PERENCANAAN SAND POCKET PADA SUNGAI PUTIH SEBAGAI BANGUNAN PENGENDALI ALIRAN SEDIMEN

Deny Alif Prananda¹, Dwi Astuti Wahyu Wulan Pratiwi²,

¹Mahasiswa Program Studi Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia

Email: denyalif032@gmail.com

²Staf Pengajar Program Studi Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia

Email: 15511130@staf.uii.ac.id

Abstrak: Gunung Merapi teletak di Kabupaten Sleman, Magelang, Boyolali, dan Klaten merupakan salah satu gunung api teraktif di Indonesia. Gunung Merapi telah mengalami erupsi sebanyak 68 kali, erupsi terakhir yang terbesar terjadi pada tanggal 26 Oktober 2010 (BNPB, 2011). Pada letusan terakhir Gunung Merapi memuntahkan endapan material padat mulai yang berbentuk batu berukuran besar sampai dengan material pasir sejumlah 140 juta m³ (BBWS Serayu Opak, 2011). Untuk mengantisipasi dan mengurangi terjadinya resiko bencana banjir lahar dingin maka perlu dilakukan tindakan pencegahan bencana yaitu, Perencanaan Sand Pocket pada Sungai Putih Sebagai Bangunan Pengendali Aliran Sedimen. Pada penelitian ini pengambilan data primer dilakukan dengan survey langsung berupa pengambilan data geometri sungai dan pengambilan sample propertis tanah, sedangkan data sekunder yang berupa data hujan didapat dari BBWS Serayu Opak. Analisis data hidrologi untuk menentukan debit banjir rancangan dengan metode Rasional. Luas DAS dicari menggunakan software ArcGIS 10.2. Analisis hidrolika (perencanaan sand pocket) dengan menggunakan metode RSNI3 Bangunan Pengendali Sedimen dan kemudian dihitung stabilitas sand pocket. Hasil dari perencanaan sand pocket di dapat debit banjir kala ulang 50 tahun sebesar 101,3361 m³/det dan debris flow sebesar 144,8903 m³/det. Pada sand pocket tinggi main dam direncanakan 8 m dengan kedalaman pondasi 3 m, tinggi sub dam direncanakan 3,5 m dan panjang lantai terjun adalah 23 m. Berdasarkan daya tampung sand pocket diketahui bahwa bangunan tersebut memiliki daya tampung sebesar 293.176,0602 m³.

Kata kunci: Sand Pocket, Kali Putih, Debris, Sedimen.

1. PENDAHULUAN

Indonesia merupakan negara kepulauan yang memiliki banyak gunung berapi, karena pada kawasan ini dilalui tiga lempeng aktif, yaitu lempeng Pasifik, lempeng Indo-Australia, dan lempeng Eurasia. Sering dijumpai bencana alam yang dicatat karena aktivitas gunung berapi. Salah satu gunung yang paling aktif adalah Gunung Merapi yang teletak di Kabupaten Sleman, Magelang, Boyolali, dan Klaten. Gunung Merapi telah mengalami erupsi sebanyak 68 kali, erupsi terakhir yang terbesar terjadi pada tanggal 26 Oktober 2010 (BNPB, 2011). Pada letusan terakhir Gunung Merapi memuntahkan

endapan material padat mulai yang berbentuk batu berukuran besar sampai dengan material pasir sejumlah 140 juta m³ (BBWS Serayu Opak,2011). Untuk mengantisipasi dan mengurangi terjadinya resiko bencana banjir lahar dingin maka perlu dilakukan tindakan pencegahan bencana, maka diperlukan penelitian tentang Perencanaan *Sand Pocket* pada Sungai Putih

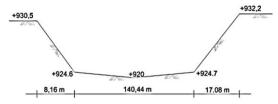
2. TINJAUAN PUSTAKA

Penelitian oleh Nur Efendi (2014), dengan judul *Studi Pengendalian Aliran Sedimen Sungai Hera Dengan Metode Sand Pocket.* Penelitian ini dilakukan di sungai hera, yang

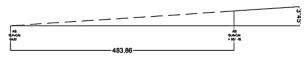
terletak di Distrik Hera, Timor Leste. Sungai ini memiliki luas DAS 61,68 km², dengan panjang 12,10 km dan lebar 137,97 m. sungai ini memiliki potensi sedimen yang cukup besar, sehingga berpotensi menyebabkan terjadinya pendangkalan di muara sungai dan akan mengancam kelangsungan fungsi dermaga Angkatan Laut yang ada di tempat itu. Berdasarkan hasil penelitian, diketahui debit maksimum yang terjadi pada sungai tersebut sebesar 325,544 m³/s. Maka dapat diketahui bahwa Sand Pocket direncanakan akan memiliki lebar pelimpah dengan dimensi 73m, dan akan mampu meredam laju sedimen dengan cukup baik. Dimana Sand Pocket tersebut memiliki efektifitas untuk meredam sedimen akibat erosi sebesar 20,35%, dan mapu meredam sedimen dasar hingga 66,65%.

