidak kurang dari:

c. Menentukan nilai C_{S3}

 C_{s3} = 0,044. S_{Ds} . $I_e \ge 0,01 = 0,044$. 0,72. 1,5 = 0,04752 (kondisi eksisting dan pasca perbaikan perkuatan)

Maka, diambil nilai $C_s = 0,135$ (kondisi eksisting dan pasca perbaikan perkuatan)

13. Menentukan Gaya Geser Dasar seismik (V)

Sebelum menghitung gaya geser dasar seismic, berat bangunan total dan berat bangunan per lantai perlu diketahui. Selanjutnya akumulasi berat lantai diperhitungkan dengan rumus $W_{total} = W_{Dead} + 0.3W_{Live}$. Berat bangunan dapat dilihat pada Tabel 5.12 dan Tabel 5.13 berikut ini.

Tabel 5. 12 Berat total bangunan per lantai Blok B eksisting

		Total (kN)		
Lantai	Dead Live 30% Live			
1	5377.4	1081.438	324.431	5701.8314
2	5566.135	1197.367	359.21	5925.3451
3	1946.184	694.32	208.296	2154.48
	13781.657			

Tabel 5. 13 Berat total bangunan per lantai Blok B pasca perbaikan dan perkuatan

		Total (kN)		
Lantai	Dead Live 30% Live			
1	5988.962	1081.438	324.431	6313.3934
2	5912.53	1197.367	359.21	6271.7401
3	1946.184	694.32	208.296	2154.48
	14739.614			

Setelah mendapatkan akumulasi berat lantai dan koefisien respon seismic maka gaya geser dasar seismic dapat dihitung sebagai berikut.

$$V = C_s. W_{total} = 0,135. W_{total}$$

14. Menghitung gaya horizontal gempa ekuivalen static (F_i)

$$F_{i} = \frac{Wi.Hi^{k}}{\Sigma Wi.Hi^{k}} \ge V$$

Berat total bangunan (W_{ty}):
(W_{ty}), Blok B eksisting = 13781,657 kN
(W_{ty}), Blok B pasca perbaikan dan perkuatan = 14739,614 kN
Gaya dasar Seismik (V):
 V (Blok B eksisting) = C_{s} . W_{ty}
= 0,135. 13781,657
= 1860,524 kN
 V (Blok B pasca perbaikan dan perkuatan) = C_{s} . W_{ty}
= 0,135. 14739,61
= 1989,848 kN
Berdasarkan SNL 1726 2012 Hal 57 untuk struktur yang mempu

Berdasarkan SNI 1726 2012 Hal 57 untuk struktur yang mempunyai periode sebesar 0,5 detik atau kurang, k = 1 dengan $F_i = \frac{Wi.Hi^k}{\Sigma Wi.Hi^k} \ge V$ Untuk nilai distribusi geser tiap tingkat dapat dilihat pada Tabel 5.14 dan Tabel 5.15.

Tabel 5. 14 Distribusi gaya geser per lantai Blo	k B	eksisting
--	-----	-----------

Lantai	Berat (kN)	Tinggi (m)	H^k (m)	W.H^k	Cvx	Fx (kN)
3	2154.48	12	12	25853.76	0.26913	500.72
2	5925.3451	8	8	47402.761	0.49345	918.08
1	5701.8314	4	4	22807.326	0.23742	441.72
	Te	otal		96063.846	1	1860.52

Lantai	Berat (kN)	Tinggi (m)	H^k (m)	W.H^k	Cvx	Fx (kN)
3	2154.48	12	12	25853.76	0.25527	507.94
2	6271.7401	8	8	50173.921	0.49539	985.75
1	6313.3934	4	4	25253.574	0.24934	496.15
	Т	otal		101281.25	1	1989.85

Tabel 5. 15 Distribusi gaya geser per lantai Blok B pasca perbaikan dan perkuatan

5.3 Pemodelan Struktur

5.3.1 Definisi Material

Definisi material dimaksudkan untuk memasukkan data material berupa beton yang digunakan dalam penelitian ini.

1. Beton

Klik menu *Define – Materials – Add New Material*. Isi spesifikasi material beton yang digunakan seperti Gambar 5.13 sampai Gambar 5.17 berikut ini.

		1 1 10 00		-
Material Name and Display (Color	Kolom 40.93	мРа	1
Material Type		Concrete		-
Material Notes		Modify	//Show Notes)
Weight and Mass		-	Units	
Weight per Unit Volume	2.356E-0	5	N, mm, C	•
Mass per Unit Volume	2.403E-0	9		
Isotropic Property Data				
Modulus of Elasticity, E			30068.21	
Poisson's Ratio, U			0.2	_
Coefficient of Thermal Expan	nsion, A		9.900E-06	
Shear Modulus, G			12528.421	
Other Properties for Concrete	e Materials			
Specified Concrete Compres	ssive Strength,	fc	40.93	
Lightweight Concrete				
Shear Strength Reducti	on Factor			

Gambar 5. 13 Spesifikasi material beton kolom

Material Name and Display (Color It	alok 49.32	MPa	- F
Material Type	L	Concrete		-
Material Notes	Ĺ	Modify	y/Show Notes	-
Weight and Mass		-	Units	
Weight per Unit Volume	2.356E-05		N, mm, C	-
Mass per Unit Volume	2.403E-09			
Isotropic Property Data				
Modulus of Elasticity, E			33006.08	
Poisson's Ratio, U			0.2	
Coefficient of Thermal Expan	nsion, A		9.900E-06	
Shear Modulus, G			13752.533	
Other Properties for Concrete	Materials			
Specified Concrete Compres	sive Strength, f	'c	49.32	
🔲 Lightweight Concrete				
Shear Strength Reduction	on Factor			

Gambar 5. 14 Spesifikasi material beton balok

ueneiai Data		1 + 17 00	UD.	
Material Name and Display (Color	pelat 47.92	мРа	1
Material Type		Concrete		-
Material Notes		Modi	fy/Show Notes	3
Weight and Mass			Units	
Weight per Unit Volume	2.356E-0	5	N, mm, C	-
Mass per Unit Volume	2.403E-0	3		
Isotropic Property Data				
Modulus of Elasticity, E			32535.41	
Poisson's Ratio, U			0.2	
Coefficient of Thermal Expan	nsion, A		9.900E-06	
Shear Modulus, G			13556.421	
Other Properties for Concrete	Materials			
Specified Concrete Compres	sive Strength,	f'c	47.92	
🔲 Lightweight Concrete				
Shear Strength Reducti	on Factor			

Gambar 5. 15 Spesifikasi material beton pelat

Material Name and Display Color	tangga 46.47 MPa
Material Tupe	Concrete
Material Notes	Modify/Show Notes
Weight and Mass	Units
Weight per Unit Volume 2.356 Mass per Unit Volume 2.403	E-05 N, mm, C
Isotropic Property Data	
Modulus of Elasticity, E	32038.92
Poisson's Ratio, U	0.2
Coefficient of Thermal Expansion, A	9.900E-06
Shear Modulus, G	13349.55
Other Properties for Concrete Materials	
Specified Concrete Compressive Stren	gth, l'c 46.47
Lightweight Concrete	
Shear Strength Reduction Factor	

Gambar 5. 16 Spesifikasi material beton tangga

Material Name and Display Color	x-bracing 54.88 MPa
Material Type	Concrete
Material Notes	Modify/Show Notes
Weight and Mass	Units
Weight per Unit Volume 2.3	56E-05 N, mm, C
Mass per Unit Volume	D3E-09
Isotropic Property Data	
Modulus of Elasticity, E	34818.33
Poisson's Ratio, U	0.2
Coefficient of Thermal Expansion, A	9.900E-06
Shear Modulus, G	14507.638
Other Properties for Concrete Materia	ls
Specified Concrete Compressive Stre	ength, f'c 54.88
Lightweight Concrete	
Shear Strength Reduction Facto	r 📔

Gambar 5. 17 Spesifikasi material beton x-bracing

5.3.2 Penulangan Struktur

Gedung FH UII dibangun sekitar pada tahun 1975-1980 merupakan bangunan lama yang kemudian terkena dampak bencana gempa bumi pada tahun 2006 dan diperbaiki serta diperkuat pada tahun 2007. Dalam perjalanannya, dokumen teknik gedung ini sudah tidak ditemukan atau diarsipkan lagi. Oleh karena itu, dilakukan pemeriksaan data (tulangan pokok dan sengkang) dari foto foto hasil dokumentasi saat proses renovasi gedung pasca kejadian gempa 2006. Pasca perbaikan dan perkuatan pada gedung, ternyata struktur kolom mengalami perkuatan dengan concrete jacketing dan adanya struktur tambahan berupa struktur x-bracing. Pada kolom dengan perkuatan concrete jacketing menyebabkan terjadinya pembesaran dimensi/penampang. Sebagai akibat dari pembesaran dimensi/penampang tersebut, penempatan tulangan pada kolom menjadi tidak simetris karena untuk kemudahan pelaksanaan di lapangan maka, untuk analisis ini dilakukan simplifikasi/penyederhanaan dengan asumsi luas tulangan total hasil dari perkuatan, penempatannya disebar secara proposional sesuai dengan kebutuhan portal. Berikut di bawah ini akan ditampilkan foto - foto terkait yang dapat dilihat pada Gambar 5.18.

Gambar 5. 18 Tulangan yang nampak pada kolom yang mengalami kerusakan

Dari informasi tersebut maka dilakukan penentuan tulangan pada setiap elemen struktur. Berikut di bawah ini data penulangan pada setiap elemen sruktur dapat dilihat pada Tabel 5.16 sampai Tabel 5.19.

