DAFTAR ISI

Halaman Judul	i
Halaman Pengesahan	ii
PERNYATAAN BEBAS PLAGIASI	iii
DEDIKASI	iv
KATA PENGANTAR	v
DAFTAR ISI	viii
DAFTAR TABEL	xi
DAFTAR GAMBAR	xii
DAFTAR NOTASI DAN SINGKATAN	xvi
ABSTRAK	xvii
ABSTRACT	xviii
BAB I PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	2
1.3 Tujuan Penelitian	3
1.4 Manfaat Penelitian	3
1.5 Batasan Penelitian	3
BAB II TINJAUAN PUSTAKA	4
2.1 Tinjauan Umum	4
2.2 Terowongan	5
2.3 Penelitian Terkait	6
2.3.1 Penelitian Mengenai Perilaku Terowongan	6
2.3.2 Jurnal Mengenai Desain Konstruksi Terowongan	7
2.3.3 Jurnal Mengenai Sistem Penyangga Terowongan	7
2.3.4 Jurnal Mengenai Angka Keamanan (Safety Factor)	8
BAB III LANDASAN TEORI	11
3.1 Pengertian Terowongan	11
3.2 Stabilitas Lereng	11
	viii

3.3	Analis	is Stabilitas Lereng Dengan Metode Fellenius	12
3.4	New A	ustrian Tunneling Method	16
3.5	Sistem	n Penyangga Terowongan	18
	3.5.1	Shotcrete	19
	3.5.2	Mesh Kawat (Wiremesh)	21
	3.5.3	Steel Rib	21
	3.5.4	Rockbolt	22
	3.5.5	Grouting	22
3.6	Metod	e Elemen Hingga Plaxis	23
3.7	Beban	Gempa	26
BAB IV	METC	DDE PENELITIAN	27
4.1	Lokasi	i Penelitian	27
4.2	Bahan	dan Alat	28
4.3	Tahapa	an	28
	4.3.1	Pengumpulan Data Sekunder	28
	4.3.2	Analisis Data Lapangan	29
	4.3.3	Langkah-Langkah Analisis Data	29
4.4	Param	eter Penelitian	31
	4.4.1	Data Tanah	31
	4.4.2	Data Wiremesh	31
	4.4.3	Data Rockbolt	32
	4.4.4	Beban Gempa	32
4.5	Langk	ah-Langkah Analisis Menggunakan Plaxis v8.2	33
	4.5.1	Pembuatan Material Sets Tanah	37
	4.5.2	Pembuatan Material Sets Pelat Wiremesh	38
	4.5.3	Penyusunan Material Sets Rockbolt	39
	4.5.4	Tahap Perhitungan	39
BAB V	ANAL	ISIS DAN PEMBAHASAN	36
5.1	Gamba	aran Umum Proyek	36
5.2	Data C	Geoteknik	36
5.3	Data P	Perkuatan Terowongan	37
			ix

5.4 Analisis Stabilitas Terowongan	38
5.5 Analisis Stabilitas Terowongan Menggunakan Program Plaxis v8.2	39
5.6 Hasil Perhitungan Program Plaxis v8.2	40
5.7 Hasil Analisis dan Pembahasan	57
BAB VI KESIMPULAN DAN SARAN	61
6.1 Kesimpulan	61
6.2 Saran	61
DAFTAR PUSTAKA	63
LAMPIRAN	65

DAFTAR TABEL

Tabel 2.1	Perbandingan Penelitian Terdahulu dengan Penelitian yang Akan	
	Dilakukan	8
Tabel 3.1	Nilai Faktor Aman Terhadap Bidang Longsor	16
Tabel 3.2	Peningkatan Kekuatan Shotcrete terhadap Waktu	20
Tabel 4.1	Data Plat Wiremesh	31
Tabel 4.2	Data Rockbolt	32
Tabel 5.1	Hitungan Faktor Keamanan Pada Terowongan	39
Tabel 5.2	Perbandingan Nilai Safety Factor dan Total Displacement Saat Tan	pa
	Perkuatan	42
Tabel 5.3	Perbandingan Nilai Safety Factor dan Total Displacement Dengan	
	Perkuatan Wiremesh	44
Tabel 5.4	Perbandingan Nilai Safety Factor dan Total Displacement Dengan	
	Perkuatan Wiremesh + 1 Rockbolt	47
Tabel 5.5	Perbandingan Nilai Safety Factor dan Total Displacement Dengan	
	Perkuatan Wiremesh + 2 Rockbolt	49
Tabel 5.6	Perbandingan Nilai Safety Factor dan Total Displacement Dengan	
	Perkuatan Wiremesh + 3 Rockbolt	52
Tabel 5.7	Perbandingan Nilai Safety Factor dan Total Displacement Dengan	
	Perkuatan Wiremesh + 4 Rockbolt	54
Tabel 5.8	Perbandingan Nilai Safety Factor dan Total Displacement Dengan	
	Perkuatan Wiremesh + 5 Rockbolt	56

