BAB IV

PERANCANGAN PABRIK

4.1 Lokasi Pabrik

Pemilihan lokasi pabrik didasarkan pada pertimbangan beberapa faktor yang memberikan keuntungan atas pendirian pabrik ini, baik dari sisi ekonomi maupun teknik. Berdasarkan faktor-faktor tersebut, pabrik direncanakan akan didirikan di Kawasan Industri Kota Gresik, Jawa Timur.

Gambar 4.1 Peta Lokasi Pabrik via Satelit Tahun 2018

Pemilihan lokasi ini didasarkan pada beberapa faktor, antara lain :

4.1.1. Kemudahan Transportasi

Daerah lokasi pabrik di Kawasan Industri Gresik merupakan daerah yang cukup mudah dijangkau oleh sarana transportasi dan

telekomunikasi karena dekat dengan pelabuhan Tanjung Perak, sarana jalan raya dan jalan tol yang memadai.

4.1.2. Pemasaran Produk

Dipilih lokasi pabrik di Kawasan Industri Gresik karena Jawa Timur merupakan salah satu daerah pusat industri besar di Indonesia. Pasar dalam negeri merupakan prioritas utama perusahaan karena keberadaan konsumen di sekitar diharapkan menguntungkan, sehingga biaya pengangkutan akan lebih murah dan hasil penjualan menjadi lebih maksimal. Beberapa industri di kawasan industri Gresik yang memanfaatkan produk Asam Format, diantaranya yaitu industri farmasi (PT. Salonpes, PT. Afi farma), industri tekstil (PT. Lotus Indah Tekstil, PT. Tristate, PT. Baktidoteks Prima), pabrik karet dan industri vulkanisir ban (PT. Radia Indolatex, PT. Madju Mandiri Perkasa), Industri kulit (Aneka usaha), industri makanan ternak (PT. Hadeka Feedmill, PT. Arta Citra Terpadu Feedmill), industri pembuatan minuman anggur dan bir (PT. Sumber Sari Mekar), industri elektroplating.

(Biro Pusat Statistik, 2017)

4.1.3. Ketersediaan Bahan Baku/Pembantu

Bahan baku yang digunakan pada proses pembuatan Asam Format ialah Metil Format dan air. Bahan baku berupa air diperoleh dari proses pengolahan di utilitas. Air yang diperoleh melalui utilitas ini akan melalui proses pengolahan secara fisika maupun kimiawi

guna mendapatkan kemurnian yang lebih tinggi. Selain itu, penyediaan bahan baku Metil Format yang didatangkan dari China dapat lebih ekonomis dengan letaknya yang cukup dekat dengan Pelabuhan Tanjung Perak.

4.1.4. Tenaga Kerja

Lokasi pabrik yang banyak akan jumlah tenaga kerja usia produktif yang belum bekerja dan banyaknya industri-industri baru yang dibangun di sekitar pendirian pabrik menjadikan daerah Gresik sebagai salah satu daerah tujuan para pencari kerja. Sehingga perusahaan dapat dengan mudah memperoleh buruh dan tenaga kerja yang terampil dan berkualitas demi kelangsungan pendirian pabrik.

4.1.5. Sumber Air

Air merupakan salah satu faktor yang penting untuk kelangsungan proses industri, khususnya di Industri Kimia. Beberapa jenis air dalam industri digunakan untuk beberapa kebutuhan sesuai fungsinya, seperti air untuk proses, air pendingin, air *steam* dan air rumah tangga. Kebutuhan air tersebut diambil dari sungai yang dekat dengan lokasi pabrik, yaitu Sungai Brantas yang letaknya melewati Kota Gresik.

4.1.6. Listrik

Kebutuhan listrik disuplai oleh PLN dan generator pabrik yang dibangun sendiri sebagai cadangan. Untuk memenuhi kebutuhan

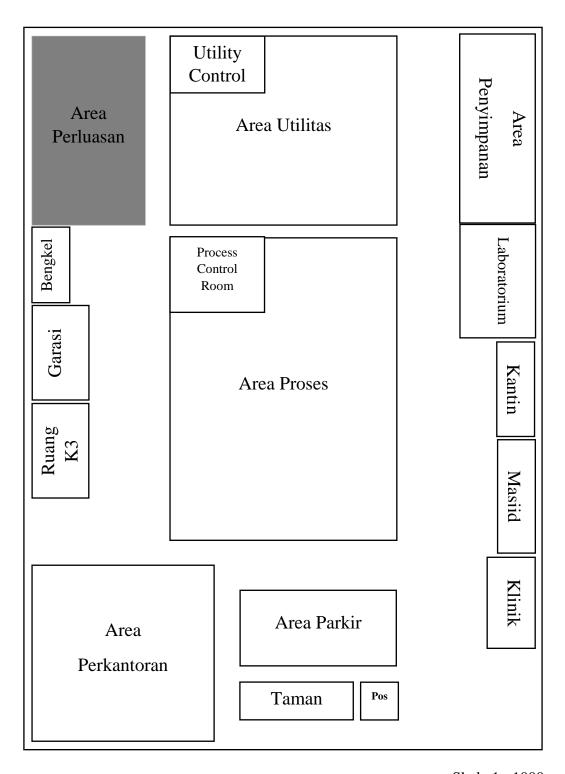
bahan bakar untuk generator yaitu solar yang diperoleh dari PT Pertamina.

4.1.7. Kondisi Iklim dan Geografis

Kabupaten Gresik adalah sebuah kabupaten di Provinsi Jawa Timur, Indonesia, memiliki luas 1.191,25 km². Kabupaten Gresik berbatasan dengan Kota Surabaya dan Selat Madura di sebelah timur, Kabupaten Lamongan di sebelah barat. Ditinjau dari keadaan iklim, Kabupaten Gresik tergolong daerah yang beriklim tropis.

4.2 Tata Letak Pabrik

Tata letak adalah keseluruhan tempat dari bagian perusahaan yang meliputi tempat alat proses, tempat pekerja/karyawan, tempat penyimpanan bahan dan produk, tempat utilitas dan lain-lain.


Beberapa faktor yang diperlukan dalam menentukan tata letak alat proses, diantaranya:

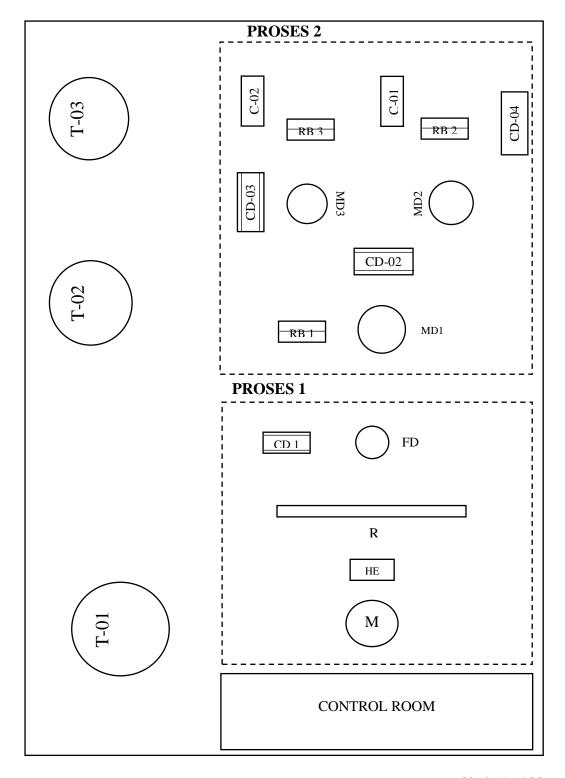
- Mendirikan Pabrik Asam Format di tanah kosong agar tidak mengganggu adanya bangunan lain.
- 2. Perluasan jalan pabrik yang cukup untuk kepentingan keamanan dan keselamatan manusia sehingga lalu lintas dalam pabrik tetap terjaga.
- 3. Penempatan area utilitas yang jauh dari alat proses untuk menghindari kontak langsung antara sumber panas dengan bahan bakar.
- 4. Penempatan fasilitas untuk karyawan seperti masjid dan kantin di area yang mudah untuk dijangkau agar tidak mengganggu proses pabrik.

Perkiraan luas bagian-bagian tempat dalam pabrik :

Tabel 4.1. Luas Bangunan Pabrik

No	Lokasi	P (m)	L(m)	Luas (m2)		
1	Kantor Utama	50	50	2500		
2	Pos Keamanan	10	10	400		
3	Rumah Dinas	40	20	800		
4	Pakir Utama	40	20	800		
5	Garasi Truck	25	15	375		
6	Poliklinik	20	15	300		
7	Masjid	30	10	300		
8	Kantin	30	10	300		
9	Bengkel	20	10	200		
10	Unit pemadaman kebakaran	25	15	375		
11	Gudang alat	30	15	450		
12	Laboratorium	30	20	600		
13	Area Utilitas	60	50	3000		
14	Area Proses	80	60	4800		
15	15 Control Room 25 20					
16	Control Utilitas	25	15	375		
17	Jalan	80	20	1600		
18	Taman	30	10	300		
19	Perluasan Pabrik	50	30	1500		
20	1000					
	20425					
	16025					
	36450					

Skala 1:1000


Gambar 4.2. Tata Letak Pabrik

4.3 Tata Letak Alat Proses

Beberapa faktor yang diperlukan dalam menentukan tata letak alat proses, diantaranya :

- Penempatan seluruh alat produksi diatur secara berurutan sesuai dengan alur proses kerja alat, sehingga diperoleh efisiensi teknis dan ekonomis.
 Selain itu untuk memberikan kelancaran dan keamanan bagi para tenaga kerja.
- Penempatan jarak yang cukup antara alat proses yang satu dengan yang lain, khususnya untuk alat proses yang beresiko tinggi. Hal ini ditujukan untuk memberikan kemudahan jika terjadi suatu kecelakaan, kebakaran dan sebagainya.
- 3. Tata letak alat harus memberikan area yang cukup untuk mempertimbangkan faktor perawatan (*maintenance*), penambahan maupun pembongkaran alat.
- Pencahayaan dan sirkulasi udara yang cukup untuk memberikan kenyamanan bagi para karyawan dan operator.

TATA LETAK ALAT PROSES

Skala 1:100

Gambar 4.3. Tata Letak Alat Proses

4.4 Utilitas

Utilitas atau unit pendukung proses adalah salah satu bagian untuk menunjang proses produksi di dalam pabrik. Utilitas yang diperlukan di pabrik asam format ini meliputi unit pengadaan air (air peoses, air pendingin, air rumah tangga, sanitasi dan air untuk boiler), unit pengadaan steam, unit pengadaan udara tekan, unit pengadaan listrik dan unit pengadaan bahan bakar.

1. Unit pengadaan air

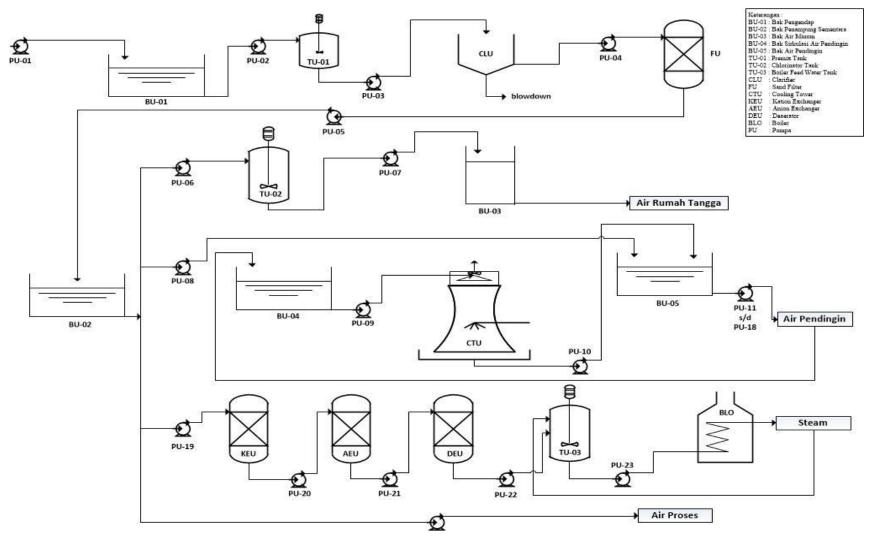
Mempunyai tugas untuk mengolah dan menyediakan air untuk memenuhi kebutuhan air sebagai berikut :

- a. Air proses
- b. Air pendingin
- c. Air umpan boiler
- d. Air rumah tangga/ air konsumsi dan sanitasi

2. Unit pengadaan steam

Mempunyai tugas untuk menyediakan kebutuhan *steam* sebagai pemanas reaktor dan *heat exchanger*

3. Unit pengadaan udara tekan


Mempunyai tugas menyediakan udara tekan guna memenuhi kebutuhan instrumentasi, penyediaan udara tekan di bengkel dan untuk kebutuhan umum yang lainnya.