Tine	Dimonsi (mm)	Tula	ngan	Sengkang		
Tipe	Dimensi (iiiii)	Tumpuan	Lapangan	Tumpuan	Lapangan	
K1-1	800 x 350	12D25	12D25	D8-150	D8-200	
K1-2	650 x 350	12D25	12D25	D8-150	D8-200	
K1-3	550 x 350	12D25	12D25	D8-150	D8-200	

Tabel 5. 16 Penulangan Kolom Blok B eksisting

Tabel 5. 17 Penulangan Kolom Blok B pasca perbaikan perkuatan

Tino	Dimensi (mm)	Tula	ngan	Sengkang		
Tipe		Tumpuan	Lapangan	Tumpuan	Lapangan	
K1-1	800 x 350	12D25	12D25	D8-150	D8-200	
K1-2	650 x 350	12D25	12D25	D8-150	D8-200	
K1-3	550 x 350	12D25	12D25	D8-150	D8-200	
XB K1-1	950 x 600	24D25	24D25	D8-150	D8-200	
XB K1-2	800 x 600	24D25	24D25	D8-150	D8-200	

Tabel 5. 18 Penulangan	Balok Blok B	eksisting
------------------------	--------------	-----------

Tine	Dimensi		Tumpu	ian		Lapang	gan
Tipe	(mm)	Atas	Bawah	Sengkang	Atas	Bawah	Sengkang
B1-1	750 x 350	6D19	4D19	D8-150	5D19	3D19	D8-200
B1-2	750 x 350	6D19	4D19	D8-150	5D19	3D19	D8-200
B1-3	750 x 350	6D19	4D19	D8-150	5D19	3D19	D8-200
B2-1	500 x 300	5D19	3D19	D8-150	4D19	2D19	D8-200
B2-2	500 x 300	5D19	3D19	D8-150	4D19	2D19	D8-200
B2-3	500 x 300	5D19	3D19	D8-150	4D19	2D19	D8-200
B-T1	400 x 250	4D19	2D19	D8-150	3D19	2D19	D8-200
B-T2	300 x 300	5D19	3D19	D8-150	4D19	2D19	D8-200

Tine	Dimensi		Tumpu	ian		Lapang	gan
Tipe	(mm)	Atas	Bawah	Sengkang	Atas	Bawah	Sengkang
B1-1	750 x 350	6D19	4D19	D8-150	5D19	3D19	D8-200
B1-2	750 x 350	6D19	4D19	D8-150	5D19	3D19	D8-200
B1-3	750 x 350	6D19	4D19	D8-150	5D19	3D19	D8-200
B2-1	500 x 300	5D19	3D19	D8-150	4D19	2D19	D8-200
B2-2	500 x 300	5D19	3D19	D8-150	4D19	2D19	D8-200
B2-3	500 x 300	5D19	3D19	D8-150	4D19	2D19	D8-200
B-T1	400 x 250	4D19	2D19	D8-150	3D19	2D19	D8-200
B-T2	300 x 300	5D19	3D19	D8-150	4D19	2D19	D8-200
XB D1-1	500 x 300	5D19	3D19	D8-150	4D19	2D19	D8-200
XB B1-1	850 x 350	6D19	4D19	D8-150	5D19	3D19	D8-200
XB D1-2	500 x 300	5D19	3D19	D8-150	4D19	2D19	D8-200
XB B1-2	500 x 300	5D19	3D19	D8-150	4D19	2D19	D8-200

Tabel 5. 19 Penulangan Balok Blok B pasca perbaikan perkuatan

5.3.3 Definisi Struktur

Definisi struktur dimaksudkan untuk memasukkan data dimensi struktur berupa kolom, balok, *x-bracing* dan pelat.

1. Kolom

Klik menu *Define – Section Properties – Frame Section – Add New Section.* Pada *Rectangular Section*, isi data dimensi dan material yang digunakan. Pada *Concrete Reinforcement* masukkan spesifikasi tulangan dan selimut beton seperti Gambar 5.19. Pada bagian ini akan diambil contoh pendefinisian struktur kolom K1-1 (35x80) cm pada Blok B eksisting.

tangular Section		Reinforcement Data
Section Name	K1-1 (35X80)	Rebar Material Longitudinal Bars Confinement Bars (tilangan 400 MPa (pok))
Section Notes	Modify/Show Notes	Design Type © Column (P-M2-M3 Design)
Properties F	roperty Modifiers Material	C Beam (M3 Design Only)
Section Properties	Set Modifiers + kolom 40.93 MPa	Reinforcement Configuration Confinement Bars
Dimensions Depth (t3) Width (t2)	350. 800. 3	Longitudinal Bars - Rectangular Configuration Clear Cover for Confinement Bars 40. Number of Longit Bars Along 3-dir Face 3 Number of Longit Bars Along 2-dir Face 5 Longitudinal Bar Size + 25d •
	Disclay Color	Confinement Bars Confinement Bar Size 18d Longitudinal Spacing of Confinement Bars 200. Number of Confinement Bars in 3-dir 2
		Number of Confinement Bars in 2-dir
Loncrete Heinforcement	Cancel	C Reinforcement to be Checked C Reinforcement to be Designed Cancel

Gambar 5. 19 Frame Section Kolom K1-1

2. Balok dan X-bracing

Klik menu *Define – Section Properties – Frame Section – Add New Property.* Pada *Rectangular Section*, isi data dimensi dan material yang digunakan. Pada *Concrete Reinforcement* masukkan spesifikasi strukturnya seperti Gambar 5.20. Pendefinisian *X-bracing* sama dengan balok. Pada bagian ini akan diambil contoh pendefinisian struktur balok B1-1 (75x35) cm pada Blok B eksisting.

Section Name	B1-1 (7	5X35)
Section Notes		Modify/Show Notes
Properties Section Properties	Property Modifiers Set Modifiers	Material + balok 49.32 MPa 💌
Dimensions]
Depth (t3)	750.	2
Width (12)	350.	3
		Display Color

Gambar 5. 20 Frame Section Balok B1-1

3. Pelat Lantai, Atap, Tangga, dan Bordes

Klik menu *Define – Section Properties – Area Section – Add New Property*. Isi data-data yang digunakan seperti Gambar 5.21 dan Gambar 5.22 berikut ini.

II Section Data		Shell Section Data	
Section Name	pelat lantai	Section Name	pelat atap
Section Notes	Modify/Show	Section Notes	Modify/Show
	Display Color 🛛 📕		Display Color 📃
Туре		Туре	
Shell - Thin		G Shell - Thin	
C Shell - Thick		C Shell - Thick	
C Plate - Thin		C Plate - Thin	
Plate Thick		C Plate Thick	
C Membrane		C Membrane	
C Shell - Layered/N	onlinear	C Shell - Layered/N	onlinear
Modify.	/Show Layer Definition	Modify	/Show Layer Definition
Material		Material	
Material Name	+ pelat 47.92 MPa 🔹	Material Name	+ pelat 47.92 MPa 💌
Material Angle	0.	Material Angle	0.
Thickness		Thickness	
Membrane	15.	Membrane	12.
Bending	15.	Bending	12.
Concrete Shell Section	Design Parameters	Concrete Shell Section	Design Parameters
Modify/Show !	Shell Design Parameters	Modify/Show	Shell Design Parameters
Stiffness Modifiers	Temp Dependent Properties	Stiffness Modifiers	Temp Dependent Properties
(OK	Cancel	COK.	Cancel

Gambar 5. 21 Area section pelat lantai dan pelat atap

		Shell Section Data	
Section Name	pelat bordes	Section Name	pelat tangga
Section Notes	Modify/Show	Section Notes	Modify/Show
	Display Color		Display Color
Туре		Туре	
Shell - Thin		Shell · Thin	
C Shell - Thick		C Shell - Thick	
C Plate - Thin		C Plate · Thin	
C Plate Thick		C Plate Thick	
C Membrane		C Membrane	
C Shell - Layered/N	onlinear	C Shell - Layered/N	onlinear
Modify	/Show Layer Definition	Modify	/Show Layer Definition
Material		Material	
Material Name	+ tangga 46.47 MPa 💌	Material Name	+ tangga 46.47 MPa 💌
Material Angle	0.	Material Angle	0.
Thickness		Thickness	
Thickness Membrane	20.	Membrane	20.
Thickness Membrane Bending	20.	- Thickness Membrane Bending	20.
Thickness Membrane Bending Concrete Shell Section	20. 20. Design Parameters	Thickness Membrane Bending Concrete Shell Section	20. 20. Design Parameters
Thickness Membrane Bending Concrete Shell Section Modify/Show	20. 20. Design Parameters Shell Design Parameters	Concrete Shell Section	20. 20. Design Parameters Shell Design Parameters
Thickness Membrane Bending Concrete Shell Section Modify/Show Stiffness Modifiers	20. 20. Design Parameters Shell Design Parameters	Thickness Membrane Bending Concrete Shell Section Modify/Show Stiffness Modifiers	20. 20. Design Parameters Shell Design Parameters
Thickness Membrane Bending Concrete Shell Section Modify/Show Stiffness Modifiers Set Modifiers	20. 20. Design Parameters Shell Design Parameters Therma Properties	Thickness Membrane Bending Concrete Shell Section Modify/Show – Stiffness Modifiers Set Modifiers	20. 20. Design Parameters Shell Design Parameters Temp Dependent Properties

Gambar 5. 22 Area section pelat tangga dan pelat bordes

5.3.4 Definisi Pembebanan

Definisi pembebanan dimaksudkan untuk memberikan beban yang akan bekerja pada struktur yang akan dianalisis. Jenis beban yang digunakan berupa beban mati (*Dead Load*), beban hidup (*Live Load*), beban mati tambahan dan beban lateral.