Faris Rakhmat H (2010), dengan judul Peningkatan Kapasitas Kantong Lahar Kali Gondoruso Regovo Desa Kabupaten Lumajang. Kali Regoyo menerima material dari letusan Gunung Semeru dengan volume \pm 6 juta m³ atau hampir 10% dari total perkiraan material yang menjadi lahar sekunder. Untuk menghindari bencana yang diakibatkan oleh bahaya aliran lahar Gunung Semeru tersebut, dibuat bangunan pengendali sedimen yang antara lain Kantong Pasir Lahar. Dari hasil perhitungan diperoleh bahwa tinggi main dam 6,5 m, lebar mercu dam 4 m, kemiringan bagian hulu 1:0,9 dan kemiringan bagian hilir 1:0,2, lebar dasar peluap 100 m, elevasi muka air 1,524 m dan tinggi jagaan 1,2 m. tinggi sub dam 3,34 m, lebar mercu sub dam 3 m, kemiringan bagian hulu 1:0,9 dan kemiringan bagian hilir 1: 0,2, jarak main dam dan sub dam adalah 25 m dengan tebal lantai (apron) 1,5 m, volume sedimen statis = $910.560,345 \text{ m}^3$, volume sedimen dinamis = $1.204.847.909 \text{ m}^3$. volume sedimen yang harus diatur = 294.287,564 m³.

Penelitian oleh Adam Wijaya (2010). Gunung Semeru merupakan salah satu gunung berapi yang paling aktif di pulau jawa dengan ketinggian 3.676 m. Sebagai gunung yang masih aktif gunung semeru berpotensi mengeluarkan lahar panas dan lahar dingin dari hasil erupsinya. Besar volume sedimen dari gunung semeru berkisar 1.573.000 m³. Drempel kantong pasir adalah salah satu yang dilakukan dalam rangka usaha pengendalian aliran sedimen dan mengurangi suplai sedimen dengan menahan dan menampungnya, sehingga aliran sedimen tersebut tidak mengakibatkan pendangkalan pada daerah tengah dan hilir. Setelah debit puncak perencanaan (Q) sebesar 218,900 m³/s didapat dari perhitungan maka dapat direncanakan dimensi drempel. Dari hasil perhitungan diperoleh bahwa tinggi main dam 9 m, lebar mercu main dam 4 m, kemiringan hulu 1:0,9 dan kemiringan hilir 1: 0,2 jarak main dam dan sub dam (apron) 15 m, dengan tebal 1 m. besarnya kapasitas pengangkutan aliran sedimen didaerah pegunungan (debris flow) sebesar 6,912 m³/s, aliran lumpur (mud flow) sebesar 0,917 m³/s.


3. METODE PENELITIAN

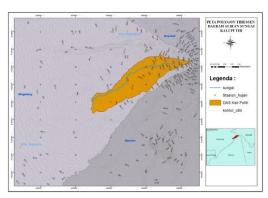
Pada penelitian ini bertujuan mengetahui kapasitas sand pocket yang direncanakan dalam menampung sedimen dan mengetahui stabilitas dari sand pocket tersebut. Tahap pertama adalah pengumpulan data yang dibutuhkan baik data primer maupun sekunder, pengambilan data primer dilakukan dengan survey langsung berupa pengambilan data geometri sungai dan propertis pengambilan sample sedangkan data sekunder yang berupa data hujan didapat dari BBWS Serayu Opak. Tahap kedua adalah analisis hidrologi, yaitu untuk menetukan debit banjir rancangan dengan metode Rasional yang digunakan untuk perencanaan sand pocket. Tahap ketiga adalah analisis hidrolika yaitu untuk menentukan dimensi dari sand pocket dihitung stabilitasnya. Kemudian dilakukan pembuatan kesimpulan.


4. HASIL DAN PEMBAHASAN

4.1 Analisis Data Geometri Sungai

Analisis ini dimaksudkan untuk mengetahui kemiringan dasar sungai dan elevasi penampang sungai putih pada lokasi *sand pocket*. Didapat kemiringan pada dasr sungai sebesar 6,5% dan elevasi dasar sungai sebesar +920 m, yang disajikan pada gambar berikut.