4. Unit pengadaan listrik

Mempunyai tugas untuk menyediakan lisrik sebagai tenaga penggerak peralatan-peralatan proses, perlatan elektronik aatu AC, keperluan pengolahan air dan unuk penerangan. Listrik diambil langsung dari PLN dan dari generator sebagai cadangan jika listrik dari PLN mengalami gangguan.

5. Unit pengadaan bahan bakar

Mempunyai tugas untuk menyediakan bahan bakar untuk kebutuhan generator dan boiler.

Gambar 4.4. Diagram Proses Utilitas

4.4.1 Unit Pengadaan Air

a. Kebutuhan air pendingin

Tabel 4.2. Kebutuhan air pendingin

No.	Alat yang memerlukan	Kode	Jumlah Kebutuhan	
			(kg/jam)	
1	Cooler	C-01	1615,3815	
2	Cooler	C-02	6260,0936	
5	Kondenser	CD-01	19865,3557	
6	Kondenser	CD-02	70299,5823	
7	Kondenser	CD-03	51179,2048	
8	Kondenser	CD-04	144412,0974	
·			293631,7154	

Air yang keluar dari alat-alat pendingin di atas akan melalui proses pendinginan kembali di dalam *cooling tower* untuk diolah agar dapat digunakan kembali untuk proses produksi. Dianggap 20% dari jumlah air pendingin hilang. Sehingga jumlah air yang harus diolah sebanyak :

20% x 293.631,7154 kg/jam =58726,3431 kg/jam

Maka, jumlah air pendingin yang kembali dan harus diolah di dalam cooling tower sebesar :

80% x 293.631,7154 kg/jam = 234905,3723 kg/jam

b. Kebutuhan Air Proses

Tabel 4.3. Kebutuhan air proses

No.	Alat	Kode	Jumlah Kebutuhan (kg/jam)
1	Mixer	M-01	731,6565
			731,6565

c. Kebutuhan Air Steam

Tabel 4.4. Kebutuhan air untuk steam

No.	Alat	Kode	Jumlah Kebutuhan
			(kg/jam)
1	Heater	HE	183,2905
2	Reboiler	RB-01	1707,2324
3	Reboiler	RB-02	266,1605
4	Reboiler	RB-03	2208,0618
			4364.7452

Kondensat dari steam di atas akan menuju ke boiler untuk diolah kembali menjadi steam. Dianggap sebanyak 20% dari total steam tersebut hilang, sehingga jumlah steam yang harus dibangkitkan kembali sebanyak :

Maka, besarnya kondensat untuk sirkulasi sebanyak :

$$80\% \times 4.364,7452 \text{ kg/jam} = 3.491,7961 \text{ kg/jam}$$

d. Kebutuhan Air untuk Umum

Air untuk keperluan rumah tangga

Asumsi: - kebutuhan per orang = 25 kg/hari

- juml.karyawan dan keluarga = 1200 orang

Maka : total kebutuhan rumah tangga = 1250 kg/jam

Air untuk kebutuhan lain-lain

Asumsi: 1000 kg/jam

Maka,

Total kebutuhan air untuk umum = 1250 + 1000 = 2250 kg/jam

Tabel 4.5. Total kebutuhan air yang harus diolah

No	Kebutuhan	Jumlah	
140	Kebutunan	kg/jam	
1	Air Pendingin	58726,3431	
2	Air Proses	731,6565	
3	Air untuk Steam	872,9490	
4	Kebutuhan Umum	2250,0000	
5	Over Design 5 % Total	3293,7341	
		65874,6828	

Dalam unit pengadaan air, air yang digunakan adalah air sungai yang diperoleh dari Sungai Brantas yang tidak jauh dari lokasi pabrik. Untuk menghindari adanya *fouling* yang terjadi pada alat-alat penukar panas maka diperlukan proses pengolahan air sungai. Pengolahan air sungai ini dilakukan secara fisika dan kimia

4.4.2 Unit Pengolahan Air

Tahap-tahap pengolahan air sungai sebagai berikut :

1. Penyaringan

Tahap ini merupakan tahap awal dalam pengolahan air.

Air yang diambil akan melewati alat penyaring dengan tujuan menyaring kotoran yang berukuran besar agar tidak terbawa ke proses selanjutnya.

2. Pengendapan Secara Fisis

Air yang telah melalui proses penyaringan, kemudian dialirkan ke bak pengendap awal (BU-01). Bak ini berfungsi

untuk mengatur aliran masuk sehingga sesuai dengan kebutuhan pabrik, selain itu ban pengendap awal akan mengendapkan kotoran-kotoran yang diakibatkan oleh gaya gravitasi. Waktu tinggal dalam bak ini adalah 12 jam (Powell, ST hal 14).

3. Pengendapan Secara Kimia

Tahap ini dilanjutkan ke sebuah tangki yang disebut dengan Premix Tank (TU-01). Premix Tank ini berfungsi untuk mencampur air dengan bahan-bahan seperti tawas 5% dan CaOH 5% dengan waktu tinggal selama 5 menit. Tahap dilanjutkan menuju Clarifier (CLU) untuk mengendapkan flok-flok yang terbentuk akibat penambahan tawas dan CaOH. Waktu tinggal dalam *Clarifier* ini yaitu selama 4 jam. (Powell, St hal 47). Kotoran-kotoran yang telah mengendap akan berada di blow down/bagian bawah CLU, sedangkan air yang keluar dari atas akan mengalir menuju Sand Filter (FU). Bak ini merupakan bak saringan pasir untuk menyaring sisa-sisa kotoran dalam air yang masih berukuran kecil dan tidak dapat mengendap di Clarifier. Air yang telah melalui proses di dalam Sand Filter dialirkan menuju Bak Penampung Sementara (BU-02). Bak penampung ini dapat digunakan langsung untuk kebutuhan bahan baku proses produksi dan pendingin.

4. Pengolahan Air Untuk Perumahan dan Perkantoran

Tahap ini merupakan tahap untuk mengolah air yang digunakan untuk kebutuhan sehari-hari. Seperti untuk kebutuhan rumah tangga dan perkantoran. Air yang sebelumnya disaring dalam *Sand Filter* dan kemudian masuk ke Bak Penampung Sementara (BU-02), harus melalui proses kembali menuju Tangki *Klorinator* (TU-02). Tangki ini berfungsi untuk mencampur klorin dalam bentuk kaporit ke dalam air agar tidak terdapat banyak kuman sebelum ditampung ke dalam Bak Distribusi (BU-03).

5. Pengolahan Air Untuk Umpan Boiler

Tahap ini terdiri dari beberapa proses dan beberapa alat proses, diantaranya :

e. Proses Demineralisasi Air

Proses ini merupakan proses penghilangan kadar-kadar mineral yang terkandung dalam air, seperti Ca^{++} , Mg^{2+} , Cl^- dan lain-lain dengan menggunakan resin.

Air dari Bak Penampung (BU-02) sebelumnya digunakan untuk umpan boiler. Proses ini dilanjutkan dengan mengalirkan air dari BU-02 menuju proses pengikatan ion-ion positif yang terlarut dalam air, yang terjadi di dalam *Kation Exchanger (KEU)*. Kemudian

diikuti dengan proses pengikatan ion-ion negatif dalam Anion Exchanger (AEU).

f. Proses Deaerasi

Proses Deaerasi merupakan proses penghilangan kandungan gas yang kemungkinan masih terdapat dalam air setelah proses demineralisasi. Kandungan gas tersebut dapat berupa CO₂ dan O₂. Penghilangan kandungan gas tersebut dilakukan untuk menghindari sifat korosi pada air.

6. Pengolahan Air Untuk Pendingin

Air pendingin yang akan digunakan berasal dari air pendingin yang telah digunakan dalam pabrik kemudian didinginkan dengan *cooling tower*.

4.4.3 Unit Penyediaan Steam

Tahap ini diperlukan untuk memenuhi kebutuhan *steam* pada proses produksi. *Steam* yang diproduksi pada pabrik Asam Format ini digunakan sebagai media pemanas *heater* dan reboiler. *Steam* yang dihasilkan dari satu buah boiler ini adalah 200°C dan tekanan 6 atm.

Jumlah *steam* yang dibutuhkan sebesar 4.364,7452 kg/jam, namum untuk menjaga terjadinya kebocoran *steam* pada boiler

maka *steam* dilebihkan sebanyak 20% sehingga menjadi 5612,1467 kg/jam.

4.4.4 Unit Penyediaan Listrik

Pabrik asam format membutuhkan tenaga listrik yang dipenuhi langsung oleh PLN dan generator pabrik sebagai cadangan, dengan tujuan pasokan tenaga listik dapat tersalurkan secara kontinyu meskipun ada gangguan pasokan dari PLN.

Kebutuhan listrik yang digunakan di pabrik terdiri dari :

- 1. Listrik untuk keperluan proses dan utilitas
- 2. Listrik untuk AC
- 3. Listrik untuk penerangan
- 4. Listrik untuk alat-alat elektronik
- 5. Listrik untuk instrumentasi dan laboratorium

Besarnya kebutuhan listrik masing-masing keperluan di ats dapat diperkirakan sebagai berikut :

Tabel 4.6. Kebutuhan Listrik Alat Proses

No.	Alat yang	Kode	e Jumlah	Power (Hp)	
140.	memerlukan	Koue		@	Total
1	Mixer	M	1	13	13
2	Pompa	P-01	1	1	1
3	Pompa	P-02	1	0,5	0,5
4	Pompa	P-03	1	0,5	0,5
5	Pompa	P-04	1	0,5	0,5

Lanjutan **Tabel 4.6** ...