1. Load Patterns

Klik menu *Define – Load Patterns*. Isi data beban yang digunakan seperti Gambar 5.23 berikut ini.

Gambar 5. 23 Load Patterns

Untuk beban mati digunakan *self weight multiplier* = 1 karena secara *default* program SAP2000 akan menghitung sendiri struktur berdasarkan info luas penampang elemen dan berat jenis material yang dipakai. Untuk beban hidup, beban angin dan beban lateral menggunakan *self weight multiplier* = 0 karena bebannya akan dimasukkan secara manual. Beban lateral atau beban statik ekivalen yaitu EX dan EY merupakan hasil perhitungan pembebanan gempa arah X dan arah Y yang akan digunakan untuk analisis *pushover*.

2. Response Spectrum

Klik menu *Define – Functions – Response Spectrum*. Pada *Choose Function Type to Add* pilih *From File* dan klik *Add New Function*. Untuk lebih jelasnya dapat dilihat pada Gambar 5.24 berikut ini.

Response Spectra	Choose Function Type to Add
RS Jogja B - eksisting	AASHTO 2006 💌
	Click to:
	Add New Function
	Show Spectrum
	Delete Spectrum
·	

Gambar 5. 24 Menambahkan Spektrum Respon

Selanjutnya pada jendela *Response Spectrum Function Definition* isi nama fungsi misalnya untuk blok B: 'RS Jogja B eksisting' dan pada *Values are* pilih *Period vs Value*. Kemudian pilih *file* respon spektrum dengan cara klik *Browse* dan untuk memperlihatkan grafik respon spektrum klik *Display Graph* dan klik OK. Penjelasannya dapat dilihat pada Gambar 5.25 di bawah ini.

Gambar 5. 25 Memasukkan Grafik Respon Spektrum

3. Beban Statik Ekuivalen

Beban statik ekuivalen menyebabkan adanya pendistribusian gaya gempa di pusat lantai tiap tingkat ke arah X dan arah Y. Beban statik ekuivalen di-*input* menggunakan *Auto Lateral Load*. Tahapan memasukkan beban gempa statik ekuivalen adalah sebagai berikut.

a. Diafragma Lantai

Pilih semua *joint* dari struktur. Lalu, klik menu *Assign – Joint – Constraints*. Pada *Choose Constraint Type to Add* pilih *Diapharagm* dan klik *Add New Constraint*. Pada *Constraint Axis* pilih *Z Axis* dan centang *Assign a different diaphragm constraint to each different selected Z level* seperti pada Gambar 5.26 berikut.

Constraint Name	e DIAPH1
Coordinate System	GLOBAL 💌
Constraint Axis	
C X Axis	C Auto
C Y Axis	
 Z Axis 	
☑ Assign a differ	ent diaphragm constraint

Gambar 5. 26 Diaphragm Constraint

b. Pendefinisian Beban Gempa

Klik *Define* pilih *Load Patterns*. Pada *Load Pattern Name* buat *EX* sebagai gempa arah X dan *EY* sebagai gempa arah Y, pilih *Type: QUAKE*, pilih *User Load* pada *Auto Lateral Load Pattern*, klik *Modify Lateral Load Pattern*. Masukkan nilai distribusi beban lateral tiap tingkat sesuai arah masing-masing. Lalu, klik *Apply at Center of Mass* untuk mendefinisikan beban lateral pada titik pusat massa. Pada bagian ini akan diambil contoh cara pendefinisian beban gempa pada gedung Blok B eksisting. Untuk lebih jelas dapat dilihat pada Gambar 5.27 sampai Gambar 5.29.

ad Patterns				Click To:
Load Pattern Name	Туре	Self Weight Multiplier	Auto Lateral Load Pattern	Add New Load Pattern
X	QUAKE		User Loads 🔄	Modify Load Pattern
DEAD LIVE	DEAD LIVE	1		Modify Lateral Load Pattern
EX EY WIND	QUAKE	0	User Loads User Loads None	Delete Load Pattern
		10		Show Load Pattern Notes
				OK I

Diaphragm	Diaphragm Z	FX	FY	MZ	L X	× ×
DIAPH1 12	12	500.72	0	0		
DIAPH1 8	8	918.08	0	0		
DIAPH1 6	6.	0.	0.	0.	i i	
DIAPH1 4.	4.	441.72	0.	0.	li li	
DIAPH1_2.	2.	0.	0.	0.		
DIAPH1_0.	0.	0.	0.	0.		
 UserSpec Apply at C 	cified Application F enter of Mass	'oint Additio	onal Ecc. Ratio	ı (all Diaph.)	0.05	- 1

Gambar 5. 28 Auto lateral load arah X

Diaphragm	DiaphragmZ	FX	FY I	MZ	X	Y
DIAPH1 12.	12.	0.	500.72	0.		
DIAPH1 8.	8.	0.	918.08	0.		
DIAPH1_6.	6.	0.	0.	0.		
DIAPH1_4.	4.	0.	441.72	0.		
DIAPH1_2.	2.	0.	0.	0.		
DIAPH1_0.	0.	0.	0.	0.		
 UserSpec Apply at C 	ified Application Po enter of Mass	oint Add	itional Ecc. Ratio (all Diaph.)	0.05	-

Gambar 5. 29 Auto lateral load arah Y

5.3.5 Penerapan Pemodelan Struktur

1. Draw Frame (Kolom, Balok, X-bracing)

Klik tomblo *Draw Frame/Cable Element*. Pilih *section* semisal K1-1 (kolom), B1-1 (balok) atau D1-1 (*x-bracing*), lalu klik dua titik yang akan menjadi awal dan titik akhir balok, kolom atau *x-bracing* dan klik kanan pada *mouse* untuk menyelesaikan. Hasil pemodelan elemen struktur dapat dilihat pada Gambar 5.30 dan Gambar 5.31.

 Draw Area Section (Pelat Lantai, Pelat Atap, Pelat Tangga, Pelat Bordes) Klik tombol Quick Draw Area Element. Pilih section pelat lantai, pelat atap, pelat tangga atau pelat bordes. Klik area yang akan Digambar. Hasil pemodelan elemen struktur dapat dilihat pada Gambar 5.30 dan gambar 5.31.

Gambar 5. 30 Pemodelan gedung Blok B pasca perbaikan dan perkuatan

Gambar 5. 31 Pemodelan gedung Blok B eksisting

3. Joint Restraints

Penentuan jenis perletakan (*restraint*) pada bagian bawah struktur dengan cara pilih semua *joint* yang berada dibawah pada titik fondasi. Lalu klik *Assign – Joint – Restraint*. Pilih perletakan jepit seperti Gambar 5.32 berikut ini.
Rest	raints in Joint Loo	al Di	rections
•	Translation 1	☑	Rotation about 1
⊽	Translation 2	☑	Rotation about 2
•	Translation 3	☑	Rotation about 3
ast	Restraints	n 4	Cancel

Gambar 5. 32 Joint Restraints

5.3.6 Pembebanan Pada Struktur

1. Beban Mati

Beban mati dihitung otomatis oleh program SAP2000 V.14.

- 2. Beban Mati Tambahan
 - a. Pada balok

Pada bagian ini penjelasan akan hanya mengambil contoh pembebanan pada struktur berupa beban mati tambahan akibat beban dinding pada gedung Blok B pasca perbaikan dan perkuatan arah X-Z.

Klik balok pada elemen struktur. Lalu, pilih menu *Assign – Frame Loads – Distributed.* Pada *Load Pattern Name* pilih DEAD. Masukkan beban dinding sebesar 0,2 t/m² x tinggi dinding pada balok di kotak *Load* di *Uniform Load.* Lihat Gambar 5.33 dan Gambar 5.34.

.oad Patter	n Name ——			nits
+ DE	AD] [KN, m, C 📃 💌
.oad Type (and Direction		Options	
· Force	s 🤆 Mom	ents	C Add to B	Existing Loads
Coord Sys	GLOBAL	-	Replace	e Existing Loads
Direction	Gravity	<u> </u>	C Delete E	Existing Loads
Frapezoidal	Loads			
Distance	0.	0.25	0.75	4.
Load	0.	0.	0.	0.
Relation	itive Distance	from End-I	C Absolute D	istance from End-I
Jniform Loa	d			
1.00001	6.57	-	OK	Cancel

Gambar 5. 33 *Input* beban mati tambahan pada balok

Gambar 5. 34 Pemodelan beban mati tambahan akibat dinding

b. Pada pelat

Pada bagian ini penjelasan akan hanya mengambil contoh pembebanan beban mati tambahan pada pelat gedung Blok B pasca perbaikan dan perkuatan.

Pilih semua pelat lantai dan pelat atap. Lalu, klik menu Assign – Area
Loads – Uniform (Shell). Pada Load Pattern Name pilih DEAD.
Masukkan beban yang telah dihitung pada sub bab sebelumnya sebesar

1,550 kN/m² untuk pelat lantai di kotak *Load* di *Uniform Load*. Lihat Gambar 5.35 dan Gambar 5.36.

	presented in the second s
DEAD	💌 🔣 KN, m, C 💌
Jniform Load	Options
.oad 1.550	C Add to Existing Loads
Coord System GLOBAL	Replace Existing Loads
Direction Gravity	C Delete Existing Loads

Gambar 5. 35 Input Beban Mati Tambahan pada Pelat

(b) Pemodelan beban mati tambahan blok B

Gambar 5. 36 Pemodelan Beban Mati Tambahan

3. Beban Hidup

Pada bagian ini penjelasan akan hanya mengambil contoh pembebanan beban mati tambahan pada pelat gedung Blok B pasca perbaikan dan perkuatan.