Gambar 4.1 Penampang Melintang Sungai


Gambar 4.2 Penampang Memanjang Sungai

4.2 Analisis Data Hidrologi

Analisis hidrologi digunkan untuk memperkirakan debit banjir rencana pada perencanaan sand pocket. Data yang digunakan untuk menentukan debit banjir rencana adalah data curah hujan antara tahun 1999-2015 diolah menjadi data curah hujan rencana, yang kemudian diolah kembali menjadi debit banjir rencana. Data curah hujan yang digunakan dalam perencanaan digunakan satu buah stasiun yang terdekat dari lokasi penelitian yaitu, Sta. Babadan.

4.2.1Penentuan Daerah Aliran Sungai

Dari peta topografi dengan skala 1:25000 yang diolah dengan aplikasi ArcGis didapat luas DAS Kali Putih sebesar 6,5 km².

Gambar 4.3 DAS Sungai Putih

4.2.2Analisis Frekuensi Curah Hujan Rencana

Berdasarkan curah hujan tahunan, perlu ditentukan kemungkinan terulangnya curah hujan jam-jaman maksimum tersebut untuk menentukan debit banjir rencana. Tidak semua variat dari variable hidrologi sama dengan nilai reratanya, tetapi ada yang lebih besar atau lebih kecil. Besarnya derajad sebaran variat di sekitar nilai reratanya disebut varian (*variance*) atau penyebaran (disperse). Penyebaran data dapat diukur dengan deviasi standard dan varian.

1. Pengukuran Dispersi

Untuk memudahkan perhitungan disperse maka dilakukan perhitungan parameter statistik untuk nilai (X_i-X) , $(X_i-X)^2$, $(X_i-X)^3$ dan $(X_i-X)^4$ terlebih dahulu, Hasil perhitungan parameter statistik dapat dilihat pada tabel berikut.

Tabel 4.1 Hasil Perhitungan Parameter Statistik

No	Curah o Tahun Hujan		(Xi-X)	(Xi-X) ²	(Xi-X) ³	(Xi-X) ⁴	
		(mm)					
1	1999	52,500	-16,9765	288,2006	-4892,6282	83059,559	
2	2000	58,000	-11,4765	131,7094	-1511,5588	17347,360	
3	2001	79,000	9,5235	90,6976	863,7614	8226,057	
4	2002	55,000	-14,4765	209,5682	-3033,8079	43918,831	
5	2003	51,000	-18,4765	341,3800	-6307,4969	116540,281	
6	2004	36,000	-33,4765	1120,6741	-37516,2130	1255910,400	
7	2005	44,600	-24,8765	618,8388	-15394,5249	382961,447	
8	2006	60,000	-9,4765	89,8035	-851,0202	8064,668	
9	2007	129,000	59,5235	3543,0506	210894,8738	12553207,226	
10	2008	75,000	5,5235	30,5094	168,5194	930,822	
11	2009	58,500	-10,9765	120,4829	-1322,4771	14516,131	
12	2010	48,500	-20,9765	440,0123	-9229,9055	193610,840	
13	2011	51,000	-18,4765	341,3800	-6307,4969	116540,281	
14	2012	62,000	-7,4765	55,8976	-417,9169	3124,543	
15	2013	83,000	13,5235	182,8858	2473,2621	33447,233	
16	2014	133,000	63,5235	4035,2388	256332,6099	16283152,084	
17	2015	105,000	35,5235	1261,9211	44827,8928	1592444,968	
jumlah		1181,100	0,000	12902,251	428775,873	32707002,730	
rata-rata (X)=		69,476					

a. Menghitung Standar Deviasi (S_x)

$$S_{x} = \sqrt{\frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{n-1}}$$

$$S_{x} = 28.397$$

 $S_x = 28,397$ b. Menghitung Koefisien *Skewness* (C_s)

$$C_{s} = \frac{n \sum_{i=1}^{n} (X_{i} - \bar{X})^{3}}{(n-1)(n-2)S_{x}^{3}}$$

$$C_{s} = 1,3058$$

c. Menghitung Koefisien
$$Kurtosis$$
 (C_k)

$$C_k = \frac{n^2 \sum_{i=1}^n (X_i - \bar{X})^4}{(n-1)(n-2)(n-3)S_\chi^4}$$

$$C_k = 4,3262$$
d. Menghitung Koefisien Variasi (C_v)

$$C_v = \frac{S_x}{\overline{X}}$$

$$C_v = 0.4087$$

2. Pemilihan jenis sebaran

Jenis distribusi hujan yang digunakan dalam penelitian ini adalah menggunakan distribusi hujan Log Pearson Tipe III.