6	Pompa	P-05	1	3,5	3,5
7	Pompa	P-06	1	1	1
8	Pompa	P-07	1	0,5	0,5
9	Pompa	P-08	1	0,5	0,5
10	Pompa	P-09	1	0,5	0,5
11	Pompa	P-10	1	0,5	0,5
12	Pompa	P-11	1	0,5	0,5
13	Pompa	P-12	1	0,5	0,5
14	Pompa	P-13	1	0,5	0,5
15	Pompa	P-14	1	0,5	0,5
Total					10,5
Total					17,53 kW

Tabel 4.7. Kebutuhan Listrik Alat Utilitas

No.	Alat yang	Wodo	Kode Jumlah	Power (Hp)	
110.	memerlukan	Koue		@	Total
1	Premix Tank	TU-01	1	4,0	4,0
2	Clarifier	CLU	1	2,5	2,5
3	Tangki Klorinator	TU-02	1	0,5	0,5
4	Cooling Tower (Fan)	CTU	1	6,0	6,0
5	Blower	BWU	1	93,0	93,0
6	Kompresor Udara	KU	1	3,5	3,5
7	Pompa	PU-01	1	26,0	26,0
8	Pompa	PU-02	1	1,5	1,5
9	Pompa	PU-03	1	2,0	2,0
10	Pompa	PU-04	1	2,0	2,0
11	Pompa	PU-05	1	1,0	1,0
12	Pompa	PU-06	1	0,5	0,5
13	Pompa	PU-07	1	1,5	1,5
14	Pompa	PU-08	1	0,5	0,5
15	Pompa	PU-09	1	4,5	4,5
16	Pompa	PU-10	1	0,5	0,5
17	Pompa	PU-11	1	0,5	0,5
18	Pompa	PU-12	1	0,5	0,5
19	Pompa	PU-13	1	1,5	1,5
20	Pompa	PU-14	1	1,5	1,5
21	Pompa	PU-15	1	2,0	2,0
22	Pompa	PU-16	1	3,0	3,0
23	Pompa	PU-17	1	3,0	3,0
24	Pompa	PU-18	1	0,5	0,5
25	Pompa	PU-19	1	0,5	0,5
26	Pompa	PU-20	1	0,5	0,5
27	Pompa	PU-21	1	0,5	0,5
28	Pompa	PU-22	1	1,0	1,0
	Total 164,5				

Tabel 4.8. Perkiraan Total Kebutuhan Listrik

No	Keperluan	Kebutuhan (Kw)
1	Kebutuhan Plant	
	Proses	17,53
	Utilitas	122,72
2	Listrik AC	15
	Listrik Penerangan	100
3	Laboratorium dan Bengkel	30
4	Instrumentasi	10
	Total	295,248

4.4.5 Unit Pengadaan Bahan Bakar

Bertugas untuk memenuhi kebutuhan bahan bakar generator dan boiler. Jenis bahan bakar yang digunakan yaitu IDO (*Industrial Diesel Oil*). Bahan bakar ini diperoleh dari Pertamina dan distributornya. Beberapa alasan pemilihan IDO sebagai bahan bakar pabrik ialah:

- 1. Lebih ekonomis
- 2. Mudah diperoleh
- 3. Mudah dalam penyimpanan

4.4.6 Unit Penyedia Udara Tekan

Perancangan pabrik asam format ini membutuhkan adanya unit pengadaan udara tekan. Unit ini memiliki tugas dalam menyediakan udara tekan untuk memenuhi kebutuhan instrumentasi *pneumatic*, penyediaan udara tekan di bengkel dan

untuk kebutuhan umum lainnya. Besarnya kebutuhan udara tekan untuk alat instrumentasi dan kontrol adalah sebesar 46,728 m³/jam.

4.4.7 Spesifikasi Alat-Alat Utilitas

4.4.7.1 Alat Pengolahan Air

1. Bak Pengendap Awal (BU-01)

Fungsi : mengendapkan kotoran dan lumpur yang

terbawa air sungai.

Jenis : Bak persegi dari beton

Kapasitas : 62,326 m³/jam

Waktu tinggal : 12 jam

Dimensi : t = 4,539 m; l = 9,077 m; p = 18,154 m

Harga : \$ 16.623

2. Premix Tank (TU-01)

Fungsi : mencampur air dengan tawas 5% dan

CaOH 5%

Jenis : tangki silinder berpengaduk

Kapasitas : $51,931 \text{ m}^3/\text{jam}$

Waktu tinggal : 5 menit

Dimensi

• Volume : 5.2 m³

• Diameter : 1,878 m

• Tinggi : 1,878 m

Pengaduk

• Jenis : Marine Propeller 4 baffle

• Power : 4 hp

Harga : \$ 17.346

3. Clarifier (CLU)

Fungsi : mengendapkan flok-flok yang terbentuk

akibat pencampuran air dengan tawas dan

CaOH di premix tank.

Jenis : circular clarifier

Kapasitas : 51,931 m³/jam

Waktu tinggal : 4 jam

Dimensi

• Volume : 249,267 m³

• Diameter : 8,314 m

• Tinggi : 4,8 m

Pengaduk

• Jenis : Marine Propeller 4 baffle

• Power : 2,5 hp

Harga : \$ 112.156

4. Sand Filter (SU)

Fungsi : menyaring sisa-sisa kotoran dalam

air yang masih berukuran sangat

kecil dan tidak mengendap saat di

dalam clarifier.

Jenis : Bak persegi dari beton

Kapasitas : $62,307 \text{ m}^3/\text{jam}$

Waktu tinggal : 0,5 jam

Dimensi

• Jumlah tumpukan : 4 buah

• Luas tampang kolom: 12,744 m²

• Diameter : 4,029 m

• Tinggi tumpukan : 2,444 m

Harga : \$ 4.735

5. Bak Penampung Sementara (BU-02)

Fungsi : menyimpan sementara raw water stelah

disaring.

Jenis : Bak persegi dari beton

Kapasitas : 62,307 m³/jam

Waktu tinggal : 0,5 jam

Dimensi : t = 1,249 m; l = 4,995 m; p = 4,995 m

Harga : \$ 680

6. Tangki Klorinator (TU-02)

Fungsi : mencampur air dengan klorin dalam

bentuk kaporit

Jenis : tangki silinder berpengaduk

Kapasitas : 2,7 m³/jam

Waktu tinggal : 15 menit

Dimensi

• Volume : $0,675 \text{ m}^3$

• Diameter : 0,831 m

• Tinggi : 1,246 m

Pengaduk

• Jenis : Marine Propeller 4 baffle

• Power : 0,5 hp

Harga : \$ 6.932

7. Bak Distribusi (BU-03)

Fungsi : menyimpan sementara air sebelum

didistribusi kan untuk air minum, rumah

tangga, kantor dan umum.

Jenis : Bak persegi dari betonl

Kapasitas : $2.7 \text{ m}^3/\text{jam}$

Waktu tinggal : 0,5 jam

Dimensi : t = 3,780 m; l = 1,890 m; p = 1,890 m

Harga : \$ 215

8. Bak Sirkulasi Air Pendingin (BU-04)

Fungsi : menyimpan sementara air pendingin yang

akan di sirkulasi sebelum direcovery di

Cooling Water.

Jenis : Bak persegi dari beton

Kapasitas : $217,966 \text{ m}^3/\text{jam}$

Waktu tinggal : 0,5 jam

Dimensi : t = 1,896 m; l = 7,582 m; p = 7,582 m

Harga : \$ 3.105

9. Cooling Tower (CTU)

Fungsi : me-recovery air pendingin sirkulasi dari

suhu 40°C menjadi 30°C

Jenis : Induced draft cooling water dengan bahan

isian berl saddle.

Kapasitas : $217,966 \text{ m}^3/\text{jam}$

Diameter : 3,694 m

Power : 6 hp

Harga : \$ 92.523

10. Bak Air Pendingin (BU-05)

Fungsi : menyimpan sementara air pendingin

sebelum digunakan pabrik

Jenis : Bak persegi dari beton

Kapasitas : $272,458 \text{ m}^3/\text{jam}$

Waktu tinggal : 1 jam

Dimensi : t = 2,573 m; l = 10,291 m; p = 10,291 m

Harga : \$ 5.880

11. Kation Exchanger (KEU)

Fungsi : menghilangkan kation mineral dalam air

sebelum diumpankan ke boiler.

Jenis : Dwon Flow Kation Exchanger

Kapasitas : 1.122 m³/jam

Waktu : 24 jam

Dimensi

• Diameter : 0,409 m

• Tinggi : 1,746 m

Harga : \$ 1.203

12. Anion Exchanger (AEU)

Fungsi : menghilangkan anion mineral dalam air

sebelum diumpankan ke boiler.

Jenis : Dwon Flow Anion Exchanger

Kapasitas : 1.122 m³/jam

Waktu : 24 jam

Dimensi

• Diameter : 0,342 m

• Tinggi : 1,746 m

Harga : \$ 890

13. Deaerator (DEU)

Fungsi : menghilangkan kandungan gas dalam air,

terutama O₂, CO₂, NH₃ dan H₂S.

Jenis : Dwon Flow Anion Exchanger

Kapasitas : 1.122 m³/jam

Waktu : 24 jam

Dimensi

• Diameter : 0,342 m

• Tinggi : 1,746 m

Harga : \$ 2.227

14. PU-01

Fungsi : Memompa air sungai ke bak penampung

awal (BU-01)

Jenis : Single stage centrifugal pump

Spesifikasi pipa :

• NPS : 4 in

• Sch.N : 40

• ID : 4,046 in

• OD : 4,5 in

Total Head : 41,886 m

Motor penggerak: 13 hp

Bahan : Carbon steel

Harga : \$ 10.530

15. PU-02

Fungsi : Memompa air dari BU-01 ke *Premix Tank*

Jenis : Single stage centrifugal pump

Spesifikasi pipa :

• NPS : 4 in

• Sch.N : 40

• ID : 4,046 in

• OD : 4,5 in

Total Head : 3,036 m

Motor penggerak: 1,5 hp

Bahan : Carbon steel

Harga : \$ 10.530

16. PU-03

Fungsi : Memompa umpan dari Premix Tank ke

Clarifier (CLU)

Jenis : Single stage centrifugal pump

Spesifikasi pipa :

• NPS : 4 in

• Sch.N : 40

• ID: 4,046 in

• OD : 4,5 in

Total Head : 2,864 m

Motor penggerak: 2 hp

Bahan : Carbon steel

Harga : \$ 10.530

17. PU-04

Fungsi : Memompa air dari Clarifier ke Sand Filter

Jenis : Single stage centrifugal pump

Spesifikasi pipa :

• NPS : 4 in

• Sch.N : 40

• ID : 4,046 in

• OD : 4,5 in

Total Head : 4,591 m

Motor penggerak: 2 hp

Bahan : Carbon steel

Harga : \$ 10.530

18. PU-05

Fungsi : Memompa air dari *Sand Filter* ke bak

Penampung sementara (BU-02)

Jenis : Single stage centrifugal pump

Spesifikasi pipa :

• NPS : 4 in

• Sch.N : 40

• ID : 4,046 in

• OD : 4,5 in

Total Head : 1,991 m

Motor penggerak: 1 hp

Bahan : Carbon steel

Harga : \$ 10.530

19. PU-06

Fungsi : Memompa air dari BU-02 ke Tangki

Klorinator (TU-02)

Jenis : Single stage centrifugal pump

Spesifikasi pipa :

• NPS : 0,75 in

• Sch.N : 40

• ID : 0,824 in

• OD : 1,05 in

Total Head : 4,565 m

Motor penggerak: 0,5 hp

Bahan : Carbon steel

Harga : \$ 6.181

20. PU-07

Fungsi : Memompa air dari TU-02 ke Bak Air

Distribusi (BU-03)

Jenis : Multi stage centrifugal pump

Spesifikasi pipa :

• NPS : 0,75 in

• Sch.N : 40

• ID : 0,824 in

• OD : 1,05 in

Total Head : 10,069 m

Motor penggerak: 0,5 hp

Bahan : Carbon steel

Harga : \$ 10.530

21. PU-08

Fungsi : Memompa air dari BU-02 ke Bak Air

Pendingin (BU-05)

Jenis : Single stage centrifugal pump

Spesifikasi pipa :

• NPS : 4 in

• Sch.N : 40

• ID : 4,046 in

• OD : 4,5 in

Total Head : 4,451 m

Motor penggerak: 1,5 hp

Bahan : Carbon steel

Harga : \$ 6.181

22. PU-09

Fungsi : Memompa umpan dari Bak Sirkulasi

Air Pendingin (BU-04) ke cooling water

Jenis : Single stage centrifugal pump

Spesifikasi pipa :

• NPS : 8 in

• Sch.N : 40

• ID : 7,981 in

• OD : 8,625 in

Total Head : 3,615 m

Motor penggerak: 4,5 hp

Bahan : Carbon steel

Harga : \$ 24.951

23. PU-10

Fungsi : Memompa air dari cooling tower ke BU-

05

Jenis : Single stage centrifugal pump

Spesifikasi pipa :