Pilih semua pelat lantai dan pelat atap. Lalu, klik menu *Assign – Area Loads – Uniform (Shell)*. Pada *Load Pattern Name* pilih LIVE. Masukkan beban sebesar 2,453 kN/m² untuk pelat lantai di kotak *Load* di *Uniform Load*. Lihat Gambar 5.37 dan Gambar 5.38.

Load Pattern N +	lame	•	
Uniform Load- Load	2.453	Options C Ad	ld to Existing Loads
Coord System Direction	GLOBAL 🚽] @ Re] @ De	place Existing Loads dete Existing Loads

Gambar 5. 37 Input Beban Hidup pada Pelat

(b) Pemodelan beban hidup blok B

Gambar 5. 38 Pemodelan Beban Hidup pada Pelat

4. Beban Gempa

Beban gempa yaitu berupa beban lateral sudah dimasukkan dengan menggunakan *auto lateral load* pada *load pattern*.

5.4 Analisis Gempa Statik (Gaya Geser Dasar)

Gaya geser dasar pada analisis beban gempa statik dapat dilihat dengan dengan cara klik menu *Display – Show Tables*, pada kotak dialog *Choose Tables* for Display dipilih Analysis Results – Structures Output – Base Reactions, seperti yang terlihat pada Gambar 5.39.

Gambar 5. 39 Kotak Dialog Choose Tables for Display

Selanjutnya, pada kotak dialog *Select Ouput Case*, dipilih EX dan EY. Hasil analisisnya dapat dilihat pada Tabel 5.20 dan Tabel 5.21.

Tabel 5. 20 Base shear akibat beban statik ekivalen Blok B eksisting

OutputCase	CaseType	GlobalFX	GlobalFY	GlobalFZ
Text	Text	KN	KN	KN
EX	LinStatic	-1860.52	-5.237E-10	-5.344E-11
EY	LinStatic	1.6E-09	-1860.52	-8.489E-11

Tabel !	5. 21	Base	shear	akibat	beban	statik	ekivalen	Blok	B pasca	i perbaika	an
					dan p	erkuat	tan				

OutputCase	CaseType	GlobalFX	GlobalFY	GlobalFZ
Text	Text	KN	KN	KN
EX	LinStatic	-1989.84	-3.604E-10	-7.086E-11
EY	LinStatic	4.786E-11	-1989.84	-8.239E-11

Dari Tabel 5.20 dan Tabel 5.21, didapat gaya geser dasar (*base shear*) akibat beban gempa statik ekivalen untuk arah X dan arah Y berturut-turut yaitu Blok B eksisting: Vx=Vy= 1860,52 kN dan Blok B pasca perbaikan dan perkuatan: Vx=Vy= 1989,84 kN.

5.5 Analisis Beban Gempa Dinamik (Gaya Geser Dasar)

Berdasarkan pasal 7.9.4 pada SNI 1726 2012, analisis gempa dengan metode respon spektrum memerlukan perhitungan beban gempa statik ekivalen untuk dapat memperhitungkan apakah gaya geser dasar yang dihasilkann respon spectral (V) sudah lebih besar dari 85% gaya geser dasar yang dihasilkan gempa statik ekivalen (Vt), jika belum terpenuhi maka perlu ada perbesaran respon spectral dengan mengalikan (0,85V / Vt). Gaya geser dasar akibat dari beban gempa respon spektrum dapat dilihat pada Tabel 5.22 sampai Tabel 5.23.

Tabel 5. 22 Base shear akibat beban dinamik Blok B eksisting

OutputCase	CaseType	GlobalFX	GlobalFY	GlobalFZ
Text	Text	KN	KN	KN
RSX	LinRespSpec	1585.423	40.082	13.549
RSY	LinRespSpec	67.697	1461.482	16.046

Tabel 5. 23 Base shear akibat beban dinamik Blok B pasca perbaikan perkuatan

OutputCase	CaseType	GlobalFX	GlobalFY	GlobalFZ
Text	Text	KN	KN	KN
RSX	LinRespSpec	1211.919	120.684	40.614
RSY	LinRespSpec	100.621	1492.616	23.221

- Blok B eksisting

Gaya geser dasar respon spektrum dari SAP2000:

RSX =
$$1585,423$$
 kN

RSY = 1461,482 kN

Gaya geser dasar statik ekivalen dari SAP2000:

FX = FY = 1860,5236 kN

Evaluasi gempa arah X:

FX statik = 1860,5236 kN RSX = 1585,423 kN 85%. FX statik = 1581,4451 kN Karena RSX > 85%. FX, respon spektrum arah X tidak perlu diperbesar = $\frac{1581,4451}{1585,423} = 0,9974909$ Evaluasi gempa arah Y: FY statik = 1860,5236 kN RSY = 1461,482 kN 85%. FY statik = 1581,4451 kN Karena RSY < 85%. FY, respon spektrum arah Y perlu diperbesar = $\frac{1581,4451}{1461,482} = 1,0820832$

- Blok B pasca perbaikan perkuatan

Gaya geser dasar respon spektrum dari SAP2000:

RSX = 1211,919 kN

RSY = 1492,616 kN

Gaya geser dasar statik ekivalen dari SAP2000:

FX = FY = 1989,8478 kN

Evaluasi gempa arah X:

FX statik = 1989,8478 kN

RSX = 1211,919 kN

85%. FX statik = 1691,3706 kN

Karena RSX < 85%. FX, respon spektrum arah X perlu diperbesar =

 $\frac{1691,3706}{1211,919} = 1,3956136$

Evaluasi gempa arah Y:

FY statik = 1989,8478 kN

RSY = 1492,616 kN

85%. FY statik = 1691,3706 kN

Karena RSY < 85%. FY, respon spektrum arah Y perlu diperbesar = $\frac{1691,3706}{1492,616} = 1,1331586$

Setelah diatur skala gaya, selanjutnya analisis respon spektrum dilakukan kembali. Berikut di bawah ini adalah hasil yang didapat yang dapat dilihat pada Tabel 5.24 dan Tabel 5.25.

GlobalFX GlobalFY OutputCase *CaseType* **GlobalFZ** Text KN Text KN KN 1581.445 RSX LinRespSpec 39.981 13.515 RSY LinRespSpec 73.253 1581.445 17.363

Tabel 5. 24 Base shear akibat beban dinamik Blok B eksisting

Tabel 5. 25 *Base shear* akibat beban dinamik Blok B pasca perbaikan perkuatan

OutputCase	CaseType	GlobalFX	GlobalFY	GlobalFZ
Text	Text	KN	KN	KN
RSX	LinRespSpec	1691.371	168.429	56.682
RSY	LinRespSpec	114.02	1691.371	26.313

5.6 Analisis Pushover

Analisis beban dorong (*pushover*) statik *nonliniear* bertujuan untuk mengevaluasi kinerja bangunan dengan menggunakan metode *Displacement Coefficient* sesuai dengan pedoman FEMA 356 (2000) yang telah *built-in* dalam program komputer SAP2000 v.14. Adapun tahapan analisisnya akan dijabarkan pada sub bab 5.6.1 sampai 5.6.4 di bawah ini.

5.6.1 Pendefinisian Sendi Plastis

Definisi sendi plastis elemen struktur diperoleh dari *moment-curvature* (momen-rotasi) yang menggambarkan kemampuan deformasi dari elemen struktur. Pendefinisian sendi plastis dihitung secara otomatis oleh program SAP2000 v.14 berdasarkan ketentuan dalam FEMA 356 (2000) untuk elemen

struktur yang tidak mengalami perkuatan/perbesaran. Selanjutnya, hasil analisis sendi plastis tersebut di-*input* ke dalam definisi sendi plastis pada program SAP2000 untuk elemen-elemen struktur yang mengalami perkuatan/perbesaran.

1. Pendefinisian Sendi Plastis pada Balok

Penempatan sendi plastis pada balok dilakukan dengan cara mengklik menu Assign – Frame – Hinges. Pada kotak dialog Gambar 5.40 Frame Hinge Assignments pilih Hinge Property: Auto dan buat 2 sendi plastis untuk Relative Distance 0 dan 1 yang berarti sendi plastis diletakkan pada setiap ujung elemen sruktur. Untuk Degree of Freedom digunakan momen M3 seperti Gambar 5.41. Untuk mengetahui dan meng-edit property sendi plastis pada balok dapat dilakukan dengan mengklik menu Define – Section Properties – Hinge Properties. Pilih sendi plastis yang akan dilihat propertinya dengan memilih elemen balok pada opsi Select Hinge, lalu klik opsi Show Hinges Property Definition – Modify/Show Hinge Property untuk melihat hasil properti sendi plastis seperti yang ditunjukkan pada Gambar 5.42.