3. Pengujian Kecocokan Sebaran

Pengujian kecocokan sebaran digunakan untuk menguji apakah sebaran dari data yang ada memenuhi syarat untuk digunakan sebagai data perencanaan. Pengujian kecocokan sebaran dengan metode Uji Chi-Kuadrat. Hasil perhitungan uji Chi-Kuadrat dapat dilihat pada tabel berikut ini.

Tabel 4.2 Hasil Perhitungan Uji Chi-Kuadrat

no	interval			Ef	Oi	(Ef-Oi)	((Ef-Oi)^2)/Ef
1	26,24308	<x<< td=""><td>44,7813</td><td>2,8333</td><td>2</td><td>0,8333</td><td>0,2450980</td></x<<>	44,7813	2,8333	2	0,8333	0,2450980
2	44,78132	<x<< td=""><td>54,0504</td><td>2,8333</td><td>4</td><td>-1,1667</td><td>0,4803922</td></x<<>	54,0504	2,8333	4	-1,1667	0,4803922
3	54,05044	<x<< td=""><td>63,3196</td><td>2,8333</td><td>5</td><td>-2,1667</td><td>1,6568627</td></x<<>	63,3196	2,8333	5	-2,1667	1,6568627
4	63,31956	<x<< td=""><td>72,5887</td><td>2,8333</td><td>0</td><td>2,8333</td><td>2,8333333</td></x<<>	72,5887	2,8333	0	2,8333	2,8333333
5	72,58868	<x<< td=""><td>81,8578</td><td>2,8333</td><td>3</td><td>-0,1667</td><td>0,0098039</td></x<<>	81,8578	2,8333	3	-0,1667	0,0098039
6		X>	81,8578	2,8333	3	-0,1667	0,0098039
	jumlah				17		5,0000

Dari tabel 4.5 diperoleh nilai Chi-Kuadrat $(X^2) = 5$ untuk DK = 3, dengan nilai Chi-Kuadrat didapat derajat kebebasan sebesar 2,366 (23,66%), karena derajat kebebasan lebih dari 5% maka distribusi Log Pearson III dapat diterima

4. Menghitung Curah Hujan Dengan Periode Ulang T Tahun

Menghitung curah hujan dengan periode ulang 50 tahun Dengan menggunakan persamaan Log Pearson III adalah sebagai berikut:

$$X_t = (\bar{X}_y + K_T x S_y)$$

a. Mencari Nilai Rerata (\bar{X}_{ν})

Perhitungan Nilai Rerata \bar{X}_y dapat dilihat pada tabel berikut ini.

Tabel 4.3 Perhitungan Nilai Rerata \overline{X}_v

No	Tahun	X	ln x	xi-lnx	(xi-lnx)2	(xi-lnx)3	(xi-lnx)4
1	1999	52,500	3,961	-0,213	0,045	-0,010	0,002
2	2000	58,000	4,060	-0,113	0,013	-0,001	0,000
3	2001	79,000	4,369	0,196	0,038	0,007	0,001
4	2002	55,000	4,007	-0,167	0,028	-0,005	0,001
5	2003	51,000	3,932	-0,242	0,059	-0,014	0,003
6	2004	36,000	3,584	-0,590	0,348	-0,206	0,121
7	2005	44,600	3,798	-0,376	0,141	-0,053	0,020
8	2006	60,000	4,094	-0,080	0,006	-0,001	0,000
9	2007	129,000	4,860	0,686	0,471	0,323	0,221
10	2008	75,000	4,317	0,144	0,021	0,003	0,000
11	2009	58,500	4,069	-0,105	0,011	-0,001	0,000
12	2010	48,500	3,882	-0,292	0,085	-0,025	0,007
13	2011	51,000	3,932	-0,242	0,059	-0,014	0,003
14	2012	62,000	4,127	-0,047	0,002	0,000	0,000
15	2013	83,000	4,419	0,245	0,060	0,015	0,004
16	2014	133,000	4,890	0,716	0,513	0,368	0,264
17	2015	105,000	4,654	0,480	0,231	0,111	0,053
	ju	mlah	70,955	0,000	2,131	0,497	0,702

$$\bar{X}_{y} = \frac{\sum \ln X}{n}$$

$$\bar{X}_y = 4,17385 \text{ mm}$$

b. Mencari Standar Deviasi (S_v)

$$S_y = \sqrt{\frac{\sum_{i=1}^{n} (\ln x - \bar{X})^2}{n-1}}$$

$$S_y = 0.36498$$

c. Menghitung Koefisien Skewness (C_s)

$$C_{s} = \frac{n \sum_{i=1}^{n} (\ln x - \bar{X})^{3}}{(n-1)(n-2)S_{x}^{3}}$$

$$C_{s} = 0.72361$$

d. Menghitung Faktor Frekuensi (K_T)