DAFTAR GAMBAR

Gambar 3.1	Gaya-gaya yang bekerja pada irisan	13
Gambar 3.2	Penjelasan Prinsip Penyanggaan	18
Gambar 3.3	Sketsa sistem shotcrete dry mix	20
Gambar 3.4	Tipe Steel Rib	22
Gambar 3.5	Pembebanan pada lapisan terowongan pada compensation	
	grouting	23
Gambar 3.6	Contoh Pemodelan Plane-Stain dan Axsimetri	26
Gambar 4.1	Peta Lokasi Penelitian	27
Gambar 4.2	Peta Kesampaian Daerah Lokasi Penelitian	27
Gambar 4.3	Peta Rencana Terowongan dan Terowongan Eksisting	28
Gambar 4.4	Bagan Alir Metodologi Analisis	30
Gambar 4.5	Pemodelan Data Tanah	31
Gambar 4.6	Peta Zonasi Gempa Indonesia	32
Gambar 4.7	Peta Zonasi Gempa Indonesia (Purwokerto)	33
Gambar 4.8	Nilai Spektral Percepatan Gempa di Purwokerto	33
Gambar 4.9	Material Sets Tanah	34
Gambar 4.10	Material Sets Pelat Wiremesh	34
Gambar 4.11	Material Sets Rockbolt	35
Gambar 4.12	2 Tahap Perhitungan	35
Gambar 5.1	Pemodelan Data Tanah	37
Gambar 5.2	Potongan Melintang Struktur Terowongan	38
Gambar 5.3	Analisis Stabilitas Menggunakan Metode Fellenius	38
Gambar 5.4	Nilai Angka Keamanan Saat Pengeboran	40
Gambar 5.5	Arah Pergerakan Tanah Saat Pengeboran	40
Gambar 5.6	Daerah Potensial Keruntuhan Saat Pengeboran	41
Gambar 5.7	Nilai Angka Keamanan Dengan Beban Gempa Setelah	
	Pengeboran	41

xii

Gambar 5.8	Arah Pergerakan Tanah Dengan Beban Gempa Setelah	
	Pengeboran	41
Gambar 5.9	Daerah Potensial Keruntuhan Dengan Beban Gempa Setelah	
	Pengeboran	42
Gambar 5.10	Nilai Angka Keamanan Dengan Perkuatan Wiremesh	42
Gambar 5.11	Arah Pergerakan Tanah Dengan Perkuatan Wiremesh	43
Gambar 5.12	2 Daerah Potensial Keruntuhan Dengan Perkuatan Wiremesh	43
Gambar 5.13	Nilai Angka Keamanan Dengan Beban Gempa Setelah Adanya	
	Perkuatan Wiremesh	43
Gambar 5.14	Arah Pergerakan Tanah Dengan Beban Gempa Setelah Adanya	
	Perkuatan Wiremesh	44
Gambar 5.15	Daerah Potensial Keruntuhan Dengan Beban Gempa Setelah Ada	nya
	Perkuatan Wiremesh	44
Gambar 5.16	Nilai Angka Keamanan Dengan Perkuatan Wiremesh dan 1	
	Rockbolt	45
Gambar 5.17	Arah Pergerakan Tanah Dengan Perkuatan Wiremesh dan 1	
	Rockbolt	45
Gambar 5.18	Daerah Potensial Keruntuhan Dengan Perkuatan Wiremesh dan 1	
	Rockbolt	45
Gambar 5.19	Nilai Angka Keamanan Dengan Beban Gempa Setelah Adanya	
	Perkuatan Wiremesh dan 1 Rockbolt	46
Gambar 5.20	Arah Pergerakan Tanah Dengan Beban Gempa Setelah Adanya	
	Perkuatan Wiremesh dan 1 Rockbolt	46
Gambar 5.21	Daerah Potensial Keruntuhan Dengan Beban Gempa Setelah Ada	nya
	Perkuatan Wiremesh dan 1 Rockbolt	46
Gambar 5.22	2 Nilai Angka Keamanan Dengan Perkuatan Wiremesh dan 2	
	Rockbolt	47
Gambar 5.23	Arah Pergerakan Tanah Dengan Perkuatan Wiremesh dan 2	
	Rockbolt	47
Gambar 5.24	Daerah Potensial Keruntuhan Dengan Perkuatan Wiremesh dan 2	
	Rockbolt	48
		xiii