Add
Add
Add
-000
Modify
Delete
em i
nment Data

Gambar 5. 40 Pendefinisian Sendi Plastis Balok

				01-15	
Auto Hinge Type					_
From Tables In FEt	MA 356				-
Select a FEMA356 T	able				
Table 6-7 (Concret	e Beams - Flexure) Item i				•
Component Type	Degree of Freedom	V Value From			
Primary	C M2	Case/Combo	DEAD		-
C Secondary	С M3	C User Value	V2		
Transverse Reinforci	ng	Reinforcing Ratio (p - p') /	pbalanced		
✓ Transverse Rein	forcing is Conforming	From Current Design	_		_
		C User Value	I		
Deformation Controlle	d Hinge Load Carrying Capacity				
Drops Load After	Point E				
IS Extrapolated A	rter Point E				

Gambar 5. 41 Properti Sendi Balok

Gambar 5. 42 Frame Hinge Property pada Balok

2. Pendefinisian Sendi Plastis pada Kolom dan X-bracing

Untuk elemen struktur *x-bracing* didefinisikan sama seperti struktur Kolom. Penempatan sendi plastis pada kolom dilakukan sama seperti cara pada balok. *Degree of Freedom* yang dipakai adalah P-M2-M3 yang artinya kolom atau *x-bracing* menerima gaya aksial dan momen arah 2 dan 3 (Gambar 5.43 dan Gambar 5.44). Untuk properti sendi plastisnya dapat dilihat melalui menu *Define – Section Properties – Hinge Properties*. Pilih sendi plastis yang akan dilihat propertinya dengan memilih elemen kolom atau *x-bracing* pada opsi *Select Hinge*, lalu klik opsi *Show Hinges Property Definition – Modify/Show Hinge Property*. Klik opsi *Modify.Show Moment-Rotation Curve Data* untuk melihat data momen rotasi. Klik opsi *Modify/Show P-M2-M3 Interaction Surface Data* untuk melihat kurva interaksi P-M2-M3. Untuk melihat lebih jelas dapat dilihat pada Gambar 5.45 dan Gambar 5.46.

Hinge Propert	nt Data u Belative Distan	200
Auto	▼ 0.	
Auto P-M2-M3		
Auto P-M2-M3	1.	A00
		Modify
		Delete
	I	
An I liven Antineered	Data	
uto Hinge Assignment Tupo: From Tables In	Data EEMA DEC	
able: Table 6-8 (Cor	crete Columns - Flexure) It	em i
201.1102000		

Gambar 5. 43 Pendefinisian Sendi Plastis Kolom

Auto Hinge Type		
From Tables In FEM	IA 356	
Select a FEMA356 Ta	ble	
Table 6-8 (Concrete	Columns - Flexure) Item i	•
Component Type Primary C Secondary	Degree of Freedom C M2 C P-M2 C M3 C P-M3 C M2-M3 C P-M2-M3	P and V Values From C Case/Combo DEAD C User Value V2 V3
Transverse Reinforcin 🔽 Transverse Reinf	g gorcing is Conforming	Deformation Controlled Hinge Load Carrying Capacity Orops Load After Point E C Is Extrapolated After Point E

Gambar 5. 44 Properti Sendi Kolom

elect C	urve				- a - 0 - 0	Units	
Axial Fo	ce -214.1404	✓ Angle 0.	•	Curve #1		I Tonf, m, C	
loment	Rotation Data for Selecter	d Curve			18 N.		
Point	Moment/Yield Mom	Rotation/SF		d l			
Α	0.	0.	B			<u>M</u> _	
B	1.	0.	· •				
C	1.1	0.015					
D	0.2	0.015				2	2
- <u>1</u>	0.2	0.025	- 11			<u>'Stille</u> "	
Note: Y	ield moment is defined by	interaction surface		D E		SHO.	
~					P	2 P	2
Co	py Curve Data	Paste Curve Data	」 │┡ │ │		-R	3 R:	2
Co	py Curve Data	Paste Curve Data		Curve - Curve #	- R	3 Ra 3-D Surface	2 м
Co - Accep	py Curve Data	Paste Curve Data	Current (Force 3D View	Curve - Curve # #1; Angle #1	-R 1 Axi	3 R. 3-D Surface ial Force = -214.140	2)4
Co Accep	py Curve Data	Paste Curve Data	Current I Force 3D View	Curve - Curve # #1; Angle #1	1 Axial Earce	3 R: 3-D Surface ial Force = -214.140	2)4 — 王
Co Accep	py Curve Data	Paste Curve Data ormation / SF) 3.000E-03	L A Current f Force 3D View Plan	Curve - Curve # #1; Angle #1 315	-R 1 Axi Axial Force	3 R: 3-D Surface ial Force = -214.140 -214.1404	2 04 •
Accep	py Curve Data	Paste Curve Data ormation / SF) 3.000E-03 0.012	L A Current (Force 3D View Plan Elevation	Curve - Curve # #1; Angle #1 315	1 Axia Axial Force	3 R. 3-D Surface ial Force = -214.140 -214.1404 ackbone Lines	2 04 •
Co Accep	py Curve Data	Paste Curve Data ormation / SF) 3.000E-03 0.012 0.015	A Current (Force 3D View Plan Elevation	Curve - Curve # #1; Angle #1 315	Axial Force	3 R. 3-D Surface ial Force = -214.14C -214.1404 ackbone Lines Acceptance Criteria	2 04 •
Co Accep	py Curve Data	Paste Curve Data ormation / SF) 3.000E-03 0.012 0.015	A Current (Force 3D View Plan Elevation Aperture	Curve - Curve # #1; Angle #1 315 35 0	1 Axial Force	3 R. 3-D Surface ial Force = -214.140 -214.1404 ackbone Lines Acceptance Criteria Dirickened Lines	2)4 •
Accep	py Curve Data	Paste Curve Data ormation / SF) 3.000E-03 0.012 0.015 n Current Curve	A Current I Force 3D View Plan Elevation Aperture 3D BB	Curve - Curve # #1; Angle #1 315 4 35 4 0	Axial Force	3 R. 3-D Surface ial Force = -214.140 -214.1404 ackbone Lines Acceptance Criteria Thickened Lines	2 04
Accep	py Curve Data	Paste Curve Data ormation / SF) 3.000E-03 0.012 0.015 n Current Curve	Current of Force 3D View Plan F Elevation Aperture J 3D RR	Curve - Curve # #1: Angle #1 315 0 0 MR3 MR2	Axial Force	3 R. 3-D Surface ial Force = -214.140 -214.1404 ackbone Lines Acceptance Criteria Thickened Lines ht Current Curve	2 04 •
Accep	py Curve Data	Paste Curve Data ormation / SF) 3.000E-03 0.012 0.015 n Current Curve	Current I Force 3D View Plan Elevation Aperture 3D RR	Curve - Curve # #1: Angle #1 315	Axial Force	3 R. 3-D Surface ial Force = -214.140 -214.1404 ackbone Lines Acceptance Criteria Chickened Lines ht Current Curve	2
Co Accep	py Curve Data	Paste Curve Data ormation / SF) 3.000E-03 0.012 0.015 n Current Curve None	Current of Force 3D View Plan Elevation Aperture 3D RR	Curve - Curve # #1; Angle #1 315 0 MR3 MR2 ment About = About Po	1 Axial Force ☐ Hide B. ☐ Show A ☐ Show A ☐ Show 1 ↓ ♥ Highlight	3 R. 3-D Surface ial Force = -214.140 -214.1404 ackbone Lines Acceptance Criteria Thickened Lines ht Current Curve	2 14 •
Co Accep	py Curve Data	Paste Curve Data ormation / SF) 3.000E-03 0.012 0.015 n Current Curve None 2	Current of Force 3D View Plan Elevation Aperture 3D RR Angle Is Mor 0 degrees 90 degrees	Curve - Curve # #1: Angle #1 315 0 MR3 MR2 MR3 MR2 ment About = About Po = About Po	1 Axial Force ☐ Hide Bi ☐ Show A ☐ Show 1 ☐ I Highlight sittive M2 Axis Sittive M3 Axis	3 R: 3-D Surface ial Force = -214.140 -214.1404 ackbone Lines Acceptance Criteria Thickened Lines ht Current Curve	2)4
- Accep	py Curve Data	Paste Curve Data ormation / SF) 3.000E-03 0.012 0.015 n Current Curve None 2 15	Current of Force 3D View Plan Elevation Aperture 3D RR Angle Is Mor 0 degrees 90 degrees 180 degrees	Curve - Curve # #1: Angle #1 315 0 MR3 MR2 ment About = About Po s = About Po	1 Axial Force ☐ Hide Bi ☐ Show A ☐ Show A ☐ Show A ☐ Weight sitive M2 Axis sitive M3 Axis apairive M2 Avis	3 R. 3-D Surface ial Force = -214.140 -214.1404 ackbone Lines Acceptance Criteria Thickened Lines ht Current Curve	2 14 K.

Gambar 5. 45 Moment Rotation Data Kolom

Gambar 5. 46 P-M2-M3 Interaction Surface pada Kolom

5.6.2 Pembebanan Gravitasi dan Lateral

Pada analisis *pushover* ada 2 jenis beban yang akan diterapkan yaitu, beban gravitasi dan beban lateral pada pusat massa yang akan dijelaskan di bawah ini.

1. Pembebanan Gravitasi

Pembebanan Gravitasi dilakukan dengan cara klik pada *menu Define – Load Case*, kemudian pilih opsi *Add New Case*. *Analysis Case* diberi nama GRAVITASI, untuk *initial Condition* dipilih *Zero Initial Condition* yaitu pembebanan dilakukan pada saat kondisi awal sebelum terkena beban. Pada opsi *Analysis Type* pilih *Nolinear* karena akan dilakukan analisis nonlinear. Untuk beban yang bekerja yaitu beban mati (*Dead Load*) dan beban hidup (*Live Load*) menggunakan faktor skala 1,0 dan 0,3. Untuk lebih jelasnya dapat dilihat pada Gambar 5.47. Pada kotak dialog *Load Application* secara *default* terpilih opsi *Full Load*. Lalu pada *Monitored Displacement* ditentukan DOF arah U3 pada *joint* yang berada pada titik pusat massa lantai paling atas bangunan yaitu *joint control* pada blok B adalah *joint* 135 (Gambar 5.48). Pada

Parameters *Result Saved* secara *default* terpilih opsi *Final State Only* (Gambar 5.49). Kemudian pada *Nonlinear Parameters*, diatur sesuai Gambar 5.50.