Faktor frekuensi merupakan fungsi dari probabilitas dan nilai C_S . Maka hasil perhitungan nilai (K_T) adalah sebagai berikut.

$$K_{50 \ tahun} = 2,6913$$

e. Mencari nilai logaritmik besarnya curah hujan dengan periode t (X_t)

Untuk T = 50 tahun adalah sebagai berikut:

$$X_{50} = (4,17385 + 2,6913 \times 0,36498)$$

 $X_{50} = 5,1561$

f. Menghitung Besarnya Curah Hujan Rancangan Pada Periode T Tahun

Menghitung hujan rancangan periode T tahun menggunakan anti logaritma seperti yang tersaji pada perhitungan dibawah ini: Untuk T = 50 tahun adalah sebagai berikut:

$$R_{50 tahun} = arc \ln 5,1561$$

 $R_{50 tahun} = 173,490 mm$

4.2.3 Analisis Debit Banjir Rencana

Analisis debit banjir rencana dihitung dengan menggunakan metode HSS nakayasu adalah sebagai berikut.

$$A = 6,47 \text{ km}^2$$
 $L = 5,6474 \text{ km}$
 $C = 0.75$

1. Menghitung waktu konsentrasi

$$t_c = \left(\frac{0.87 \times 5.65^2}{1000 \times 0.065}\right)^{0.385}$$

$$t_c = 0,72055 \, \text{jam}$$

2. Menghitung Intensitas Hujan (I)

$$I_{50 \, tahun} = \frac{173,490}{24} \times \left(\frac{24}{0,72055}\right)^{2/3}$$

 $I_{50 \ tahun} = 74,8327 \ \text{mm/jam}$

 Menghitung debit rencana metode Rasional (Q)

$$Q_{50 \ tahun} = \frac{1}{3,6} \ 0.75 \times \ 74,83278 \times 6.5$$

$$Q_{50 tahun} = 101,3361 \text{ m}^3/\text{det}$$

4.2.4Perencanaan Debris Rencana Untuk Sand Pocket

Debit banjir yang digunakan adalah gabungan antara massa air dan massa sedimen. Perhitungan debit banjirnya menggunakan persamaan sebagai berikut.

$$\begin{aligned} Q_d &= \alpha \, x \, Q \\ C_d &= \frac{\tan 3^\circ 45'}{[(1,25/1)-1](\tan 37^\circ - \tan 3^\circ 45')} \\ C_d &= 0,18037 \\ \alpha &= \frac{0,6}{0,6-0,18037} \\ \alpha &= 1,4298 \\ Q_d &= 1,4298 \, x \, 101,3361 \\ Q_d &= 144,8903 \, \text{m}^3/\text{det} \end{aligned}$$

4.3 Perencanaan Sand Pocket

4.3.1Tinggi Efektif Sand Pocket

Dalam menentukan tinggi pelimpah main dam yang efektif, tingginya harus berada dibawah tinggi tebing sungai agar ketika tampungan sedimen telah penuh, aliran air masih dapat ditampung oleh alur sungai. Adapun selisih antara elevasi dasar sungai dan tinggi tebing terendah pada lokasi yaitu: Beda tinggi dasar dan tebing sungai terendah = +932,2-+920

$$= +32.2 = +320$$
$$= 12.2 \text{m} \approx 8 \text{ m}$$

Sehingga diambil tinggi pelimpah (h_u)=8 m

4.3.2Lebar Peluap Main Dam

Untuk menghitung lebar peluap main dam digunakan persamaan sebagai berikut.

$$B_1=a.\sqrt{(Q_d)}$$

$$B_1=4 . \sqrt{(144,8903)}$$

 $B_1=48,148\approx 50 \text{ m}$

4.3.3Tinggi Limpasan di Atas Peluap

Debit yang mengalir di atas peluap dihitung berdasarkan persamaan sebagai berikut.

$$Q_d = \left(\frac{2}{15}\right) \cdot C_d \cdot \sqrt{2g} (3B_1 + 2(B_1 + 2.m.h_w)) h_w^{\frac{3}{2}}$$

Dari cara iterasi matematika didapat $h_{\rm w}=1,378~{\rm m}$ dibulatkan menjadi $1,5~{\rm m}$. maka nilai dari lebar air diatas peluap dapat dicari dengan persamaan berikut.

$$B_2 = (50 + 2x0,5 x1,5)$$

 $B_2 = 51,5 \text{ m} \approx 55 \text{ m}$

4.3.4Kedalaman Pondasi Main Dam

Untuk perhitungan kedalaman pondasi *main dam* digunakan persamaan sebagai berikut.

