BAB II

TINJAUAN PUSTAKA

2.1 Analisis Geosintetik Sebagai Perkuatan Lapis Perkerasan Lentur Jalan

Widodo, Subagio, Setiadji (2013) dalam penelitiannya yang berjudul Geosintetik Sebagai Perkuatan lapis Perkerasan Lentur Jalan Raya dalam penelitian ini mencari pengaruhnya terhadap kinerja beton aspal yang telah diperkuat dengan geosintetik. Perencanaan tebal perkerasan dibandingkan antara yang menggunakan geosintetik sebagai perkuatan dan yang geosintetik. Perbandingan ini selanjutnya digunakan untuk memperkirakan tambahan keawetan perkerasan lentur jalan raya jika menggunakan perkuatan geosintetik. Penelitian-penelitian yang dilakukan terhadap beton aspal yang diperkuat dengan geosintetik belum memasukkan paramater-parameter kepadatan beton aspal, kuat tarik atau regangan geosintetik, letak geosintetik dan ketahanan terhadap perendaman air. Untuk melawan aksi-aksi yang terjadi akibat beban dan cuaca yang akan menyebabkan kerusakan pada struktur perkerasan jalan, perlu diteliti kemampuan geosintetik jenis geogrid dalam memberikan peran menambah kuat gesek antar agregat, menambah elastisitas dan kuat tarik, menambah ketahanan terhadap lendutan, dan menambah ketahanan terhadap jejak roda pada perkeraasan lentur jalan raya. Penelitian-penelitian lanjutan untuk mengisi celah penelitian-penelitian sebelumnya dapat dilakukan untuk mengetahui pengaruh parameter beton aspal dan geosintetik terhadap peran geosintetik dalam memperkuat beton aspal.

2.2 Analisis Perkuatan Geotextile Pada Timbunan Kontruksi Jalan Dengan Plaxis 2D.

Tay, Adi, Tjandra, Wulandari (2013) dalam penelitiannya Analisa Perkuatan Geotextile Pada Timbunan Kontruksi Jalan Dengan Plaxis 2D dalam penelitian untuk mengatasi penurunan akibat timbunan diatas tanah lunak ada berbagai cara

untuk mengatasinya. Untuk mendapatkan angka keamanan pada tanah timbunan yang nantinya diproyeksikan terhadap kuat tarik geotekstil. Untuk menggunakan geosintetik sebagai perkuatan pada tanah lunak, diperlukan geosintetik dengan nilai kuat tarik yang paling optimum. Dari analisa perbandingan antara angka keamanan dengan kuat tarik, dan perbandingan antara penurunan dan kuat tarik, penulis dapat menentukan nilai kuat tarik optimum yang dapat digunakan. Dari perbandingan antara angka keamanan dan kuat tarik di pilih nilai kuat tarik 600 kN/m sebagai kuat tarik optimum, karena semakin besar nilai kuat tarik geotekstil yang digunakan, nilai angka keamanan yang diperoleh tidak lagi bertambah besar. Untuk perbandingan antara penurunan dan kuat tarik, terlihat bahwa penurunan yang terjadi hanya memiliki selisih yang sangat kecil, maka pada perbandingan ini juga dipilih nilai kuat tarik optimum yaitu 600 kN/m. karena perbedaan antara nilai penurunan kuat tarik 600 kN/m dan 800 kN/m tidaklah besar. Oleh karena itu, dari hasil analisa tersebut penulis menentukan kuat tarik 600 kN/m sebagai nilai kuat tarik optimum yang dapat digunakan sebagai perkuatan.

2.3 Analisis Geotextile Sebagai Alternatif Perbaikan Tanah Terhadap Penurunan Pondasi Dangkal

Zaika, Kombino (2012) dalam penelitiannya Penggunann Geotextile Sebagai Alternatif Perbaikan Tanah Terhadap Penurununan Pondasi Dangkal dalam penelitian ini menghitung pengaruh pemasangan perkuatan pada penurunan pondasi dangkal pada tanah lunak di kawasan Aie Pacah Padang. Sebelum diberi perkuatan, besar penurunan yang terjadi pada lapisan tanah lunak melewati batas penurunan izin sehingga perlu diberikan perlakuan khusus agar dapat memikul beban sesuai dengan yang kita rencanakan. Dalam kasus tanah di Aie Pacah ini, direkomendasikan menggunakan 2 lapis geotextile. Penggunaan geotektile pada pasir pada beban yang lebih kecil dari 1 kip/ft2 akan memberikan penuruan yang lebih kecil tanpa geotextile dibanding menggunakan geotextile. Ini terjadi karena pasir sudah memberikan kontribusi terhadap kekuatan tanah. Sehingga geotextile tidak berfungsi. Untuk beban yang lebih besar dari 1 kip/ft2 pada tanah pasir, geotextile berfungsi sebagaimana mestinya.