Load Case Name	91 m	Notes	🗌 🖂 Load Case Type
GRAVITASI	Set Def Name	Modify/Show	Static 🗸 Design
Initial Conditions			Analysis Type
Zero Initial Condition	ns - Start from Unstre:	ssed State	C Linear
C Continue from State	at End of Nonlinear	Case -	 Nonlinear
Important Note: Lo cu	ads from this previou rrent case	s case are included in the	C Nonlinear Staged Construction
Modal Load Case			Geometric Nonlinearity Parameters
All Modal Loads Applied	d Use Modes from Ca	se MODAL 👻	None
			C P-Delta
Loads Applied Load Type Lo	ad Name Scale	Factor	C P-Delta plus Large Displacements
Load Patterr 💌 DEA	.D 🔽 1.		
Load Pattern DEA	D 1.	Add	
Load Pattern LIVE	U.3		
		Modify	
		Delete	
1 1			
Other Parameters]
Load Application	Full Load	Modify/Show	<u> </u>
Results Saved	Final State Only	Modify/Show	Cancel

Gambar 5. 47 Pengaturan Analysis Case Beban Gravitasi

LUa	d Application Control
•	Full Load
С	Displacement Control
Con	trol Displacement
6	Use Conjugate Displacement
~	
0	Use Monitored Displacement
Loa Mor	Use Monitored Displacement ad to a Monitored Displacement Magnitude of intered Displacement
K Loa Mor	Use Monitored Displacement ad to a Monitored Displacement Magnitude of nitored Displacement
.08	Use Monitored Displacement ad to a Monitored Displacement Magnitude of

Gambar 5. 48 Load Application Gravitasi

lesults Saved	
Final State Only	C Multiple States
or Each Stage	
Minimum Number of Sa	ved States 1
Maximum Number of Sa	aved States 1
🔽 🛛 Save positive Displa	acement Increments Only

Gambar 5. 49 Result Saved Gravitasi

Mat	erial Nonlinearity Parameters	Solution Control	17
$\overline{\nabla}$	Frame Element Tension/Compression Only	Maximum Total Steps per Stage	200
1	Frame Element Hinge	Maximum Null (Zero) Steps per Stage	50
1	Cable Element Tension Only	Maximum Constant-Stiff Iterations per Step	10
	Link Gap/Hook/Spring Nonlinear Properties	Maximum Newton-Raphson Iter, per Step	40
	Link Other Nonlinear Properties	Iteration Convergence Tolerance (Relative)	1.000E-04
	Time Dependent Material Properties	Use Event-to-event Stepping	Yes 💌
		Event Lumping Tolerance (Relative)	0.01
		Max Line Searches per Iteration	20
		Line-search Acceptance Tol. (Relative)	0.1
		Line-search Step Factor	1.618
Hing	ge Unloading Method	Target Force Iteration	
œ	Unload Entire Structure	Maximum Iterations per Stage	10
с	Apply Local Redistribution	Convergence Tolerance (Relative)	0.01
с	Restart Using Secant Stiffness	Acceleration Factor	1.
		Continue Analysis If No Convergence	No
		Reset To Defaults	

Gambar 5. 50 Nonliniear Parameter untuk Gravitasi

2. Pembebanan PUSH (beban lateral)

Setelah mendefinisikan beban *dead*, langkah berikutnya adalah mendefinisikan beban lateral sebagai beban *pushover*. Pada analisis ini dibuat 2 pembebanan lateral. Pertama adalah beban lateral arah X dan yang kedua adalah beban lateral arah Y. Masih dengan cara yang sama dengan klik pada *menu Define* –

Load Case, Add New Case. Untuk beban lateral arah X diberi nama PUSH X dan beban lateral arah Y diberi nama PUSH Y. Pada *Analysis Type* dipilih opsi *Nonlinear*. Pada Initial Conditions dipilih opsi *Continue from State at End of Nonlinear Case*: GRAVITASI yang artinya tahap kedua dilakukan setelah tahap pertama selesai dan akhir dari analisis tahap pertama yaitu GRAVITASI sebagai permulaan analisis tahap kedua. Kemudian pada PUSH X dipilih *Load Type: Load Pattern* dan *Load Name:* EX dan pada PUSH Y dipilih *Load Name:* EY dengan masing-masing *Scale Factor* = 1 seperti pada Gambar 5.51 dan Gambar 5.52.

Load Case Name		Notes	– Load Case Type
PUSHX	Set Def Name	Modify/Show	Static 🗾 Design
Initial Conditions			Analysis Type
C Zero Initial Conditions	s - Start from Unstresse	d State	C Linear
Continue from State a	at End of Nonlinear Cas	e GRAVITASI 💌	 Nonlinear
Important Note: Loa curr	ids from this previous ca rent case	ase are included in the	C Nonlinear Staged Construction
Modal Load Case			Geometric Nonlinearity Parameters
All Modal Loads Applied	Use Modes from Case	MODAL 🔻	None None
1 d. A F d		10 (S-1)	C P-Delta
Loads Applied Load Type Loa	id Name – Scale Fai	ctor	C P-Delta plus Large Displacements
Load Patterr 💌 EX	▼ 1.		
Load Pattern EX	1.	Add	
		Modify	
		Delete	
Other Parameters		_	
Load Application	Displ Control	Modify/Show	<u>[:UK]</u>
Results Saved	Multiple States	Modify/Show	Cancel
		the second se	

Gambar 5. 51 Pengaturan Analysis Case Beban Lateral Arah X

Gambar 5. 52 Pengaturan Analysis Case Beban Lateral Arah Y

Selanjutnya, pada kotak dialog *Load Application* dipilih *Modify/Show* sehingga keluar menu *Load Applicantion Control for Nonlinear Static Analysis* seperti pada Gambar 5.53 dan Gambar 5.54. Untuk *Control Displacement* dipilih *Use Monitored Displacement* dengan *Monitered Displacement* sebesar 2% dari tinggi masing-masing bangunan yang ditinjau, misal untuk bangunan 3 tingkat yaitu 12 m x 2% = 0,24 m. Lalu *Monitered Displacement* dipilih DOF arah U1 untuk arah X dan U2 untuk arah Y pada *joint* yang berada pada pusat massa lantai paling atas masing-masing bangunan yaitu *joint control* pada blok B adalah *joint* 135 seperti pada Gambar 5.55.

Full Load Displacement Control ontrol Displacement Use Conjugate Displacement Use Monitored Displacement	
Displacement Control ontrol Displacement Use Conjugate Displacement Use Monitored Displacement	
ontrol Displacement © Use Conjugate Displacement ତ Use Monitored Displacement	
 Use Conjugate Displacement Use Monitored Displacement 	
Use Monitored Displacement	
oad to a Monitored Displacement Magnitude of 0.24	
onitored Displacement	
● DOF U1 💽 at Joint 135	
Generalized Displacement	-

Gambar 5. 53 Load Application Control Arah X

C Full Load	
Displacement Control	
Control Displacement	
C Use Conjugate Displacement	nt
Use Monitored Displacement	nt
Load to a Monitored Displaceme	ent Magnitude of 0.24
Aonitored Displacement	
Monitored Displacement	at Joint 135

Gambar 5. 54 Load Application Control Arah Y

Pada parameter *Result Saved* diambil opsi *Multiple States* dengan *Minimum Number of Saved States* = 10 dan *Maximum* = 100 seperti pada Gambar 5.55. Kemudian pada *Nonlinear Parameter* pilih *Modify/Show* dapat diisi seperti pada Gambar 5.56. Results Saved for Nonlinear Static Load Cases

			Mul	tiple States
or Eacl	n Stage			
Minimu	im Number of	Saved Sta	ates	10
Maxim	um Number of	f Saved St	ates	100

Gambar 5. 55 Result Saved for Nonliniear Static Load Cases

Material Nonlinearity Parameters	Solution Control	123
Frame Element Tension/Compression Only	Maximum Total Steps per Stage	4000
🔽 Frame Element Hinge	Maximum Null (Zero) Steps per Stage	1000
🔽 Cable Element Tension Only	Maximum Constant-Stiff Iterations per Step	10
🔽 Link Gap/Hook/Spring Nonlinear Properties	Maximum Newton-Raphson Iter, per Step	40
🔽 Link Other Nonlinear Properties	Iteration Convergence Tolerance (Relative)	1.000E-04
📕 Time Dependent Material Properties	Use Event-to-event Stepping	Yes 💌
	Event Lumping Tolerance (Relative)	0.01
	Max Line Searches per Iteration	20
	Line-search Acceptance Tol. (Relative)	0.1
	Line-search Step Factor	1.618
Hinge Unloading Method	Target Force Iteration	
 Unload Entire Structure 	Maximum Iterations per Stage	200
C Apply Local Redistribution	Convergence Tolerance (Relative)	0.01
C Restart Using Secant Stiffness	Acceleration Factor	1.
	Continue Analysis If No Convergence	No 💌
	Reset To Defaults	