$$h_f = \left(\frac{1}{3}s/d\frac{1}{4}\right)x(8+1.5)$$

 $h_f = 2,375 \text{ m s/d } 3,1667 \text{ m}$

Kedalaman pondasi main dam diambil 3 m

4.3.5Tebal Kolam Olak

Tebal lantai terjun dihitung dengan persamaan berikut.

$$d = 0.1 (0.6 \times 8 + 3 \times 1.5 - 1)$$

 $d = 0.83 m \approx 1 m$

4.3.6Tinggi Sub Dam

Tinggi *sub dam* direncanakan menggunakan persamaan yang disajikan sebagai berikut.

$$h_{sd} = \left(\frac{1}{3}s/d\frac{1}{4}\right)x(8+3)$$

 $h_{sd} = 2,75 \text{ m s/d } 3,6667 \text{ m}$

Tinggi sub dam diambil 3,5m.

4.3.7Panjang Kolam Olak

Panjang lantai terjun dibatasi oleh jarak antara *main dam* dan *sub dam*, dimana rumus perhitungannya menggunakan rumus empiris sebagai berikut.

Apabila tinggi bendung utama < 15 m koefisien yang dipakai 2,0

$$L = (2,0) x((8+3+1,5) - 1)$$

 $L = 23 \text{ m}$

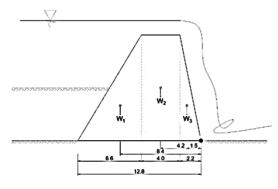
4.3.8Perencanaan Lubang Drainase

Lubang drainase pada *main dam* direncanakan berukuran 1,5 sampai 2 kali diameter butiran sedimen terbesar. Untuk memenuhi kebutuhan air dihilir *main dam* maka dibuat lubang drainase pada *main dam*. Adapun untuk perhitungan dimensi lubang drainase digunakan persamaan sebagai berikut

$$101,3361 = 0,75xAx\sqrt{2x9,81x4}$$

$$101,3361 = 6,6442 x A$$

$$A = 15,251 \text{ m}^2$$


Lubang direncanakan berbentuk persegi dengan lebar dan tinggi 2m

$$A = n x b x d$$

15,251 = $n x 2 x 2$
 $n = 3,81275 \approx 4 \text{ buah}$

Setelah didapatkan dimensi sand pocket melalui perhitungan diatas maka gambar perencanaan dapat dilihat pada gambar berikut ini.

4.4 Perhitungan Stabilitas Main Dam pada Sand Pocket

Bangunan pendukung stabilitas sand pocket seperti kolam olak dan sub dam tidak diperhitungkan apabila bangunan main dam sudah stabil menahan gaya-gaya yang bekerja. Gaya-gaya yang bekerja pada main dam sand pocket seperti berat sendiri bangunan dan tekanan air static.

Gambar 4.4.4 Panjang Lengan Gaya-Gaya Yang Bekerja Terhadap Titik Tinjau

Tabel 4.7 Rekap Perhitungan Momen Pada Main Dam Sand Pocket

Beban	Notasi	Gaya Vertikal (T/m)	Gaya Horizontal (T/m)	Lengan (m)	Momen Penahan(tm/ m)	Momen Pengguling (tm/m)
	W1	87,1200		8,4000	731,8080	
Berat sendiri	W2	105,6000		4,2000	443,5200	
	W3	29,0400		1,5000	43,5600	
Tekanan air statik	Pv	36,3000		2,2000	79,8600	
Tekanan air statik	Ph		60,5000	3,6667		221,8333
Jumlah Σ		258,0600	60,5000		1298,7480	221,8333

4.4.1.Stabilitas Terhadap Penggulingan

$$FK_{guling} = \frac{1298,748}{221,833} > 1,5$$

$$FK_{guling} = 5.85 > 1.5 \text{ OKE}$$

4.4.2. Stabilitas Terhadap Geser

Diketahui nilai kohesi tanah adalah 0, sudut geser dalam adalah 37°, berat isi sedimen 1,25 T/m³, dan tinggi edapan tetap sedimen (h_s) adalah 4 m.