• NPS : 8 in

• Sch.N : 40

• ID : 7,981 in

• OD : 8,625 in

Total Head : 3,734 m

Motor penggerak: 4,5 hp

Bahan : Carbon steel

Harga : \$ 3.891

24. PU-11

Fungsi : Memompa air pendingin dari BU-05 ke

Cooler (C-01) dan kembali lagi ke BU-04

Jenis : Multi stage centrifugal pump

Spesifikasi pipa :

• NPS : 0,375 in

• Sch.N : 40

• ID : 0,493 in

• OD : 0,675 in

Total Head : 16,771 m

Motor penggerak: 0,5 hp

Bahan : Carbon steel

Harga : \$ 5.841

25. PU-12

Fungsi : Memompa air pendingin dari BU-05 ke

Cooler (C-02) dan kembali lagi ke BU-04

Jenis : Multi stage centrifugal pump

Spesifikasi pipa :

• NPS : 0,75 in

• Sch.N : 40

• ID : 0,824 in

• OD : 1,05 in

Total Head : 9,907 m

Motor penggerak: 0,5 hp

Bahan : Carbon steel

Harga : \$ 6.181

26. PU-13

Fungsi : Memompa air pendingin dari BU-05 ke

Cooler (C-03) dan kembali lagi ke BU-04

Jenis : Multi stage centrifugal pump

Spesifikasi pipa :

• NPS : 0,75 in

• Sch.N : 40

• ID : 0,824 in

• OD : 1,05 in

Total Head : 23,671 m

Motor penggerak: 0,5 hp

Bahan : Carbon steel

Harga : \$ 6.181

27. PU-14

Fungsi : Memompa air pendingin dari BU-05 ke

Cooler (C-04) dan kembali lagi ke BU-04

Jenis : Multi stage centrifugal pump

Spesifikasi pipa :

• NPS : 1 in

• Sch.N : 40

• ID : 1,049 in

• OD : 1,32 in

Total Head : 36,680 m

Motor penggerak: 1,5 hp

Bahan : Carbon steel

Harga : \$ 7.554

28. PU-15

Fungsi : Memompa air pendingin dari BU-05 ke

Kondensor (CD-01) dan kembali lagi ke

BU-04

Jenis : Single stage centrifugal pump

Spesifikasi pipa :

NPS : 2,5 in

• Sch.N : 40

• ID : 2,469 in

• OD : 2,88 in

Total Head : 9,898 m

Motor penggerak: 1,5 hp

Bahan : Carbon steel

Harga : \$ 8.575

29. PU-16

Fungsi : Memompa air pendingin dari BU-05 ke

Kondensor (CD-02) dan kembali lagi ke

BU-04

Jenis : Single stage centrifugal pump

Spesifikasi pipa :

• NPS : 6 in

• Sch.N : 40

• ID : 6,065 in

• OD : 6,625 in

Total Head : 3,396 m

Motor penggerak: 2 hp

Bahan : Carbon steel

Harga : \$ 17.397

30. PU-17

Fungsi : Memompa air pendingin dari BU-05 ke

Kondensor (CD-03) dan kembali lagi ke

BU-04

Jenis : Single stage centrifugal pump

Spesifikasi pipa :

• NPS : 4 in

• Sch.N : 40

• ID : 4,026 in

• OD : 4,5 in

Total Head : 7,457 m

Motor penggerak: 3 hp

Bahan : Carbon steel

Harga : \$ 10.530

31. PU-18

Fungsi : Memompa air pendingin dari BU-05 ke

Kondensor (CD-04) dan kembali lagi ke

BU-04

Jenis : Single stage centrifugal pump

Spesifikasi pipa :

• NPS : 4 in

• Sch.N : 40

• ID : 4,026 in

• OD : 4,5 in

Total Head : 7,433 m

Motor penggerak: 3 hp

Bahan : Carbon steel

Harga : \$ 10.530

32. PU-19

Fungsi : Memompa air dari BU-02 ke *Kation*

Exchanger (KEU)

Jenis : Single stage centrifugal pump

Spesifikasi pipa :

• NPS : 0,75 in

• Sch.N : 40

• ID : 0,824 in

• OD : 1,05 in

Total Head : 2,434 m

Motor penggerak: 0,5 hp

Bahan : Carbon steel

Harga : \$ 6.181

33. PU-20

Fungsi : Memompa air dari Kation Echanger

(KEU) ke *Anion Exchanger* (AEU)

Jenis : Multi stage centrifugal pump

Spesifikasi pipa :

• NPS : 0,75 in

• Sch.N : 40

• ID : 0,824 in

• OD : 1,05 in

Total Head : 1,389 m

Motor penggerak: 0,5 hp

Bahan : Carbon steel

Harga : \$ 6.181

34. PU-21

Fungsi : Memompa air dari AEU ke *deaerator*

Jenis : Single stage centrifugal pump

Spesifikasi pipa :

• NPS : 0,75 in

• Sch.N : 40

• ID : 0,824 in

• OD : 1,05 in

Total Head : 5,577 m

Motor penggerak: 0,5 hp

Bahan : Carbon steel

Harga : \$ 6.181

35. PU-22

Fungsi : Memompa air dari deaerator ke Boiler

Feed Water Tank (TU-03)

Jenis : Single stage centrifugal pump

Spesifikasi pipa :

NPS : 1 in

• Sch.N : 40

• ID : 1,049 in

• OD : 1,315 in

Total Head : 1,778 m

Motor penggerak: 0,5 hp

Bahan : Carbon steel

Harga : \$ 7.554

36. PU-23

Fungsi : Memompa air dari *Boiler Feed Water*

Tank (TU-03) ke boiler

Jenis : Multi stage centrifugal pump

Spesifikasi pipa :

• NPS : 1 in

• Sch.N : 40

• ID : 1,049 in

• OD : 1,315 in

Total Head : 26,852 m

Motor penggerak: 1 hp

Bahan : Carbon steel

Harga : \$ 7.554

4.4.7.2 Alat Pengolahan Steam

Spesifikasi boiler untuk pengolahan steam adalah sebagai

berikut:

Jenis Alat : Water tube boiler

Jenis Steam : Saturated steam

Kapasitas : $5,612 \text{ m}^3/\text{jam}$

Spesifikasi Tube

• BWG : 14

• OD : 2 in

• ID : 1,834 in

• Panjang : 20 ft

• Jumlah : 4892

Harga : \$ 401.391

Sedangkan spesifikasi blower untuk mengalirkan udara segar boiler adalah sebagai berikut :

Jenis : centrifugal blower

Kapasitas : 20.239,891 kg/jam

Power : 93 hp

Harga : \$ 34.451

4.4.7.3 Alat Pengolahan Listrik

Spesifikasi generator untuk pengolahan listrik adalah:

Jenis : Turbo Generator

Tegangan : 220 V

Power dibangkitksn : 2000 kVA

Harga : \$ 679.992

4.4.7.4 Bahan Bakar

112

Spesifikasi bahan bakar yang digunakan adalah sebagai

berikut:

a. Kebutuhan bahan bakar untuk boiler

Kapasitas = 5612,146739 kg/jam

Bahan bakar yang diperlukan = 809,5957 kg/jam

b. Kebutuhan bahan bakar untuk generator

Kapasitas = 2000 kW

Bahan bakar yang dibutuhkan = 428,4318 kg/jam

Total kebutuhan bahan bakar adalah sebesar 1238,027 kg/jam.

4.4.7.5 Alat Pengolahan Udara Tekan

Besarnya kebutuhan udara tekan untuk alat instrumentasi dan kontrol adalah sebesar 46,728 m³/jam. Sedangkan spesifikasi kompresor yang dibutuhkan untuk menaikkan udara tekan adalah

sebagai berikut:

Jenis : Single Stage Reciprocating Compressor

Daya kompresor : 3,5 hp

Harga : \$ 30.736

Tangki penyimpan udara memiliki spesifikasi:

Fungsi : menampung udara kering

Diameter : 0,287 m

Tinggi : 0,431 m

4.5 Laboratorium

Laboratorium memiliki peranan yang penting dalam suatu pabrik. Selain untuk menunjang proses produksi dan kualitas produk, laboratorium juga berperan untuk mengevaluasi proses, menentukan tingkat efisiensi dan mengendalikan pencemaran lingkungan.

Laboratorium dibagi menjadi beberapa bagian, yaitu laboratorium pengamatan, laboratorium analitik serta laboratorium penelitian dan pengembangan.

1. Laboratorium Pengamatan

Laboratorium ini berperan untuk menganalisa sifat-sifat fisik dari bahan baku dan produk akhir. Analisa ini diharapkan dapat menjelaskan spesifikasi bahan hasil pengamatan untuk menunjang proses produksi.

2. Laboratorium Analitik

Laboratorium ini berperan dalam menganalisa sifat-sifat kimiawi dari bahan baku dan produk akhir. Bahan-bahan yang telah diuji secara kimiawi diharapkan dapat memenuhi standart yang telah ditetapkan dalam proses produksi.

3. Laboratorium Penelitian dan Pengembangan

Laboratorium ini berperan untuk meneliti dan mengembangkan segala hal yang berhubungan dengan kualitas material bahan sehingga dapat meningkatkan produk akhir yang dihasilkan. Laboratorium ini bekerja secara tidak rutin dan cenderung meneliti tentang hal-hal baru untuk memperoleh alternatif lain dalam pemilihan bahan baku.

4.6 Organisasi Perusahaan

4.1.1. Bentuk Perusahaan

Pabrik Asam Format yang akan didirikan, direncanakan mempunyai :

Bentuk : Perseroan Terbatas (PT)

Lokasi perusahaan : Kawasan Industri Gresik, Jawa Timur

Beberapa faktor alasan dipilihnya bentuk perusahaan ini, antara lain :

 Mudahnya mendapatkan saham, dengan menjual sebagian saham perusahaan.

- Pemegang saham mempunyai tanggung jawab terbatas saja, maka dari itu jalannya produksi dipegang langsung oleh pimpinan perusahaan.
- Pengurus dan pemilik perusahaan terpisah satu sama lain, pengurus perusahaan adalah direksi beserta staffnya yang diawasi oleh dewan komisaris dan pemilik perusahaan adlah pemegang saham.
- 4. Lebih terjaminnya kelangsungan Perusahaan, karena tidak berpengaruh dengan berhentinya pemegang saham, direksi staffnya atau karyawan perusahaan.
- 5. Effisiensi dari manajemen.

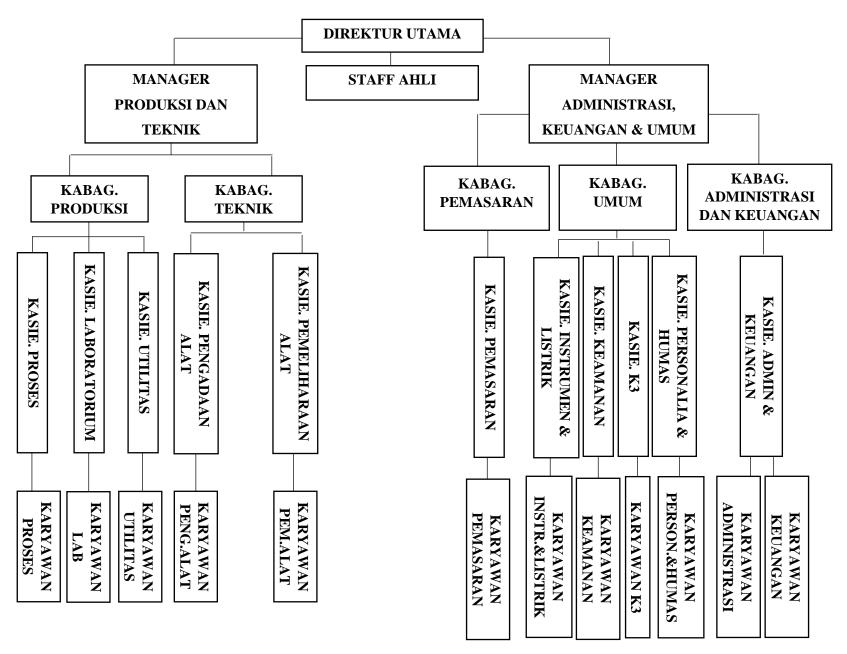
Para pemegang saham dapat memilih orang yang ahli sebagai dewan komisaris dan direktur utama yang cukup cakap dan berpengalaman.