Gambar 5. 56 Nonliniear Parameter untuk PUSH X dan PUSH Y

5.6.3 Pendefinisian Parameter Pushover Metode FEMA 356

Pendefinisian parameter *pushover* metode FEMA 356 dilakukan dengan cara klik *menu Define – Pushover Parameter Sets –* FEMA 356 *Coefficient Method. Input Data* yang diperlukan yaitu *Demand Spectrum* dan Koefisien (C2,

C3, Cm) untuk mendapatkan perpindahan global maksimum (elastis dan inelastis) yang disebut "target perpindahan" (ST). Pada Demand Spectrum Definition dipilih Defined Function dengan Scale Factor yang didapat dari faktor reduksi gempa (R) = 1 dan faktor keutamaan gedung (I) = 1,5. Pada saat *pushover* kondisi bangunan dianggap elastik. Dari definisi fungsi tersebut, didapat nilai koreksi ordinat spektrum respon sebesar $\frac{I}{R}g = \frac{1.5}{1}9,81 = 14,715$ dan characteristic period of respon spectrum (T_s) ditentukan 0,6944 detik, dengan nilai T_s merupakan nilai T pada short period. Pada Selected Coefficient, nilai C2 dan C3 didapat dari Tabel 3-3 FEMA 356 diperoleh nilai C2 = 1,0 dan nilai C3 = 1,0 diambil berdasarkan pertimbangan engineering judgement dan nilai yang diijinkan untuk nonliniear prosedur, dimana perilaku hubungan gaya geser dasar – lendutan pada kondisi pasca leleh kekakuannya positip (kurva meningkat). Untuk nilai C_m didapat dari Tabel 3-1 FEMA 356 diperoleh nilai Cm = 0.9 untuk tipe bangunan concrete moment frame 3 lantai pada bangunan kondisi eksisting dan Cm = 1,0 untuk tipe bangunan other 3 lantai pada bangunan kondisi pasca perbaikan perkuatan. Untuk lebih jelasnya dapat dilihat pada Gambar 5.57.

Pushover Parameters Name	- Units	Pushover Parameters Name	Units
Name FEMA 356	KN, m, C 💌	Name FEMA356	Tonf, m, C 💌
Demand Spectrum Definition		Demand Spectrum Definition	
Effective Viscous Damping (0 < Damp < 1)	0.05	Effective Viscous Damping (0 < Damp < 1)	0.05
Defined Function RS Jogja B	eksisting 💌	Defined Function RS Jogja	8 - pasca perbaika 💌
Scale Factor	14.715	Scale Factor	14.715
Characteristic Period of Resp Spec, Ts	0.6944	Characteristic Period of Resp Spec, Ts	0.6944
C FEMA 356 General Response Spectrum		C FEMA 356 General Response Spectrum	
Mapped Spectral Accel at Short Period, Ss		Mapped Spectral Accel at Short Period, Ss	
Mapped Spectral Accel at 1 Sec Period, S1		Mapped Spectral Accel at 1 Sec Period, S1	
Site Class		Site Class	
Selected Coefficients		Selected Coefficients	
🔽 User Value for C2	1.	User Value for C2	1.
🔽 User Value for C3	1.	User Value for C3	1.
🔽 User Value for Cm	0.9	✓ User Value for Cm	1.
Items Visible On Plot		Items Visible On Plot	
🔽 Show Capacity Curve	Color 💻	Show Capacity Curve	Color
🔽 Show Idealized Bilinear Force-Displ Curve	Color 📕	Show Idealized Bilinear Force-Displ Curve	Color 📕
Reset Default Colors		Reset Default Colors	
Update Plot Set Axis L	abels and Range	Update Plot Set Axis	Labels and Range
OK Cancel		OK Cance	

Gambar 5. 57 Parameter Metode Koefisien Perpindahan FEMA 356

5.6.4 Hasil Analisis Statik Nonliniear (Pushover)

Hasil analisis *pushover* yaitu berupa kurva kapasitas dan titik kinerja dengan metode FEMA 356. Hasil akhir analisis *pushover* adalah berupa level kinerja struktur.

1. Kurva kapasitas

Untuk melihat kurva kapasitas, klik menu *Display – Show Statistic Pushover Curve*. Kurva kapasitas adalah kurva yang menunjukan hubungan antara perpindahan yang tertangkap (*Monitored Displacement*) dan gaya geser resultan (*Resultant Base Shear*) yang diakibatkan oleh beban statik sampai pada kondisi ultimit bangunan atau target *displacement* yang telah ditentukan. Kurva yang terlihat pada Gambar 5.58 sampai Gambar 5.61 berbentuk nonlinier akibat peningkatan beban yang mengakibatkan elemen struktur bangunan berubah dari kondisi elastik menjadi kondisi plastis.

Gambar 5. 58 Kurva pushover Blok B eksisting arah X

Gambar 5. 59 Kurva pushover Blok B eksisting arah Y

Gambar 5. 60 Kurva pushover Blok B pasca perbaikan dan perkuatan arah X

Gambar 5. 61 Kurva pushover Blok B pasca perbaikan dan perkuatan arah Y

Perbandingan kurva *pushover* untuk struktur gedung kondisi eksisting dan kondisi pasca perbaikan dan perkuatan dapat dilihat pada Gambar 5.62 dan Gambar 5.63.

Gambar 5. 62 Perbandingan kurva pushover Blok B pada arah X

Dari Gambar 5.62 dapat diketahui bahwa pada analisis *pushover* pembebanan arah X, untuk blok B eksisting analisis berhenti pada step 8 dengan simpangan pada titik kontrol sebesar 0,153659 m dan gaya geser dasar 8798,023 kN, sedangkan untuk blok B pasca perbaikan dan perkuatan analisis berhenti pada step 3 dengan simpangan pada titik kontrol sebesar 0,027179 m dan gaya geser dasar 12888,657 kN.

Gambar 5. 63 Perbandingan kurva pushover Blok B pada arah Y

Dari Gambar 5.63 dapat diketahui bahwa pada analisis *pushover* pembebanan arah Y, untuk blok B eksisting analisis berhenti pada step 8 dengan simpangan pada titik kontrol sebesar 0,114726 m dan gaya geser dasar 6833,361 kN, sedangkan untuk blok B pasca perbaikan dan perkuatan analisis berhenti pada step 6 dengan simpangan pada titik kontrol sebesar 0,083095 m dan gaya geser dasar 9640,114 kN.

Analisis tidak dapat dilanjutkan lagi sampai mencapai kontrol perpindahan yang ditentukan, yaitu sebesar 0,24 m. Hal ini terjadi karena telah terlampauinya kapasitas deformasi pada tiap elemen struktur yang telah didefinisikan pada properti sendi plastis. Perbandingan kurva *pushover* pada arah X dan arah Y untuk blok B dapat dilihat pada Gambar 5.64.

Dari hasil analisis dapat dilihat bahwa penambahan struktur *x-bracing* berpengaruh terhadap hasil kurva kapasitasnya. Gedung dengan penambahan struktur *x-bracing* (kondisi pasca perbaikan dan perkuatan) memiliki kurva yang lebih tegak yang berarti bangunan lebih kaku dibandingkan gedung tanpa penambahan struktur *x-bracing* (kondisi eksisting).

Gambar 5. 64 Perbandingan kurva kapasitas struktur gedung arah X dan arah Y pada Blok B

Untuk grafik struktur gedung blok B yang terlihat pada Gambar 5.64, kurva kapasitas pembebanan arah X dan arah Y menunjukkan gaya geser dasar yang lebih besar dengan simpangan yang lebih kecil pada kondisi pasca perbaikan dan perkuatan dibandingkan kondisi eksisting. Pada blok B kondisi eksisting menunjukkan adanya kurva yang menurun yang berarti pada titik tersebut perilaku struktur telah leleh. Hal ini membuktikan bahwa penambahan struktur *x-bracing* pada gedung blok B mampu memberikan peningkatan kapasitas struktur yang optimal untuk menahan gaya lateral yang lebih baik dibandingkan tanpa penambahan struktur *x-bracing*. Kurva kapasitas pada gedung blok B juga menunjukkan bahwa kondisi terbaik gedung dalam menahan gaya lateral yaitu pada kondisi pasca perbaikan dan perkuatan dengan pembebanan arah X dan arah Y.

2. Titik Kinerja Metode Koefisien Perpindahan (FEMA 356)

Untuk melihat titik kinerja hasil analisis metode koefisien perpindahan (FEMA 356) pada SAP2000 yaitu dengan cara menampilkan *Show Static*

Pushover Curve, pada pilihan *Plot Type* pilih opsi FEMA 356 *Coefficient Method*. Pada *dialog box* akan muncul kurva *pushover* seperti yang ditunjukkan pada Gambar 5.65 sampai Gambar 5.68.