2.4 Analisis Stabilitas Lereng Pada Tanah Clay Shale

Alhadar, Asrida, Prabayanti, Hardiyati (2014) dalam penelitiannya Analisis Stabilitas Pada Tanah Clay Shale proyek Jalan Tol Semarang-Solo Paket VI Sta. 22+700 s/d. 22+775. Memiliki tujuan yaitu untuk mencari nilai safety factor (SF) yang memenuhi persyaratan yaitu sebesar 1,433 nilai ini lebih besar dari yang disyaratkan 1,40. Berdasarkan kondisi geologi dan geoteknik, Jalan Tol Semarang-Solo Paket VI Sta. 22+700 s/d. 22+775 mempunyai lapisan tanah yang homogen yaitu tanah clay shale. Hasil analisis menunjukkan bahwa kondisi tanah clay shale mengandung mineral montmorillonite merupakan faktor penyebab utama terjadinya longsoran, selain itu juga faktor kemiringan lereng yang curam menyebabkan terjadinya longsor. Safety Factor (SF) pada Jalan Tol Semarang-Solo Paket VI Sta. 22+700 s/d. 22+775 sebesar 0,875. Angka keamanan ini lebih kecil dibandingkan SF minimal yang disyaratkan yaitu sebesar 1,4 sehingga dapat disimpulkan lereng dalam keadaan tidak aman dan memerlukan penanganan longsor. Untuk mengatasi kelongsoran tanah yang terjadi di Jalan Tol Semarang-Solo Paket VI Sta. 22+700 s/d. 22+775, diberikan penanganan dengan merubah geometri lereng dan pemasangan bored pile. Penanganan kelongsoran dilakukan dengan merubah geometri lereng dan memasang konstruksi bored pile menghasilkan angka keamanan sebesar 1,433, angka keamanan ini lebih besar dibandingkan SF minimal disyaratkan yaitu sebesar 1,4 sehingga dapat disimpulkan bahwa bored pile memenuhi syarat untuk menerima beban.

2.5 Analisis Variasi Panjang Lapisan Dan Jarak Vertikal Antar Geotextile Terhadap Daya Dukung Tanah

Prasasti, Munawir, Suroso (2013) dalam penelitiannya Pengaruh Variasi Panjang Lapisan Dan Jarak Vertikal Antar Geotextile Terhadap Daya Dukung Tanah untuk analisisnya dilakukan dengan menganggap bahwa tanah berkelakuan sebagai bahan yang bersifat plastis. Ada banyak cara pendekatan analitis yang dapat dilakkan untuk menghitung daya dukung tanah untuk pondasi yang berlokasi di dekat atau diatas lereng, yaitu dengan menggunakan metode *Hansen* dan *Vesic*, *Shields* (1990), *Meyerhof* (1957). Stabilisasi tanah untuk meningkatkan sifat mekanis massa tanah, meningkatkan faktor keamanan lereng dan menstabilkan

lereng dengan kemiringan curam (kurang dari 70°). Mekanisme Transfer Beban antara geotekstil dengan Tanah. Berdasarkan penelitian yang dilakukan dengan pengaruh variasi panjang lapisan dan jarak vertikal antarlapis perkuatan geotekstil pada pemodelan lereng pasir kepadatan 74%, didapatkan kesimpulan sebagai berikut. Semakin panjang lapisan geotekstil yang digunakan, maka daya dukung yang mampu di tahan semakin bertambah. Semakin rapat jarak vertikal antar lapis geotekstil, maka beban runtuh yang mampu ditahan oleh tanah semakin besar pula. Dalam penelitian ini terlihat bahwa berdasarkan analisis nilai BCIqu dan BCIs yang terjadi, penempatan lokasi geotekstil yang paling maksimum adalah saat pemasangang geotekstil pada rasio L/H=0,59 dan Sv/H=0,15.