6. Lapangan Usaha Lebih Luas

Suatu Perseroan Terbatas dapat menarik modal yang sangat besar dari masyarakat, sehingga dengan modal ini PT dapat memperluas usaha.

(Widjaja, 2003)

Adapun ciri-ciri Perseroan Terbatas :


- Perseroan Terbatas dipimpin oleh suatu Direksi yang terdiri dari para pemegang saham.
- Perseroan terbatas didirikan dengan akta dari notaris dengan berdasarkan Kitab Undang-Undang Hukum Dagang.
- 3. Pemiliknya adalah para pemegang saham.
- 4. Besarnya modal ditentukan dalam akta pendirian dan terdiri dari saham-sahamnya.

(Widjaja, 2003)

4.6.2 Struktur Organisasi

Struktur organisasi merupakan salah satu faktor untuk menunjang kelangsungan dan kemajuan suatu perusahaan. Hal ini dikarenakan berhubungan dengan komunikasi yang terjalin dalam perusahaan demi tercapainya kerjasama dan kenyamanan yang baik antar sesama karyawan. Beberapa asas yang dapat dijadikan pedoman untuk mendapatkan sistem organisasi yang baik, diantaranya adalah :

- 1. Perumusan tujuan perusahaan dengan jelas
- Pemahaman akan tujuan organisasi oleh setiap orang dalam organisasi.
- Tujuan organisasi harus disepakati oleh setiap orang dalam organisasi.
- 4. Adanya kesatuan arah (*unity of direction*).
- 5. Adanya kesatuan perintah (*unity of command*).
- 6. Adanya pembagian tugas (distribution of works).
- 7. Adanya keseimbangan antara wewenang dan tanggung jawab
- 8. Adanya koordinasi.
- 9. Struktur organisasi disusun sederhana.
- 10. Pola organisasi harus relatif permanen.
- 11. Adanya jaminan jabatan (unity of temire).
- 12. Penempatan orang harus sesuai keahliannya.

Gambar 4.5. Struktur Organisasi

4.6.3 Tugas dan Wewenang

1. Pemegang Saham

Pemegang saham adalah orang yang mengumpulkan modal untuk kepentingan pendirian dan beroperasinya perusahaan. Kekuasaan tertinggi pada perusahaan yang mempunyai bentuk Perseoran Terbatas (PT) adalah Rapat Umum Pemegang Saham (RUPS). Pada RUPS pemegang saham memiliki wewenang sebagai berikut:

- a. Mengangkat dan memberhentikan Dewan Komisaris
- b. Mengangkat dan memberhentikan Direktur
- c. Mengesahkan hasil-hasil usaha serta neraca perhitungan untung rugi dari perusahaan

2. Dewan Komisaris

Dewan Komisaris merupakan pelaksana tugas sehari-hari daripada pemilik saham, sehingga Dewan Komisaris akan bertanggung jawab terhadap pemilik saham. Tugas Dewan Komisaris meliputi:

- a. Menilai dan menyetujui rencana direksi tentang kebijaksanaan umum, target perusahaan, alokasi sumber-sumber dana dan pengarahan pemasaran.
- b. Mengawasi tugas-tugas Direktur.
- c. Membantu Direktur dalam tugas-tugas yang penting.

3. Direktur Utama

Direktur Utama adalah memiliki wewenang dalam merumuskan dan menetapkan suatu kebijakan serta program umum perusahaan sesuai dengan wewenang yang diberikan perusahaan kepadanya.

Tugas Direktur Utama:

- Mengkoordinir semua kegiatan dalam bidang kepegawaian, kesektariatan dan administrasi keuangan.
- 2. Membuat rancangan untuk mengembangkan dari sumber pendapatan.
- 3. Menawarkan ide-idenya dalam memajukan perusahaan
- 4. Memimpin rapat dan mewakilkan perusahaan dalam berhubungan dengan pihak luar perusahaan.
- 5. Mengendalikan pengadaan peralatan dan perlengkapan.

4. Staf Ahli

Staf ahli terdiri dari tenaga-tenaga ahli yang bertugas membantu direktur bagian dalam menjalankan tugasnya, baik yang berhubungan dengan teknik maupun administrasi. Staf ahli bertanggung jawab terhadap direktur utama.

Tugas Staff Ahli:

- Memberikan nasehat dan saran dalam perencanaan pengembangan perusahaan.
- 2. Memberikan saran dalam bidang hukum.

3. Mengadakan evaluasi bidang teknik dan ekonomi perusahaan.

5. Kepala Bagian

Secara umum, tugas kepala bagian ialah mengkoordinir, mengatur dan mengawasi pelaksanaan pekerjaan dalam lingkungan bagannya sesuai dengan garis wewenang yang diberikan oleh pemimpin perusahaan. Kepala bagian dapat juga bertindak sebagai staf direktur. Kepala bagian bertanggung jawab kepada direktur utama.

Kepala bagian terdiri dari:

1. Kepala Bagian Produksi

Bertanggung jawab kepada direktur produksi dalam bidang mutu dan kelnacaran produksi serta mengkordinir kepala-kepala seksi yang menjasi bawahannya. Kepala bagian produksi membawahi seksi proses, seksi pengendalian dan seksi laboratorium.

2. Kepala Bagian Teknik

Tugas kepala bagian teknik, antara lain:

- a. Bertanggung jawab kepada direktur dalam bidang peralatan dan utilitas
- Mengkoordinir kepala-kepala seksi yang menjadi bawahannya.

Kepala bagian teknik membawahi seksi pemeliharan, seksi utilitas dan seski keselamatan kerja-penanggulangan kebakaran.

3. Kepala Bagian Keuangan

Kepala bagian keuangan ini bertanggung jawab kepada direktur keuanan dan umum, dalam bidang administrasi serta keuangan, membawahi 2 seksi, yaitu seksi administrasi dan keuangan.

4. Kepala Bagian Pemasaran

Bertanggung jawab kepada direktur keuangan dan umum dalam bidang bahan baku dan pemasaran hasil produksi, serta membawahi 2 seksi yaitu seksi pembelian dan seksi pemasaran.

5. Kepala Bagian Umum

Bertanggung jawab kepada direktur keuangan dan umum dalam bidang personalia, hubungan masyarakat dan keamanan serta mengkoordinir epal-kepala seksi yang menjadi bawahannya. Kepala bagian umum membawahi seksi personalia dan humas dan seksi keamanan

6. Kepala Seksi

Kepala seksi adalah pelaksana pekerjaan dalam lingkungan bagiannya sesuai dengan rencana yang telah diatur oleh Kepala Bagian masing-masing agar diperoleh hasil yang maksimum dan efektif selama berlangsungnya proses produksi. Setiap kepala seksi bertanggung jawab kepada Kepala Bagian masing-masing sesuai dengan seksinya.

1. Kepala Seksi Proses

Bertanggung jawab langsung ke kepala bagian produksi dan mempunyai tugas :

- a. Mengawasi jalannya proses produksi
- Menjalankan tindakan sepenuhnya terhadap kejadiankejadian yang tidak diharapkan sebelum diambil oleh seksi yang berwenang.

2. Kepala Seksi Pengendalian

Bertanggung jawab mengenai hal-hal yang dapat mengacam keselamatan pekerja dan mengurangi potensi bahaya yang ada.

3. Kepala Seksi Laboratorium

- a. Membuat laporan berkala kepada Kepala Bagian Produski
- Mengawasi dan menganalisa mutu bahan dan bahan pembantu
- c. Mengawasi hal-hal yang berhubungan dengan limbah pabrik
- d. Mengawasi dan menganalisa mutu produksi

4. Kepala Seksi Pemeliharaan

- a. Memperbaiki kerusakan perlatan pabrik
- Melaksanakan pemeliharaan fasilitas gedung dan perlatan pabrik

5. Kepala Seksi Utilitas

Melaksanakan dan mengatur sarana utilitas untuk memenuhi kebutuhan proses, air, *steam* dan tenaga listrik.

6. Kepala Seksi K3

- a. Mengatur, menyediakan dan mengawasi hal-hal yang berhubungan dengan keselamatan kerja
- b. Melindungi pabrik dari bahaya kebakaran

7. Kepala Seksi Administrasi

Menyelenggarakan pencatatan utang piutang, administrasi persediaan kantor dan pembukuan, serta masala perpajakan

8. Kepala Seksi Keuangan

- Mengadakan perhitungan tentang gaji dan insentif karyawan
- Menghitung penggunaan uang perusahaan, mengamankan uang dan membuat ramalan tentang keuangan masa depan

9. Kepala Seksi Pembelian

- Mengetahui harga pasar dan mutu bahan baku serta mengatur keluar masuknya bahan dan alat dari gudang.
- Melaksanakan pembelian barang dan peralatan yang dibutuhkan perusahaan dalam kaitannya dengan proses produksi

10. Kepala Seksi Pemasaran

Kepala seksi pemasaran memiliki tugas-tugas:

- a. Mendistribusikan hasil produski
- b. Merencanakan strategi penjualan hasil prosuksi

11. Kepala Seksi Personalia

Kepala seksi personalia memiliki tugas-tugas:

- Mengusahakan disiplin kerja tinggi dalam menciptakan kondisi kerja yang tenang dan dinamis
- Membina tenaga kerja dan menciptakan saran kerja yang sebaik mungkin antara pekerja, pekerjaan dan lingkungannya supaya tidak terjadi pemborosan waktu dan biaya
- Melaksanakan hal-hal yang berhubungan dengan kesejahteraan karyawan

12. Kepala Seksi Humas

Mengatur hubungan antara perusahaan dengan msyarakat di luar lingkungan perusahaan

13. Kepala Seksi Keamanan

- Menjaga dan memelihara kerahasiaan yang berhubungan dengan intern perusahaan.
- b. Mengawasi keluar masuk orang-orang baik karyawan maupun bukan karyawan di lingkungan pabrik.
- c. Menjaga semua bangunan pabrik dan fasilitas perusahaan.

4.6.4 Status Karyawan dan Sistem Penggajian

Sistem penggajian karyawan pada Pabrik Asam Format ini berbeda-beda tergantung pada status karyawan, tanggung jawab, kedudukan dan keahlian.

1. Status Karyawan

a. Karyawan Tetap

Karyawan tetap adalah karyawan yang diangkat dan diberhentikan sesuai dengan Surat Keputusan (SK) dan memperoleh gaji bulanan sesuai dengan kedudukan, keahlian dan jangka waktu kerja.

b. Karyawan Harian

Karyawan harian adalah karyawan yang diangkat dan diberhentikan oleh Direksi tanpa Surat Keputusan (SK) Direksi dalam jangka waktu yang terbatas. Karyawan harian akan memperoleh upah harian yang dibayarkan tiap akhir pekan. Hubungan kerja diatur dalam Peraturan Menteri Tenaga Kerja No. PER 02/MEN/1993.

c. Karyawan Borongan

Karyawan borongan adalah karyawan yang terikat pada hubungan kerja yang bersifat isidentil/sewaktu-waktu dan tidak terus-menerus. Karyawan ini akan menerima upah borongan dalam suatu pekerjaan, maksimal selama 3 bulan sesuai dengan kondisi yang dituangkan pada kontrak sebelumnya.

