BAB II STUDI PUSTAKA

2.1 TINJAUAN UMUM

Pengerjan pelat lantai pada umumnya banyak menggunakan material beton karena memiliki kekuatan yang tinggi, tahan terhadap pengkaratan/pembusukan oleh kondisi lingkungan dan mudah dibentuk sesuai dengan kebutuhanya (Tjokrodimuldjo, 2007). Seiring dengan berkembangnya zaman pengerjaan pelat lantai dengan material beton berkembang dari beton konvensional ke beton pracetak.

Pelat beton konvensional semua pengerjaan pelat lantai dilakukan di lokasi proyek, sedangkan beton pracetak tahap pengerjaanya dilakukan di pabrik, setelah selesai di produksi maka beton pracetak di angkut ke lokasi proyek dan di susun menjadi satu kesatuan yang utuh. Pelat lantai dengan menggunakan pracetak diharapkan mampu memenuhi kebutuhan konstruksi saat ini dan dapat meminimalisir pengeluaran biaya. Koefisien kebutuhan untuk pekerjaan pelat lantai konvensional dapat dilihat pada tabel 2.1

Tabel 2.1 Koefisien kebutuhan pekerjaan pelat lantai konvensional

Koefisien	Satuan	Pekerjaan
	1 m2	Memasang Bekisting untuk Lantai
		Bahan
0.04	m3	Kayu Klas III (Terentang)
0.4	Kg	Paku Biasa 2" - 5"
0.2	Ltr	Minyak Bekisting
0.015	m3	Balok Kayu Klas II (Borneo)
0.35	Lbr	Plywood tebal 9mm
6	Btg	Dolken Kayu Galam diameter 8 - 10 cm / 4 m
		Tenaga
0.66	ОН	Pekerja
0.33	ОН	Tukang Kayu
0.033	ОН	Kepala Tukang

Lanjutan Tabel 2.1 Koefisien kesbutuhan untuk pekerjaan pelat lantai

Koefisien	Satuan	Pekerjaan	
0.033	ОН	Mandor	
1m3		Membuat Beton mutu f'c=31,2 MPa (K350), slum (12±2)cm, w/c = 0,48	
		Bahan	
448	Kg	Portland Semen	
667	Kg	Pasir Beton	
1,000	Kg	krikil (maksimum 30mm)	
215	ltr	air	
		Tenaga	
2.10	ОН	Pekerja	
0.350	OH	Tukang Batu	
0.035	OH	Kepala Tukang	
0.105	OH	Mandor	
	1 Kg	Pembesian dengan Besi Polos atau Besi Ulir	
		Bahan	
1.05	Kg	Besi Beton (polos/ulir)	
0.015	Kg	Kawat Beton	
		Tenaga	
0.01	ОН	Pekerja	
0.01	ОН	Tukang Besi	
0.001	OH	Kepala Tukang	
0.0004	ОН	Mandor	

Sumber: (SNI Analisa Harga Satuan, 2013)

2.2 PERBANDINGAN PENELITIAN DENGAN PENELITIAN TERDAHULU

2.2.1 Penelitian Terdahulu

Adapun penelitian terdahulu yang pernah dilakukan adalah sebagai berikut:

1. Atmaja, E.K (2015) tentang Analisis Perbandingan Biaya Pekerjaan Struktur Pelat Lantai Bekesting Konvensional dan *Floordeck* (Studi kasus proyek pembangunan SD IT AL-Auliya 2 Kota Balikpapan).

Penelitian ini bertujuan untuk dapat mengetahui tingkat efisiensi pekerjaan struktur pelat lantai menggunakan bekesting konvensional, sehingga didapat hasil pekerjaan pelat lantai manakah yang lebih ekonomis antara pekerjaan

struktur pelat lantai menggunakan pelat besi (*floordeck*) dan pekerjaan struktur pelat lantai menggunakan bekesting konvensional.

Manfaat dari penelitian ini adalah memberikan perencanaan biaya pekerjaan struktur pelat lantai dengan menggunakan pelat besi (*floordeck*), serta perhitungan biaya pekerjaan struktur pelat lantai dengan menggunakan bekesting konvensional, sehingga didapat perbedaan biaya yang signifikan antara pekerjaan struktur pelat lantai dengan menggunakan bekesting konvensional.

Dari penelitian yang dilakukan didapatkan hasil bahwa perhitungan biaya struktur pelat lantai pembangunan SD IT AL-Auliya yang memiliki 3 lantai, diperoleh tingkat efisiensi antara pekerjaan struktur pelat lantai menggunakan bekesting konvensional sebesar 20%. Dimana hasil biaya pekerjaan struktur pelat lantai bekesting *floordeck* sebesar Rp 534.728.637 dan untuk struktur pelat lantai bekesting konvensional sebesar Rp 640.564.583, hasil ini menunjukan bahwa pekerjaan pelat lantai menggunakan *floordeck* dan bekesting konvensional sebesar Rp 105.853.945. Hasil ini menunjukan bahwa pekerjaan pelat lantai menggunakan *floordeck* terdapat penghematan sebesar 20% terhadap pekerjaan pelat lantai menggunakan bekesting konvensional.

 Naufal, A.K (2014) tentang Studi Perbandingan Penggunaan Teknologi Pelat Beton Konvensional dan Pelat Beton Bondek (Studi kasus Gedung Ball Room Univerista Muhammadiyah Makassar)

Penelitian ini bertujuan untuk mengetahui seberapa besar perbedaan rencana biaya khususnya pada materialnya terhadap pemakaian pelat beton konvensional dengan pelat beton bondek dan untuk mengetahui teknologi yang tepat untuk digunakan pada konstruksi pelat gedung Ball Room Universitas Muhammadiyah Maksasar. Dalam penelitian ini hanya terfokuskan pada perhitungan biaya materialnya saja antara dua pekerjaan struktur pelat lantai tersebut.