2.6 Perbandingan Penelitian Yang Terdahulu Dengan Penelitian Yang Akan Dilakukan.

Perbandingan penelitian sekarang dengan beberapa penelitian diatas disajikan dalam bentuk tabel, dapat dilihat pada Tabel 2.1 berikut:

Tabel 2. 1 Perbandingan penelitian sekarang dengan beberapa penelitian sebelumnya

NO	ASPEK	Widodo, Subagio, Setiadji (2013)	Tay, Adi, Tjandra, Wulandari (2013)	Zaika, Kombino (2012)	Alhadar, Asrida, Prabayanti, Hardiyati (2014)	Prasasti, Munawir, Suroso (2013)	Penulis (2018)
1	JUDUL	Analisis Geosintetik sebagai lapis perkuatan lentur jalan raya	Analisis Perkuatan Geotextile Pada Timbunan Kontruksi Jalan Dengan Plaxis 2D	Analisis Geotextile Sebagai Alternatif Perbaikan Tanah Terhadap Penurunan Pondasi Dangkal	Analisis Stabilitas Lereng Pada Tanah Clay Shale Proyek Jalan Tol Semarang-Solo Paket VI STA 22+700 Sampai 22+775	Analisis Variasi Panjang Lapisan Dan Jarak Vertikal Antar Geotextile Terhadap Daya Dukung Tanah	Analisis Stabilitas Timbunan Lereng pada Jalan dengan Perkuatan Geotekstil Menggunakan Program Plaxis pada Jalan Tol Terbanggi Besar – Pemantang Panggang STA 3+650, Lampung
2	TUJUAN	Mencari pengaruhnya terhadap kinerja beton aspal yang telah diperkuat dengan geosintetik.	Untuk mengatasi penurunan akibat timbunan diatas tanah lunak.	Untuk menghitung pengaruh pemasangan perkuatan pada penurunan pondasi dangkal pada tanah lunak di kawasan Aie Pacah Padang.	Untuk mencari nilai safety factor (SF) yang memenuhi persyaratan sebesar 1,40.	Untuk mencari daya dukung tanah mendukung pondasi dari struktur lereng yang menggunakan kepadatan yang telah ditetapkan yaitu kepadatan 74%.	Untuk mengetahui angka aman dan mencari besarnya konsolidasi (penurunan) pada timbunan lereng dengan kondisi tanah asli, replacement 1m, perkuatan geotekstil, dengan tinggi timbunan bervasiasi 2m hingga 8m

Lanjutan Tabel 2. 2 Perbandingan penelitian sekarang dengan beberapa penelitian sebelumnya

3	METODE	Metode	Analisis	Analisis manual	Analisis manual	Analisis dilakukan	Analisis perhitugan
		penelitian dilakukan	dilakukan dengan program	menggunakan metode Fellenius	menggunakan	dengan program <i>Program Plaxis 2D</i>	dengan <i>Plaxis V.8.6</i> untuk mengetahui
		dengan cara	Program Plaxis	dan Bishop	metode		kestabilan faktor angka
		perkerasan dibandingkan	2D	sedangkan analisis metode elemen	Fellenius dan		aman timbunan lereng dan konsolidasi yang
		antara yang		hingga	Bishop		terjadi akibat beban.
		menggunakan geosintetik		menggunakan software Plaxis	sedangkan		Perhitungan manual untuk kebutuhan
		sebagai		V.8.2	analisis metode		geotekstil.
		perkuatan dan yang dapat			elemen hingga		
		geosintetik.			menggunakan		
					software Plaxis		
					V.8.2.		
4	HASIL	Menambah kuat	Karena	Kasus tanah di Aie	Safety Factor (SF)	Dalam penelitian ini	Pada timbunan tanah
		gesek antar	perbedaan antara	Pacah ini,	pada Jalan Tol	terlihat bahwa	asli dengan tinggi 6m
		agregat,	nilai penurunan	direkomendasikan	Semarang-Solo	berdasarkan analisis	dan 8m belum
		menambah	kuat tarik 600	menggunakan 2	Paket VI Sta.	nilai BCIqu dan	memenuhi syarat angka
		elastisitas dan	kN/m dan 800	lapis geotextile.	22+700 s/d.	BCIs yang terjadi,	aman sebesar 1,3, pada
		kuat tarik,	kN/m tidaklah	Penggunaan	22+775 sebesar	penempatan lokasi	timbunan dengan
		menambah	besar.	geotektile pada	0,875. Angka		
		ketahanan		pasir pada beban	keamanan ini lebih		
		terhadap			kecil dibandingkan		
		lendutan,					

Lanjutan Tabel 2. 3 Perbandingan penelitian sekarang dengan beberapa penelitian sebelumnya

dan menambah ketahanan terhadap jejak roda pada perkeraasan lentur jalan raya. lentur jalan raya. dapat digunal sebagai perkuatan.	dari 1 kip/ft² akan memberikan penurunan yang rik lebih kecil tanpa ng geotextile	dalam keadaan tidak aman dan memerlukan penanganan longsor. Untuk mengatasi kelongsoran tanah yang terjadi diberikan penanganan dengan merubah geometri lereng dan pemasangan bored pile. Dan	adalah saat pemasangan geotekstil pada rasio	memenuhi syarat sedang 8m blm memenuhi syarat angka
--	---	---	--	---