2. Pembagian Jam Kerja Karyawan

Pada perancangan Pabrik Asam Format ini akan direncanakan beroperasi selama 330 hari dalam setahun dengan proses produksi 24 jam sehari. Sisa hari dalam 1 tahun digunakan untuk perbaikan, perawatan dan *shutdown* pabrik. Pembagian jam kerja pada karyawan dibagi menjadi karyawan *shift* dan *non-shift*.

a. Karyawan shift

Karyawan *shift* merupakan karyawan yang menangani proses produksi secara langsung. Karyawan *shift* ini terdiri dari operator produksi, sebagian dari bagian teknik dan bagian keselamatan serta keamanan pabrik.

Karyawan *shift* bekerja selama 24 jam secara bergantian. Pembagian jam kerja karyawan *shift* sebagai berikut :

Shift Pagi : 08.00 - 16.00

Shift Sore : 16.00 - 24.00

Shift Malam: 24.00 - 08.00

Tabel 4.9. Jadwal Pembagian Regu Shift

Tgl	1	2	3	4	5	6	7	8	9	10
Pagi	A	A	A	В	В	С	С	D	D	D
Sore	D	D	D	A	A	В	В	С	С	С
Malam	С	С	С	D	D	A	A	В	В	В
Libur	В	В	В	С	С	D	D	A	A	A

Lanjutan Tabel 4.9 ...

_										
Tgl	11	12	13	14	15	16	17	18	19	20
Pagi	A	A	В	В	С	С	С	D	D	A
Sore	D	D	A	A	В	В	В	С	С	D
Malam	С	С	D	D	A	A	A	В	В	С
Libur	В	В	С	С	D	D	D	A	A	В
Tgl	21	22	23	24	25	26	27	28	29	30
Pagi	A	В	В	В	С	С	D	D	A	A

Tgl	21	22	23	24	25	26	27	28	29	30
Pagi	A	В	В	В	С	С	D	D	A	A
Sore	D	A	A	A	В	В	С	С	D	D
Malam	С	D	D	D	A	A	В	В	С	С
Libur	В	С	С	С	D	D	A	A	В	В

Jadwal untuk tanggal berikutnya berulang ke susunan awal.

b. Karyawan non-shift

Karyawan *non-shift* merupakan karyawan yang tidak menangani proses produksi secara langsung. Karyawan harian terdiri dari direktur, staf ahli, kepala bagian, kepala seksi serta karyawan yang berada di kantor.

Dalam satu minggu karyawan harian bekerja selama 5 hari, dengan pembagian kerja sebagai berikut :

Jam kerja

• Hari Senin-Jum'at: 08,00 - 16.00

Jam istirahat

• Hari Senin – Kamis : 12.00 – 13.00

• Hari Jum'at : 11.00 – 13.00

3. Sistem Penggajian

Sistem pemberian upah atau gaji bergantung pada golongan jabatan dan jumlah karyawan. Berikut ini adalah tabel rincian gaji dan jumalah karyawan.

Tabel 4.10. Jumlah Karyawan dan Gaji

No	Jabatan	Jumlah	Gaji/Bulan (Rp)	Gaji total/Bulan (Rp)
1	Direktur Utama	1	30.000.000	30.000.000
2	Manager Teknik dan Produksi	1	15.000.000	15.000.000
3	Manager Administrasi, Keuangan dan Umum	1	15.000.000	15.000.000
4	Staff Ahli	1	10.000.000	10.000.000
5	Sekretaris	1	10.000.000	10.000.000
6	Ka. Bag. Produksi	1	10.000.000	10.000.000
7	Ka. Bag. Teknik	1	10.000.000	10.000.000
8	Ka. Bag. Pemasaran	1	10.000.000	10.000.000
9	Ka. Bag. Administrasi, Keuangan dan Umum	1	10.000.000	10.000.000
10	Ka. Sek. Proses	1	8.000.000	8.000.000
11	Ka. Sek. Pengendalian	1	8.000.000	8.000.000
12	Ka. Sek. Laboratorium	1	8.000.000	8.000.000
13	Ka. Sek. Utilitas	1	8.000.000	8.000.000
14	Ka. Sek. Instrument dan listrik	1	8.000.000	8.000.000
15	Ka. Sek Pemeliharaan	1	8.000.000	8.000.000
16	Ka. Sek. Pemasaran	1	8.000.000	8.000.000
17	Ka. Sek. Administrasi dan Keuangan	1	8.000.000	8.000.000
18	Ka. Sek. Personalia dan Humas	1	8.000.000	8.000.000
19	Ka. Sek. Keamanan	1	8.000.000	8.000.000
20	Ka. Sek. K3	1	8.000.000	8.000.000
21	Dokter	2	8.000.000	16.000.000
22	Karyawan Pembelian dan Pemasaran	8	5.500.000	44.000.000
23	Karyawan Administrasi dan Keuangan	6	5.500.000	33.000.000
24	Karyawan K3	6	5.500.000	33.000.000
25	Karyawan Personalia dan Humas	5	5.500.000	27.500.000

Lanjutan Tabel 4.10 ...

26	Karyawan Keamanan	8	5.500.000	44.000.000
27	Karyawan Proses	12	5.500.000	66.000.000
28	Karyawan Pengendalian	6	5.500.000	33.000.000
29	Karyawan Instrument dan Listrik	7	5.500.000	38.500.000
30	Karyawan Pemeliharaan	10	5.500.000	55.000.000
31	Karyawan Utilitas	10	5.500.000	55.000.000
32	Karyawan Laboratorium	5	5.500.000	27.500.000
33	Perawat	3	5.500.000	16.500.000
34	Operator Proses	20	5.000.000	100.000.000
35	Operator Utilitas	10	5.000.000	50.000.000
36	Supir	5	3.000.000	15.000.000
37	Cleaning service	8	2.500.000	20.000.000
	Total	151	297.500.000	882.000.000

4.6.5 Kesejahteraan Karyawan

Kesejahteraan bagi para karyawan sangat diperlukan demi kenyamanan dalam bekerja. Kesejahteraan yang diberikan oleh perusahaan, antara lain :

1. Tunjangan

- a. Tunjangan berupa gaji pokok yang diberikan pada karyawan bergantung pada golongan yang bersangkutan
- Tunjangan jabatan yang diberikan pada karyawan bergantung pada jabatan.
- c. Tunjangan lembur yang diberikan pada karyawan yang bekerja di luar jam kerja berdasarkan jumlah jam kerja.

2. Seragam Kerja

Seragam kerja diberikan pada setiap karyawan sejumlah 3 pasang setiap tahunnya.

3. Cuti

Cuti tahunan diberikan pada setiap karyawan selama 12 hari kerja dalam 1 tahun. Cuti sakit diberikan pada karyawan yang menderita sakit berdasarkan keterangan dari dokter.

4. Pengobatan

Karyawan yang menderita sakit dan diakibatkan karena kecelakaan dalam bekerja, maka biaya pengobatan akan ditanggung oleh perusahaan sesuai dengan Undang-Undang yang berlaku. Sedangkan karyawan yang tidak disebabkan karena kecelakaan kerja, biaya pengobatan dapat diatur berdasarkan kebijakan perusahaan.

5. Asuransi Tenaga Kerja

Asuransi bagi tenaga kerja diberikan oleh perusahaan bila jumlah karyawan lebih dari 10 orang dengan gaji karyawan Rp. 1.000.000,00/bulan.

4.6.6 Fasilitas Karyawan

Dalam bekerja, setiap karyawan juga diberikan beberapa fasilitas oleh perusahaan. Fasilitas-fasilitas tersebut, antara lain :

- 1. Fasilitas mobil dan bus sebagai sarana antar jemput karyawan.
- 2. Fasilitas kantin untuk memenuhi kebutuhan makan dan minum untuk karyawan.
- 3. Fasilitas untuk beribadah, seperti masjid/musholla.

- Fasilitas kesehatan, seperti tersedianya poliklinik yang dilengkapi dengan tenaga medis.
- Fasilitas seragam kerja dan peralatan keamanan lainnya yang diperlukan, seperti helm, safety shoes, masker, ear plug dan lainlain.

4.6.7 Manajemen Produksi

Manajemen produksi merupakan salah satu bagian dari manajemen perusahaan yang fungsi utamanya adalah menyelenggarakan semua kegiatan untuk memproses bahan baku menjadi produk jadi dengan mengatur penggunaan faktor-faktor produksi sedemikian rupa sehingga proses produksi berjalan sesuai dengan yang direncanakan.

Manajemen produksi meliputi manajemen perencanaan dan pengendalian produksi. Tujuan perencanaan dan pengendalian produksi adalah mengusahakan agar diperoleh kualitas produksi yang sesuai dengan rencana dan dalam jangka waktu yang tepat. Dengan meningkatnya kegiatan produksi maka selayaknya untuk diikuti dengan kegiatan perencanaan dan pengendalian agar dapat dihindarkan terjadinya penyimpangan-penyimpangan yang tidak terkendali.

Perencanaan ini sangat erat kaitannya dengan pengendalian, dimana perencanaan merupakan tolok ukur bagi kegiatan operasional, sehingga penyimpangan yang terjadi dapat diketahui dan selanjutnya dikendalikan kea rah yang sesuai.

1. Perencanaan Produksi

Dalam menyusun rencana produksi terdapat hal-hal yang perlu dipertimbangkan, yaitu faktor eksternal dan internal. Factor eksternal adalah faktor berdasarkan kemampuan pasar terhadap jumlah produk yang dihasilkan, sedangkan faktor internal adalah faktor yang berdasarkan kemampuan pabrik.

Kemampuan Pasar

Dapat dibagi dua kemungkinan:

- Kemampuan pasar lebih besar dibandingkan kemampuan pabrik, maka rencana produksi disusun secara maksimal.
- Kemampuan pasar lebih kecil dibandingkan kemampuan pabrik.

Ada tiga alternatif yang dapat diambil:

- Rencana produksi sesuai dengan kemampuan pasar atau produksi diturunkan sesuai dengan kemampuan pasar, dengan mempertimbangkan untung dan rugi.
- Rencana produksi tetap dengan mempertimbangkan bahwa kelebihan produksi disimpan dan dipasarkan tahun berikutnya.
- Mencari daerah pemasaran lain.

Kemapuan Pabrik

Pada umumnya kemampuan pabrik ditentukan oleh beberapa faktor antara lain

a. Material (bahan baku)

Dengan pemakaian yang memenuhi kualitas dan kuantitas maka akan mencapai target produksi yang diinginkan.

b. Manusia (tenaga kerja)

Kurang terampilnya tenaga kerja akan menimbulkan kerugian pabrik, untuk itu perlu dilakukan pelatihan atau training pada karyawan agar keterampilan meningkat.

c. Mesin (peralatan)

Ada dua hal yang mempengaruhi kehandalan dan kemampuan peralatan, yaitu jam kerja mesin efektif dan kemampuan mesin. Jam kerja mesin efektif adalah kemampuan suatu alat untuk beroperasi pada kapasitas yang diinginkan pada periode tertentu.

2. Pengendalian Produksi

Setelah perencanaan produksi dijalankan perlu adanya pengawasan dan pengendalian produksi agar proses berjalan dengan baik. Kegiatan proses produksi diharapkan menghasilkan produk yang mutunya sesuai dengan standart dan jumlah produksi yang sesuai dengan rencana serta waktu yang tepat sesuai jadwal. Untuk itu perlu dilaksanakan pengendalian produksi sebagai berikut :

Pengendalian kualitas

Penyimpanan kualitas terjadi karena mutu bahan baku jelek, kesalahan operasi dan kerusakan alat. Penyimpanan dapat diketahui dari hasil monitor / analisa pada bagian laboratorium pemeriksaan.