Gambar 5.25 Nilai Angka Keamanan Dengan Beban Gempa Setelah Adanya	
Perkuatan Wiremesh dan 2 Rockbolt	48
Gambar 5.26 Arah Pergerakan Tanah Dengan Beban Gempa Setelah Adanya	
Perkuatan Wiremesh dan 2 Rockbolt	48
Gambar 5.27 Daerah Potensial Keruntuhan Dengan Beban Gempa Setelah Adar	nya
Perkuatan Wiremesh dan 2 Rockbolt	49
Gambar 5.28Nilai Angka Keamanan Dengan Perkuatan Wiremesh dan 3	
Rockbolt	50
Gambar 5.29 Arah Pergerakan Tanah Dengan Perkuatan Wiremesh dan 3	
Rockbolt	50
Gambar 5.30Daerah Potensial Keruntuhan Dengan Perkuatan Wiremesh dan 3	
Rockbolt	50
Gambar 5.31 Nilai Angka Keamanan Dengan Beban Gempa Setelah Adanya	
Perkuatan Wiremesh dan 3 Rockbolt	51
Gambar 5.32 Arah Pergerakan Tanah Dengan Beban Gempa Setelah Adanya	
Perkuatan Wiremesh dan 3 Rockbolt	51
Gambar 5.33 Daerah Potensial Keruntuhan Dengan Beban Gempa Setelah Adar	nya
Perkuatan Wiremesh dan 3 Rockbolt	51
Gambar 5.34 Nilai Angka Keamanan Dengan Perkuatan Wiremesh dan 4	
Rockbolt	52
Gambar 5.35 Arah Pergerakan Tanah Dengan Perkuatan Wiremesh dan 4	
Rockbolt	52
Gambar 5.36Daerah Potensial Keruntuhan Dengan Perkuatan Wiremesh dan 4	
Rockbolt	53
Gambar 5.37Nilai Angka Keamanan Dengan Beban Gempa Setelah Adanya	
Perkuatan Wiremesh dan 4 Rockbolt	53
Gambar 5.38 Arah Pergerakan Tanah Dengan Beban Gempa Setelah Adanya	
Perkuatan Wiremesh dan 4 Rockbolt	53
Gambar 5.39Daerah Potensial Keruntuhan Dengan Beban Gempa Setelah Adar	nya
Perkuatan Wiremesh dan 4 Rockbolt	54

Gambar 5.40 Nilai Angka Keamanan Dengan Perkuatan Wiremesh dan 5	
Rockbolt	54
Gambar 5.41 Arah Pergerakan Tanah Dengan Perkuatan Wiremesh dan 5	
Rockbolt	55
Gambar 5.42 Daerah Potensial Keruntuhan Dengan Perkuatan Wiremesh dan 5	
Rockbolt	55
Gambar 5.43 Nilai Angka Keamanan Dengan Beban Gempa Setelah Adanya	
Perkuatan Wiremesh dan 5 Rockbolt	55
Gambar 5.44 Arah Pergerakan Tanah Dengan Beban Gempa Setelah Adanya	
Perkuatan Wiremesh dan 5 Rockbolt	56
Gambar 5.45 Daerah Potensial Keruntuhan Dengan Beban Gempa Setelah Adam	iya
Perkuatan Wiremesh dan 5 Rockbolt	56
Gambar 5.46Grafik Nilai Angka Keamanan Pada Tahap Konstruksi dan Tahap	
Penambahan Beban Gempa	59
Gambar 5.47 Nilai Deformasi Pada Tahap Konstruksi dan Tahap Penambahan	
Beban Gempa	59

DAFTAR NOTASI DAN SINGKATAN

OC	: Overconsolidated
NC	: Normally consolidated
OCR	: Overconsolidated Ratio
Сс	: Compression Index (Indeks pemampatan)
LL	: Liqiud Limit
W	: Kadar air
Cv	: Coeffisient of Consolidation (Koefisien konsolidasi)
V	: Volume
Н	: Tebal lapisan tanah
ΔH	: Perubahan volume
e ₀	: Angka pori awal
e_1	: Angka pori pada perubahan volume tertentu
Δe	: Perubahan angka pori
Cr	: Indeks pemapampatan kembali
P _c '	: Tekanan prakonsolidasi
Δp	: Tambahan tegangan
P0'	: Tekanan <i>overburden</i> efektif mula-mula
Т	: Waktu penurunan
Tv	: Faktor waktu (<i>time factor</i>)
γ	: Berat isi
φ	: sudut geser
с	: cohe