$$\tau_{o} = c + \sigma \times \tan \varphi$$

$$\sigma = \gamma_{w} \times (H - h_{s}) + (\gamma_{s} - \gamma_{w}) \times h_{s}$$

$$\sigma = 1 \times (11 - 4) + (1,25 - 1) \times 4$$

$$\sigma = 6,5 \text{ T/m}^{2}$$

$$\tau_{o} = c + \sigma \times \tan \varphi$$

$$\tau_{o} = 0 + 6,5 \times \tan 37$$

$$\tau_{o} = 4,898 \text{ T/m}^{2}$$

$$FK_{geser} = \frac{0,7 \times 258,06 + 4,898 \times 12,8}{60,5} > 1,5$$

$$FK_{geser} = 4,022 > 1,5 \text{ OK}$$

4.4.3.Stabilitas Terhadap Daya Dukung Tanah Fondasi

1. Perhitungan ekentrisitas resultan gaya

$$e = \frac{b'}{2} - x$$

$$e = \frac{12,8}{2} - 4,1731$$

$$e = 2,226 \text{ m}$$

2. Tekanan tanah normal maksimum

$$\sigma_{1} = \frac{\sum V}{b'} \times \left[1 + \frac{6 \times e}{b'} \right]$$

$$\sigma_{1} = \frac{258,06}{12,8} \times \left[1 + \frac{6 \times 2,226}{12,8} \right]$$

$$\sigma_{1} = 41,206 \text{ T/m}^{2} < 100 \text{ T/m}^{2} \text{ OK}$$

3. Tekanan tanah normal minimum

$$\sigma_2 = \frac{\sum V}{b'} \times \left[1 - \frac{6 \times e}{b'} \right]$$

$$\sigma_2 = \frac{258,06}{12,8} \times \left[1 - \frac{6 \times 2,226}{12,8} \right]$$

$$\sigma_2 = -0,884 \text{ T/m}^2 < 100 \text{ T/m}^2 \text{ OK}$$

4.4.4.Stabilitas Tembok Tepi

Tinggi tembok tepi adalah 8 m, karena h > 3m maka tembok tepi dibuat 2 trap dengan pembagian masing masing trap adalah 4 m. Dengan asumsi desain trap 1 dan 2 sama maka dalam perhitungan stabilitas tembok tepi cukup dihitung satu trap saja. Berikut tabel rekapitulasi perhitungan stabilitas tembok tepi.

Tabel 4.8 Rekapitulasi Perhitungan Moment Tembok Tepi

			10	-		
Beban	Notasi	Gaya vertikal (t/m)	Gaya horizontal (t/m)	Lengan (m)	Momen penahan (tm/m)	Momen pengguling (tm/m)
Berat sendiri	Wg	6,240		1,194	7,452	
Berat tanah	Ws	3,500		1,333	4,667	
Tekanan tanah aktif	Pav	1,355		1,417	1,920	
	Pah		2,367	1,333		3,156
jumlah Σ		11,095	2,367		14,038	3,156

4.4.5. Stabilitas Terhadap Guling

$$FK_{guling} = \frac{\sum M_{VA}}{\sum M_{HA}} > 1.5$$

 $FK_{guling} = \frac{14,038}{3,156} > 1.5$
 $FK_{guling} = 4,448 > 1.5$ OK

4.4.6. Stabilitas Terhadap Geser

$$FK_{geser} = \frac{f \times \sum V + \tau_o \times t_b}{\sum H} > 1,5$$

$$FK_{geser} = \frac{0.7 \times 11,095 + 1,7535 \times 0,95}{2,367}$$

$$FK_{geser} = 3,985 > 1,5 \text{ OK}$$

4.4.7.Stabilitas Terhadap Daya Dukung Tanah Fondasi

1. Perhitungan ekentrisitas resultan gaya

$$e = \frac{t_b}{2} - x$$

$$e = \frac{0.95}{2} - 0.9808$$

$$e = -0.50587 \text{ m}$$

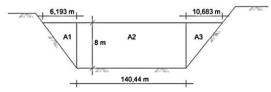
2. Tekanan tanah normal maksimum

$$\sigma_1 = \frac{\sum V}{t_h} \times \left[1 + \frac{6 \times e}{t_h} \right]$$

$$\sigma_1 = \frac{11,095}{0,95} \times \left[1 + \frac{6 \times -0,50587}{0,95} \right]$$

$$\sigma_1 = -25,6352 \text{ T/m}^2 < 100 \text{ T/m}^2$$

3. Tekanan tanah normal minimum

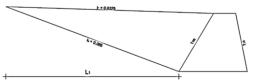

$$\begin{split} \sigma_2 &= \frac{\sum V}{t_b} \times \left[1 - \frac{6 \times e}{t_b} \right] \\ \sigma_2 &= \frac{11,095}{0.95} \times \left[1 - \frac{6 \times -0.50587}{0.95} \right] \\ \sigma_2 &= 48.9933 \text{ T/m}^2 < 100 \text{ T/m}^2 \end{split}$$

4.5 Perhitungan Daya Tampung Sand Pocket

Dalam perhitungan daya tampung sand pocket digunakan parameter-parameter sebagai berikut:

- 1. Kemiringan sungai asli
- 2. Kemiringan dasar sungai stabil
- 3. Tinggi efektif main dam
- 4. Sketsa potongan melintang dan memanjang sungai

Dari parameter-parameter tersebut dapat ditentukan besarnya volume sedimen yang dapat ditampung oleh sabo dam.