Pengendalian kuantitas

Penyimpangan kuatitas terjadi karena kesalahan operator, kerusakan mesin, keterlambatan pengadaan bahan baku, perbaikan alat terlalu lama dan lain-lain. Penyimpangan tersebut perlu diidentifikasi penyebabnya dan diadakan evaluasi. Selanjutnya diadakan perencanaan kembali sesuai dengan kondisi yang ada.

Pengendalian waktu

Untuk mencapai kuantitas tertentu perlu adanya waktu tertentu pula.

• Pengendalian bahan proses

Bila ingin dicapai kapasitas produksi yang diinginkan, maka bahan untuk proses harus mencukupi. Karenanya diperlukan pengendalian bahan proses agar tidak terjadi kekurangan.

4.7 Evaluasi Ekonomi

Evaluasi ekonomi terhadap suatu pabrik bertujuan untuk mengetahui apakah pabrik yang dirancang memenuhi uji kelayakan atau tidak untuk didirikan. Oleh karena itu pada pra rancangan pabrik Asam Formiat dan

Metanol ini dibuat evaluasi atau penilaian investasi untuk uji kelayakannya. Uji kelayakan ini meliputi besaran-besaran yang masing-masing dinyatakan dalam bentuk angka-angka yaitu :

- 1. Return on Invesment (ROI)
- 2. Pay Out Time (POT)
- 3. Break Even Point (BEP)
- 4. Shut Down Point (SDP)
- 5. Discounted Cash Flow Rate of Return (DCFRR)
 Untuk meninjau faktor-faktor diatas perlu diadakan penaksiran beberapa
 faktor yaitu :
- 1. Penaksiran modal industri (*Total Capital Invesment*) yang terdiri atas :
 - a. Modal tetap (Fixed Capital Invesment).
 - b. Modal kerja (Working Capital).
- 2. Penentuan biaya produksi total (*Production Invesment*) yang terdiri atas :
 - a. Biaya pembuatan (*Manufacturing Cost*)
 - b. Biaya pengeluaran umum (General Expense)
- 3. Total pendapatan / penjualan.
- 4. Analisa kelayakan.

4.7.1 Penaksiran Harga Peralatan

Harga peralatan proses selalu mengalami perubahan nilai tergantung pada kondisi ekonomi yang saat ini. Untuk mengetahui

136

harga peralatan yang ada sekarang, dapat dilakukan penaksiran harga

dari harga tahun yang lalu berdasarkan indeks harga.

Persamaan pendekatan yang digunakan untuk memperkirakan

harga peralatan pada saat sekarang adalah sebagai berikut :

$$Ex = Ey x (Nx / Ny)$$

Dimana:

• Ex: harga alat pada tahun x

• Ey: harga alat pada tahun y

• Nx : nilai indeks tahun x

• Ny: nilai indeks tahun y

(Peters & Timmerhause, 2003)

Harga indeks ditentukan berdasarkan data Chemical Engineering

Plant (CEP) cost indeks. Pabrik direncanakan didirikan pada tahun

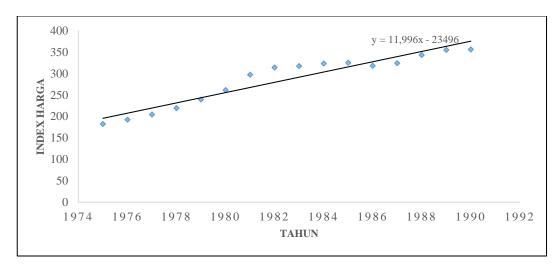
2022 dengan ekstrapolasi data mengikuti persamaan linier, dimana

indeks pada tahun 1975 sebesar 182 dan tahun 1990 sebesar 356,

maka diperoleh indeks pada tahun 2014 adalah 663,944 dan 2022

adalah 759,912. Sedangkan nilai tukar mata uang dolar terhadap

rupiah pada tahun 2018 ini diestimasiTahkan 1 US \$ = Rp.14.400,00.


Kapasitas produksi sebesar 12.000 ton/tahun dan direncanakan untuk

satu tahun operasi berjalan selama 330 hari.

Tabel 4.11. Indeks Harga Alat

Tahun	Index
1975	182
1976	192
1977	204
1978	219
1979	239
1980	261
1981	297
1982	314
1983	317
1984	323
1985	325
1986	318
1987	324
1988	343
1989	355
1990	356

(Peters and Timmerhouse, 2003)

Gambar 4.6. Cost Index

Berdasarkan **Gambar 4.6**. diatas, dapat diperoleh persamaan regresi linear untuk menentukan harga indeks pada tahun 2014 dan 2022. Persamaan tersebut adalah :

$$Y = 11,996 \text{ x} - 23.496$$

Dimana,

Y = Indeks harga

X = Tahun pembelian

4.7.2 Perhitungan Biaya

1. Capital Investment

Capital Investment adalah banyaknya pengeluaranpengeluaran yang diperlukan untuk mendirikan fasilitas-fasilitas pabrik dan untuk mengoperasikannya. Capital Investment terdiri atas:

• Fixed Capital Investment (FCI)

Fixed Capital Investment adalah biaya yang diperlukan untuk pembangunan dan fasilitas pabrik.

• Working Capital Investment (WCI)

Working Capital Investment adalah biaya-biaya (modal) yang diperlukan untuk pengoperasian pabrik selama waktu tertentu.

2. Manufacturing Cost

Manufacturing Cost merupakan biaya yang dikeluarkan berhubungan dengan operasi produksi. Biaya dibagi menjadi 3, yaitu direct, indirect dan fixed manufacturing cost yang berkaitan dengan pembuatan produk.

• Direct Cost (DC)

Direct Cost adalah pengeluaran yang berkaitan langsung dalam pembuatan produk.

• Indirect Cost (IC)

Indirect Cost adalah pengeluaran-pengeluaran sebagai akibat tidak langsung karena operasi pabrik.

• Fixed Cost (FC)

Fixed Cost merupakan harga yang berkaitan dengan Fixed Capital dan pengeluaran-pengeluaran yang bersangkutan dimana harga tetap, tidak bergantung pada waktu dan tingkat produksi.

3. General Expense

General Expense atau pengeluaran umum meliputi pengeluaranpengeluaran yang berkaitan dengan fungsi-fungsi perusahaan yang tidak termasuk manufacturing cost.

4.7.3 Analisa Kelayakan

Untuk dapat mengetahui keuntungan yang diperoleh cukup besar atau tidak, sehingga dapat dikategorikan apakah pabrik tersebut potensial untuk didirikan atau tidak, maka dilakukan evaluasi kelayakan pada pabrik. Beberapa cara yang dilakukan untuk menyatakan kelayakan yaitu:

1. Percent Return on Investment (ROI)

Return on Investment dalah perkiraan keuntungan yang dapat diperoleh setiap tahun, didasarkan pada kecepatan tahunan pengembalian investasi (modal). Untuk industri beresiko tinggi, nilai minimal ROI sebelum pajak adalah sebesar 11%, sedangkan minimal untuk industri beresiko rendah sebesar 44%.

Fixed Capital

2. Pay Out Time (POT)

Pay Out Time adalah jangka waktu pengembalian investasi (modal) berdasarkan keuntungan perusahaan dengan mempertimbangkan depresiasi. Angka maksimal POT untuk industri beresiko tinggi yaitu maksimal 2 tahun, sedangkan industri beresiko rendah maksimal 5 tahun.

$$POT = \frac{FC}{(Profit + 0.1FC)}$$

3. Break Even Point (BEP)

Break Even Point adalah titik impas (kondisi dimana pabrik tidak mendapatkan keuntungan atau kerugian). Titik ini menunjukan tingkat produksi dimana harga sales akan sama dengan total cost. Pabrik akan mengalami kerugian jika beroperasi dibawah BEP dan mengalami keuntungan jika beroperasi

diatasnya. Perhitungan BEP dinyatakan dengan rumus sebagai berikut :

BEP =
$$\frac{Fa + 0.3Ra}{Sa - Va - 0.7Ra}$$
 x 100 %

Dimana:

Fa = Annual fixed espense

 $Ra = Annual \ regulated \ espense$

Va = *Annual variable espense*

Sa = Annual sales value

4. Shut Down Point (SDP)

Shut down point adalah persen kapasitas minimal suatu pabrik apakah dapat mencapai kapasitas produk yang diharapkan dalam setahun atau tidak Apabila tidak mampu mencapai persen minimal kapasitas tersebut dalam setahun, maka pabrik harus berhenti beroperasi atau tutup. Rumus SDP dinyatakan sebagai berikut:

SDP =
$$\frac{0.3Ra}{(Sa-Va-0.7Ra)}$$
 x 100 %

5. Discounted Cash Flow (DCF)

Analisis kelayakan ekonomi dengan menggunakan "Discounted Cash Flow" dibuat dengan menggunakan nilai uang yang berubah terhadap waktu dan dirasakan atas investasi yang tidak kembali pada akhir tahun selama umur pabrik. Sedangkan

"Rate of Return Based on Discounted Cash Flow" (DCFRR) adalah besarnya laju bunga maksimum dimana suatu pabrik (proyek) dapat membayar pinjaman beserta bunganya kepada bank selama umur pabrik (10 tahun).

$$(FC+WC)(1+i)^n - (SV+WC) = C\{(1+i)^{n-1} + (1+i)^{n-2} + ... + (1+i)+1\}$$

Dimana:

- N = umur pabrik
- WC = Working capital
- FC = Fixed capital
- SV = Salvage value
- C = Annual cost
- C = Profit after tax + Depresiation + Finance

4.7.4 Perhitungan Ekonomi

Tabel 4.12. Harga Peralatan Proses

Nama Alat	Kode	Jumlah	Harga Alat , \$			
Ivaliia Alat	Alat	Juillian	2014	2022		
Tangki Metil Format	T-01	1	232.700,00	266.335,00		
Tangki Metanol	T-02	1	109.100,00	124.869,57		
Tangki Asam Format	T-03	1	115.700,00	132.423,55		
Mixer	M	1	206.900,00	236.805,80		
Reaktor	R	1	212.200,00	242.871,88		
Flash Drum	FD	1	11.629,00	13.309,88		
Menara Destilasi 1	MD-01	1	30.586,00	35.006,97		
Menara Destilasi 2	MD-02	1	28.500,00	32.619,46		
Menara Destilasi 3	MD-03	1	27.876,00	31.905,26		

Lanjutan **Tabel 4.12** ...

Akumulator 1	ACC-01	1	2.500,00	2.861,36
Akumulator 2	ACC-02	1	1.600,00	1.831,27
Akumulator 3	ACC-03	1	2.300,00	2.632,45
Expansion Valve 1	EV-01	1	30,88	35,34
Expansion Valve 2	EV-02	1	27,00	30,90
Expansion Valve 3	EV-03	1	36,61	41,90
Expansion Valve 4	EV-04	1	27,00	30,90
Expansion Valve 5	EV-05	1	27,00	30,90
Expansion Valve 6	EV-06	1	27,00	30,90
Expansion Valve 7	EV-07	1	27,00	30,90
Heater	HE	1	3.800,00	4.349,26
Cooler 1	C-01	1	3.400,00	3.891,44
Cooler 2	C-02	1	6.100,00	6.981,71
Kondensor 1	CD-01	1	18.900,00	21.631,85
Kondensor 2	CD-02	1	29.200,00	33.420,64
Kondensor 3	CD-03	1	21.300,00	24.378,75
Kondensor 4	CD-04	1	18.900,00	21.631,85
Reboiler 1	RB-01	1	18.200,00	20.830,67
Reboiler 2	RB-02	1	20.100,00	23.005,30
Reboiler 3	RB-03	1	21.000,00	24.035,39
Pompa 1	P-01	2	5.401,03	12.363,41
Pompa 2	P-02	2	2.350,93	5.381,49
Pompa 3	P-03	2	2.350,93	5.381,49
Pompa 4	P-04	2	2.720,91	6.228,39
Pompa 5	P-05	2	2.720,91	6.228,39
Pompa 6	P-06	2	3.053,86	6.990,54
Pompa 7	P-07	2	2.793,85	6.395,37
Pompa 8	P-08	2	2.793,85	6.395,37
Pompa 9	P-09	2	2.720,91	6.228,39
Pompa 10	P-10	2	2.247,71	5.145,19
Pompa 11	P-11	2	2.350,93	5.381,49
Pompa 12	P-12	2	2.350,93	5.381,49
Pompa 13	P-13	2	2.720,91	6.228,39
Pompa 14	P-14	2	2.720,91	6.228,39
Tota	1		1.181.992,07	1.397.818,82

Tabel 4.13. Harga Peralatan Utilitas

Nama Alat	Kode Jumlah		Harga Alat, \$			
Nama Alat	Alat	Juilliali	2014	2022		
Premix Tank	TU-01	1	15.155,00	17.345,54		
Clarifier	CLU	1	97.992,00	112.155,99		
Sand Filter	FU	1	4.137,00	4.734,97		
Chlorine Tank	TU-02	1	6.057,00	6.932,49		

Lanjutan **Tabel 4.13** ...