Gambar 5. 65 Kurva *pushover* dan tiitk kinerja dengan metode koefisien perpindahan (FEMA 356) Blok B eksisting arah X

Gambar 5. 66 Kurva *pushover* dan tiitk kinerja dengan metode koefisien perpindahan (FEMA 356) Blok B eksisting arah Y

Gambar 5. 68 Kurva *pushover* dan tiitk kinerja dengan metode koefisien perpindahan (FEMA 356) Blok B pasca perbaikan dan perkuatan arah Y

Dari Gambar 5.65 sampai Gambar 5.68, gaya geser dasar dan *displacement* yang terjadi pada saat target perpindahan tercapai dapat dilihat pada Tabel 5.26 dan Tabel 5.27.

	anya angan dagan	target perpindahan	
arah pembebanan pushover	gaya geser dasar (VI) (kN)	(FEMA 356)	
	(()1)(11)	Vt (kN)	δt (m)
arah x eksisting	1860.52	7452.592	0.099
arah y eksisting	1860.52	7403.836	0.058
arah x pasca perbaikan dan perkuatan	1989.85	11592.327	0.024
arah y pasca perbaikan dan perkuatan	1989.85	8984.738	0.053

Tabel 5. 26 Target perpindahan dengan metode FEMA 356 pada Blok B

Dari Tabel 5.26 dapat dilihat nilai gaya geser dasar akibat beban lateral arah X sebesar $V_{tx} = 7452,592$ kN > $V_I = 1860,52$ kN dan arah Y sebesar $V_{ty} = 7403,836$ kN > $V_I = 1860,52$ kN untuk blok B eksisting, nilai gaya geser dasar akibat beban lateral arah X sebesar $V_{tx} = 11592,327$ kN > $V_I = 1989,85$ kN dan arah Y sebesar $V_{ty} = 8984,738$ kN > $V_I = 1989,85$ kN untuk blok B pasca perbaikan dan perkuatan, maka berdasarkan metode koefisien perpindahan (FEMA 356) perilaku struktur arah X dan arah Y pada gempa rencana dalam **kondisi inelastik (plastis)** karena nilai gaya geser dasar yang terjadi telah melampaui gaya geser yang ada pada bangunan ($V_t > V_I$).

Batasan maksimum simpangan untuk kondisi batas ultimit yaitu 0,02 x H = $0,02 \times 12$ m = 0,24 m. Target *displacement* akibat beban lateral arah X sebesar 0,099 m < 0,24 m dan akibat beban lateral arah Y sebesar 0,058 m < 0,24 m untuk blok B eksisting, target *displacement* akibat beban lateral arah X sebesar 0,024 m < 0,24 m dan akibat beban lateral arah Y sebesar 0,053 m < 0,24 m untuk blok B pasca perbaikan dan perkuatan, sehingga struktur tersebut **memenuhi syarat keamanan** karena nilai simpangan yang terjadi masih kurang dari nilai batas simpangan ultimit yang telah ditetapkan.

Batasan *drift ratio* menurut metode FEMA 356 ditentukan dari perbandingan *roof drift* dengan tinggi total bangunan. Untuk blok B eksisting, nilai *drift ratio* arah X = 0,099/12 = 0,825 % < 1 % (*transient*) dan nilai *drift ratio* arah Y = 0,058/12 = 0,483 % < 1 % (*transient*) yang berarti kinerja level bangunan termasuk kriteria *Immediate Occupancy*. Untuk blok B pasca perbaikan dan perkuatan, nilai *drift ratio* arah X = 0,024/12 = 0,200 % < 1 % (*transient*) dan nilai *drift ratio* arah Y = 0,053/12 = 0,442 % < 1 % (*transient*) yang berarti level kinerja level bangunan termasuk kriteria *Immediate Occupancy*. Penentuan nilai *drift ratio* arah Y = 0,053/12 = 0,442 % < 1 % (*transient*) yang berarti level kinerja level bangunan termasuk kriteria *Immediate Occupancy*. Penentuan kinerja level bangunan ini berdasarkan *drift ratio* untuk level kinerja FEMA 356 yang telah dijelaskan pada Tabel 3.16.

Waktu getar alami yang memperhitungkan kondisi in-elastis atau waktu getar efektif (T_e), dapat diperoleh dengan bantuan kurva hasil analisa *pushover* dengan metode koefisien perpindahan FEMA 356. Nilai waktu getar alami awal elastis (T_i) dan kekakuan awal bangunan pada arah yang ditinjau (K_i), kekakuan lateral efektif bangunan (K_e), waktu getar alami efektif (T_e) dan rasio kekuatan pasca leleh terhadap kekakuan elastik efektif (a) hasil analisis *pushover* dengan metode koefisien perpindahan FEMA 356 pada pembebanan *pushover* arah X dan arah Y pada Blok B dapat dilihat pada Tabel 5.27.

Arah pembebanan pushover	Ti (det)	Ki (kN/m)	Ke (kN/m)	Te (det)	α
arah x eksisting	0.478559	151050.9	141781	0.493956	0.237235
arah y eksisting	0.364135	232350.49	228706.26	0.367024	0.247835
arah x pasca perbaikan dan perkuatan	0.187227	536828.16	536828.16	0.187227	0.844113
arah y pasca perbaikan dan perkuatan	0.326467	278434.67	278434.67	0.326467	0.315254

Tabel 5. 27 Nilai waktu getar alami efektif dengan metode koefisien perpindahan FEMA 356 pada Blok B

Parameter waktu getar alami efektif dari kurva *pushover* pada pembebanan arah X dan arah Y pada Blok B dapat dilihat pada Gambar 5.69 sampai Gambar 5.72.

Gambar 5. 69 Parameter waktu getar alami efektif dari kurva *pushover* pada Blok B eksisting arah X

Gambar 5. 70 Parameter waktu getar alami efektif dari kurva *pushover* pada Blok B eksisting arah Y

Gambar 5. 71 Parameter waktu getar alami efektif dari kurva *pushover* pada Blok B pasca perbaikan dan perkuatan arah X

Gambar 5. 72 Parameter waktu getar alami efektif dari kurva *pushover* pada Blok B pasca perbaikan dan perkuatan arah Y

Diketahui pada saat titik kinerja tercapai untuk gedung blok B eksisting titik kinerja tercapai pada saat pembebanan arah X dengan $V_t = 7452,592$ kN, arah Y dengan $V_t = 7403,836$ kN dan berat total bangunan $W_T = 13781,657$ kN. Berdasarkan Persamaan $V = C_S x W$ pada pembebanan arah X tercapai pada saat 0,541 W_T dan pada pembebanan arah Y tercapai pada saat 0,537 W_T . Sedangkan V_y = 5408,642 kN tercapai pada saat 0,392 W_T pada pembebanan arah X dan V_y = 5503,197 kN tercapai pada saat 0,399 W_T pada pembebanan arah Y.

Untuk gedung blok B pasca perbaikan dan perkuatan titik kinerja tercapai pada saat pembebanan arah X dengan $V_t = 11592,327$ kN, arah Y dengan $V_t =$ 8984,738 kN dan berat total bangunan $W_T = 14739,614$ kN. Berdasarkan Persamaan $V = C_S x W$ pada pembebanan arah X tercapai pada saat 0,786 W_T dan pada pembebanan arah Y tercapai pada saat 0,610 W_T . Sedangkan $V_y = 5940,903$ kN tercapai pada saat 0,403 W_T pada pembebanan arah X dan $V_y = 6285,912$ kN tercapai pada saat 0,426 W_T pada pembebanan arah Y.

3. Pengaruh penambahan struktur *x-bracing* pada struktur gedung terhadap peningkatan kekakuan bangunan.

Struktur gedung apabila menerima beban gempa pada tingkatan atau kondisi tertentu, akan terjadi sendi plastis (*hinge*) pada balok, kolom, dan *x-bracing*. Sendi plastis merupakan bentuk ketidakmampuan elemen struktur balok, kolom, dan *x-bracing* menahan gaya dalam sehingga mengakibatkan terjadinya simpangan atau perpindahan. Struktur *x-bracing* berfungsi untuk menahan gaya lateral yang diakibatkan oleh gempa dengan memberikan kekakuan pada struktur gedung. Sehingga, struktur gedung yang memiliki struktur *x-bracing* memiliki simpangan atau perpindahan yang lebih kecil daripada struktur gedung tanpa struktur *x-bracing*. Hal ini dapat dilihat pada Gambar 5.73.

(b) Kondisi pasca perbaikan dan perkuatan

Gambar 5. 73 Nilai Simpangan atau target perpindahan struktur blok B pada kondisi eksisting (a) dan pada kondisi pasca perbaikan dan perkuatan (b)

Berdasarkan kurva kapasitas dari hasil analisis didapatkan bahwa penambahan struktur *x-bracing* pada bangunan blok B memberikan peningkatan kapasitas struktur yang lebih baik dari kondisi eksisting ke kondisi pasca perbaikan dan perkuatan. Berdasarkan nilai simpangan atau target perpindahan dari hasil analisis didapatkan bahwa penambahan struktur *x-bracing* pada blok B memberikan penurunan nilai simpangan atau target perpindahan. Hal tersebut karena nilai simpangan atau target perpindahan diukur dari *joint control* pada pusat massa lantai paling atas bangunan (lantai 3).

Selain itu, penambahan struktur *x-bracing* pada gedung berpengaruh terhadap peningkatan kekakuan bangunan. Untuk arah X terjadi peningkatan kekakuan sebesar 278,63% dan untuk arah Y terjadi peningkatan sebesar 21,74% dari kondisi eksisting ke kondisi pasca perbaikan perkuatan. Pada arah X terjadi

peningkatan kekakuan yang lebih besar dibandingkan pada arah Y karena penambahan struktur *x-bracing* pada gedung ditempatkan searah arah X. sedangkan, pada arah Y terjadi peningkatan kekakuan dikarenakan adanya pembesaran dimensi struktur searah arah Y sebagai akibat dari penambahan struktur *x-bracing*. Nilai peningkatan kekakuan pada bangunan selengkapnya dapat dilihat pada Tabel 5.28 di bawah ini.

Arah pembebanan <i>pushover</i>	Ke (kN/m)	Peningkatan (%)		
arah x eksisting	141781	278.63		
arah x pasca perbaikan dan perkuatan	536828.16	210.03		
arah y eksisting	228706.26	21 74		
arah y pasca perbaikan dan perkuatan	278434.67			

Tabel 5. 28 Peningkatan kekakuan pada bangunan (%)