Gambar 4.5 Dimensi Penampang Melintang Sungai dan Sand Pocket

Gambar 4.5 Dimensi Penampang Melintang Sungai dan Sand Pocket

Menghitung luas penampang tampungan sedimen

$$\begin{array}{lll} A_1 \!\!=\! & 1/2 & x \; 8 \; x \; 6,1935 \!\!=\! 24,774 \; m^2 \\ A_2 \!\!=\! & 8 \; x \; 140,44 \!\!=\! 1123,52 \; m^2 \\ A_3 \!\!=\! & 1/2 & x \; 8 \; x \; 10,6833 \!\!=\! 42,733 \; m^2 \\ Luas \; total \; penampang \; (A) = 1191,027 \; m^2 \end{array}$$

Gambar 4.6 Penampang Memanjang Sungai

Mencari panjang L menggunakan persamaan sebagai berikut:

$$L_1 = \frac{h_u}{(I_o - I_1)}$$

$$L_1 = \frac{8}{(0,065 - 0,0325)}$$

$$L_1 = 246,154 \text{ m}$$

Dari perhitungan diatas besarnya tampungan sand pocket dapat dihitung dengan persamaan sebagai berikut.

$$V_s = A x L_1$$

 $V_s = 1191,027x 246,154$
 $V_s = 293.176,0602 \text{ m}^3$

5. SIMPULAN DAN SARAN

5.1 Simpulan

Berdasarkan analisis yang dilakukan dalam studi perencanaan sand pocket maka didapatkan hasil sebagai berikut:

- Luas daerah aliran sungai untuk perencanaan sand pocket adalah sebesar 6,5 km² dengan debit banjir air kala ulang 50 tahun sebesar 101,3361 m³/det dan debit air yang terkonsentrasi sedimen adalah sebesar 144,8903 m³/det.
- 2. Pada *sand pocket* tinggi *main dam* direncanakan 8 m dengan kedalaman pondasi 3 m, tinggi sub dam direncanakan 3,5 m dan panjang lantai terjun adalah 23 m. Dengan daya tampung sand pocket adalah sebesar 293.176,0602 m³.

5.2 Saran

Dengan memperhatikan penelitian maka didapatkan beberapa saran untuk memperbaiki dan menambah analisis penelitian sebagai berikut.

- 1. Perlu dilakukan penelitian tentang teknologi pengendalian sedimen selain dari *sand pocket* dan *sabo dam*.
- 2. Perlu dilakukan penelitian tentang jumlah biaya pembuatan dari sand pocket.

6. DAFTAR PUSTAKA

- Adam Wijaya. (2010). Studi Perencanaan Drempel Kantong
 Pasir Kali besuk Tunggeng Di Desa Klopo Sawit Kabupaten *Jurnal Universitas Muhammadiah Malang*.
- BBWS Serayu-Opak. (2015). Laporan Tahunan, Yogyakarta: BBWS Serayu-Opak.
- BNPB. (2011). Rencana Aksi Rehabilitasi dan Rekonstruksi Wilayah Pascabencana Erupsi Gunung Merapi di Provinsi D.I. Yogyakarta dan Jawa Tengah Tahun 2011-2013. Indonesia: Kementrian Negara Perencanaan Pembangunan Nasional/Badan Perencanaan Pembangunan Nasional.
- Faris Rakhmat H. (2010). Peningkatan Kapasitas Kantong Lahar Sungai Regoyo Desa Gondoruso Kabupaten Lumajang *Jurnal Perngairan Universitas Brawija*.
- Nur Efendi. (2014). Studi Pengendalian Aliran Sedimen Sungai Hera Menggunakan Sand Pocket. *Jurnal Universitas Hasanuddin*.
- Proyek Pengembangan dan Rekayasa SABO. (2000). Draft Manual Perencanaan Sabo. Departemen Permukiman dan Pengembangan Wilayah Direktorat Jenderal
- Standar Nasional Indonesia. (1991). Tata Cara Perencanaan Teknis Bendung Penahan Sedimen SNI 03 -2851 – 1991

- Standar Nasional Indonesia. (1991). Tata Cara Perhitungan debit banjir SNI 03 -2851 – 1991
- Triatmodjo, Bambang. (2008). *Hidrologi Terapan*, Universitas Gadjah Mada.
 Yogyakarta.