Cooling Tower	CTU	1	80.838,00	92.522,51
Kation Exchanger	KEU	1	1.051,00	1.202,91
Anion Exchanger	AEU	1	778,00	890,45
Deaerator	DEU	1	1.946,00	2.227,28
Boiler Feed Tank	TU-03	1	3.500,00	4.005,90
Boiler	BLO	1	350.700,00	401.390,99
Blower	BWO	1	30.100,00	34.450,72
Kompresor	KU	1	26.854,00	30.735,54
Generator	GU	1	500.117,00	572.405,07
Tangki Bahan Bakar	TU-04	1	185.287,24	212.069,08
Pompa 1	PU-01	2	4.400,00	10.071,97
Pompa 2	PU-02	2	4.400,00	10.071,97
Pompa 3	PU-03	2	4.400,00	10.071,97
Pompa 4	PU-04	2	4.400,00	10.071,97
Pompa 5	PU-05	2	4.400,00	10.071,97
Pompa 6	PU-06	2	2.700,00	6.180,53
Pompa 7	PU-07	2	4.400,00	10.071,97
Pompa 8	PU-08	2	2.700,00	6.180,53
Pompa 9	PU-09	2	10.900,00	24.951,02
Pompa 10	PU-10	2	1.700,00	3.891,44
Pompa 11	PU-11	3	1.701,00	5.840,60
Pompa 12	PU-11	2	2.700,00	6.180,53
Pompa 13	PU-12	2	2.700,00	6.180,53
Pompa 14	PU-13	2	3.300,00	7.553,98
Pompa 15	PU-14	2	3.746,00	8.574,91
Pompa 16	PU-15	2	7.600,00	17.397,04
Pompa 17	PU-16	2	4.400,00	10.071,97
Pompa 18	PU-17	2	4.400,00	10.071,97
Pompa 19	PU-18	2	2.700,00	6.180,53
Pompa 20	PU-19	2	2.700,00	6.180,53
Pompa 21	PU-20	2	2.700,00	6.180,53
Pompa 22	PU-21	2	2.700,00	6.180,53
Pompa 23	PU-22	2	3.300,00	7.553,98
Bak Pengendap Awal	BU-01	1	14.262,00	16.323,46
Bak Penampung				
Smntra	BU-02	1	594,00	679,86
Bak Air Bersih	BU-03	1	188,00	215,17
Bak Sirkulasi Air	DAY C.			
Pendingin	BU-04	1	2.713,00	3.105,14
Bak Air Pendingin	BU-05	1	5.137,00	5.879,51
Tota	ıl		1.416.453,24	1.725.055,59

1. Fixed Capital Investment (FCI)

Tabel 4.14. Physical Plant Cost (PPC)

Tipe of Capital Investment		Harga (Rp)	Harga (\$)
Purchased Equipment cost	Rp	41.270.335.010	\$ 2.865.995
Delivered Equipment Cost	Rp	10.317.583.752	\$ 716.499
Instalasi cost	Rp	6.071.324.839	\$ 421.620
Pemipaan	Rp	9.384.702.222	\$ 651.715
Instrumentasi	Rp	10.192.053.150	\$ 707.781
Insulasi	Rp	1.477.420.673	\$ 102.599
Listrik	Rp	4.127.033.501	\$ 286.600
Bangunan	Rp	16.025.000.000	\$ 1.112.847
Land & Yard Improvement	Rp	20.425.000.000	\$ 1.418.403
Physical Plant Cost (PPC)	Rp	119.290.453.148	\$ 8.284.059

Tabel 4.15. Direct Plant Cost (DPC)

Tipe of Capital Investment	Harga (Rp)	Harga (\$)
Teknik dan Konstruksi	Rp 23.858.090.630	\$ 1.656.812
Total (DPC + PPC)	Rp 143.148.543.777	\$ 9.940.871

Tabel 4.16. Fixed Capital Investment (FCI)

Tipe of Capital Investment	Harga (Rp)		Harga (\$)
Total DPC + PPC	Rp	143.148.543.777	\$ 9.940.871
Kontraktor	Rp	5.725.941.751	\$ 397.635
Biaya tak terduga	Rp	14.314.854.378	\$ 994.087
Fixed Capital Investment (FCI)	Rp	163.189.339.906	\$ 11.332.593

2. Manufacturing Cost (MC)

Tabel 4.17. Direct Manufacturing Cost

Tipe of Expense		Harga (Rp)	Harga (\$)
Raw Material	Rp	174.230.878.303	\$ 21.998.848
Labor	Rp	1.440.000.000	\$ 181.818
Supervision	Rp	144.000.000	\$ 18.182
Maintenance	Rp	3.263.786.798	\$ 412.094
Plant Supplies	Rp	489.568.020	\$ 61.814
Royalty and Patents	Rp	3.536.261.173	\$ 446.498
Utilities	Rp	57.551.295.755	\$ 7.266.578
Direct Manufacturing Cost (DMC)	Rp	240.655.790.048	\$ 30.385.832

Tabel 4.18. Indirect Manufacturing Cost

Tipe of Expense	Harga (Rp)		Harga (\$)
Payroll Overhead	Rp	216.000.000	\$ 27.273
Laboratory	Rp	144.000.000	\$ 18.182
Plant Overhead	Rp	720.000.000	\$ 90.909
Packaging and Shipping	Rp	17.681.305.864	\$ 2.232.488
Indirect Manufacturing Cost (IMC)	Rp	18.761.305.864	\$ 2.368.852

Tabel 4.19. Fixed Manufacturing Cost (FMC)

Tipe of Expense	Harga (Rp)		Harga (\$)
Depreciation	Rp	13.055.147.192	\$ 1.648.377
Propertu taxes	Rp	1.631.893.399	\$ 206.047
Insurance	Rp	1.631.893.399	\$ 206.047
Fixed Manufacturing Cost (FMC)	Rp	16.318.933.991	\$ 2.060.471

Tabel 4.20. Manufacturing Cost (MC)

Tipe of Expense	Harga (Rp)		Harga (\$)
Direct Manufacturing Cost (DMC)	Rp	240.655.790.048	\$ 30.385.832
Indirect Manufacturing Cost (IMC)	Rp	18.761.305.864	\$ 2.368.852
Fixed Manufacturing Cost (FMC)	Rp	16.318.933.991	\$ 2.060.471
Manufacturing Cost (MC)	Rp	275.736.029.903	\$ 34.815.155

3. Working Capital (WC)

Tabel 4.21. Working Capital (WC)

Tipe of Expense		Harga (Rp)		Harga (\$)
Raw Material Inventory	Rp	3.695.806.509	\$	466.642
In Process Inventory	Rp	417.781.863	\$	52.750
Product Inventory	Rp	5.848.946.089	\$	738.503
Extended Credit	Rp	8.251.276.070	\$	1.041.828
Available Cash	Rp	25.066.911.809	\$	3.165.014
Working Capital (WC)	Rp	43.280.722.341	\$	5.464.738

4. General Expense

Tabel 4.22. General Expense

Tipe of Expense		Harga (Rp)	Harga (\$)
Administration	Rp	8.272.080.897	\$ 1.044.455
Sales expense	Rp	13.786.801.495	\$ 1.740.758
Research	Rp	9.650.761.047	\$ 1.218.530
Finance	Rp	8.258.802.490	\$ 1.042.778
General Expense (GE)	Rp	39.968.445.929	\$ 5.046.521

5. Total Production Cost (TPC)

Tabel 4.23. Total production cost (TPC)

Tipe of Expense	Harga (Rp)	Harga (\$)
Manufacturing Cost (MC)	Rp 275.736.029.903	\$ 34.815.155
General Expense (GE)	Rp 39.968.445.929	\$ 5.046.521
Total Production Cost (TPC)	Rp 315.704.475.831	\$ 39.861.676

6. Sales (Sa)

Tabel 4.24. Sales (Sa)

Tipe of Expense	Harga (Rp)		Tipe of Expense Harga (Rp)			
Sales	Rp	353.626.117.272	\$	5.092.216.088.723.510		

7. Fixed Cost (Fa)

Tabel 4.25. Fixed Cost (Fa)

Tipe of Expense	Harga (Rp)		Harga (\$)
Depreciation	Rp	13.055.147.192	\$ 1.648.377
Property taxes	Rp	1.631.893.399	\$ 206.047
Insurance	Rp	1.631.893.399	\$ 206.047
Fixed Cost (Fa)	Rp	16.318.933.991	\$ 2.060.471

8. Variable Cost (Va)

Tabel 4.26. Variable Cost (Va)

Tipe of Expense	Harga (Rp)		Harga (\$)
Raw material	Rp	174.230.878.303	\$ 12.099.367
Packaging & shipping	Rp	17.681.305.864	\$ 1.227.868
Utilities	Rp	57.551.295.755	\$ 3.996.618
Royalties and Patents	Rp	3.536.261.173	\$ 245.574
Variable Cost (Va)	Rp	252.999.741.094	\$ 17.569.426

9. Regulated Cost (Ra)

Tabel 4.27. Regulated Cost (Ra)

Tipe of Expense	Harga (Rp)	Harga (\$)
Labor cost	Rp 1.440.000.000	\$ 100.500
Plant overhead	Rp 720.000.000	\$ 50.000
Payroll overhead	Rp 216.000.000	\$ 15.000
Supervision	Rp 144.000.000	\$ 10.000
Laboratory	Rp 144.000.000	\$ 10.000
Administration	Rp 8.272.080.897	\$ 574.470
Finance	Rp 8.258.802.490	\$ 573.528
Sales expense	Rp 13.786.801.495	\$ 957.147
Research	Rp 9.650.761.047	\$ 670.152
Maintenance	Rp 3.263.786.798	\$ 226.652
Plant supplies	Rp 489.568.020	\$ 33.998
Regulated Cost (Ra)	Rp 46.385.800.747	\$ 3.221.236

10. Analisa Kelayakan

Tabel 4.28. Rangkuman Analisa Kelayakan

Kriteria	Terhitung	Persyaratan
Profit before tax	Rp. 37.921.641.441	
Profit after tax	Rp. 18.202.387.892	
ROI sebelum pajak	23,24%	ROI before taxes
ROI setelah pajak	11,15 %	minimum low risk 11 %
		minimum high risk 44%
POT sebelum pajak	3,5 tahun	POT before taxes
POT setelah pajak	5 tahun	maksimum, low risk 5 th
		maksimum, high risk 2th
BEP	46,46%	Berkisar 40 - 60%
SDP	21,88%	Berkisar 20 – 30%
DCFRR	16,93%	> 1,5 bunga bank min = 7,95%

Gambar 4.7. Grafik BEP dan SDP