Manfaat yang didapat dari penelitian ini yaitu dapat mengetahui perbedaan pekerjaan teknologi pelat beton konvensional dan pelat beton bondek dari lima aspek yaitu aspek pembiayaan material, aspek waktu pelaksanaan, aspek proses pelaksanaan, aspek waste, dan aspek pengadaan material.

Dari penelitian ini didapat dari kesimpulan penelitian yaitu:

- a. Berdasarkan aspek biaya material, pelat beton bondek lebih murah3,2% disbanding pelat konvensional.
- b. Berdasarkan aspek proses pelaksanaan pelat beton bondek lebih mudah dibandingkan pelat konvensional.
- c. Berdasarkan aspek waktu pelaksanaan, pelat beton bondek lebih cepat33,3% dibandingkan pelat betoon konvensional
- d. Berdasarkan aspek waste pelat beton bondek menghasilkan sampah lebih sedikit dari pada pelat beton konvensional
- e. Berdasarkan aspek pengadaan material, material untuk pekerjaan pelat beton konvensional lebih mudah di dapatkan dibandinglan dengan pekerjaan pelat beton bondek.

3. Aprilia, R (2014) tentang pelat beton Bertulang

Penelitian ini bertujuan untuk mengetahui definisi dari pelat beton bertulang dan penerapan pelat beton bertulang dalam suatu konstruksi bangunan serta mengetahui kelebihan dan kekurangan dari beton. Penelitian ini hanya terfokuskan pada sistem penulangan pada pelat beton bertulang dan sistem penerapan pelat beton bertulang dalam dunia konstruksi.

Manfaat yang didapat dari penelitian adalah menambah ilmu tentang penerapan pelat beton bertulang dalam dunia konstruksi, sistem penulangan, tumpuan serta jenis-jenis perletakan pelat pada balok yang sangat berguna terutama dalam dunia kerja.

Dari penelitian maka didapa hasil dari kesimpulan penelitian adalah pelat beton bertulang sifatnya sangat kaku dan arahnya horizontal, sehingga pada bangunan gedung pelat ini berfungsi sebagai diafragma atau unsur pengaku horizontal yang sangat bermanfaat untuk mendukung ketegaran balok portal dengan memperhitungkan beban yang bekerja pada pelat terhadap beban gravitasi. Jenis perletakan pelat pada balok yaitu terletak bebas, terjepit bebas,

terjepit elastis dan terjepit penuh. Dan berdasarkan tumupan terdiri dari satu tumpuan, dua tumpuan saling sejajar dan empat tumpuan saling sejajar.

2.2.2 Perbedaan Penelitian yang Dilakukan

Dari tinjauan pustaka di atas maka diperoleh rincian perbedaan dari peneliti yang dilakukan pada tabel 2.2

Tabel 2.2 Perbedaan Peneliti Terdahulu

No	Penulis	Judul	Tujuan dan Metode	Hasil penelitian
1	Atmaja, E.K	Analisis	Penelitian ini bertujuan	Dari penelitian
	(2015)	Perbandingan	untuk dapat	yang dilakukan
		Biaya Pekerjaan	mengetahui tingkat	didapatkan hasil
		Struktur Pelat	efisiensi pekerjaan	bahwa
		Lantai Bekesting	struktur pelat lantai	menggunakan
		Konvensional dan	menggunakan	bekesting
		Floordeck (Studi	bekesting	konvensional
		kasus proyek	konvensional, sehingga	sebesar 20%.
		pembangunan SD	didapat hasil pekerjaan	Dimana hasil
		IT AL-Auliya 2	pelat lantai manakah	biaya pekerjaan
		Kota Balikpapan)	yang lebih ekonomis	struktur pelat
			antara pekerjaan	lantai
			struktur pelat lantai	menggunakan
			menggunakan pelat	floordeck sebesar
			besi (floordeck) dan	Rp 534.728.637
			pekerjaan struktur pelat	dan untuk struktur
			lantai menggunakan	pelat lantai
			bekesting konvensional	bekesting
				konvensional
				sebesar Rp
				640.564.583.

Lanjutan Tabel 2.2 Perbedaan Peneliti Terdahulu

No	Penulis	Judul	Tujuan dan Metode	Hasil penelitian
2	Naufal, A.K	Studi	Penelitian ini bertujuan	Dari penelitian ini
	(2014)	Perbandingan	untuk mengetahui	didapat dari
		Penggunaan	seberapa besar	kesimpulan
		Teknologi Pelat	perbedaan rencana	penelitian yaitu:
		Beton	biaya khususnya pada	Pelakasanaan
		Konvensional dan	materialnya terhadap	pelat bondek
		Pelat Beton	pemakaian pelat beton	lebih murah
		Bondek (Studi	konvensional dengan	3,2%, proses
		kasus Gedung	pelat beton bondek dan	lebih mudah
		Ball Room	untuk mengetahui	dilaksanakan,
		Univerista	teknologi yang tepat	waktu
		Muhammadiyah	untuk digunakan pada	pelaksanaan lebih
		Makassar)	konstruksi pelat gedung	cepat 33,3%,
			Ball Room Universitas	mengasilkan
			Muhammadiyah	sampah lebih
			Maksasar.	sedikit. Dan
				untuk material
				pelat
				konvensional
				lebih mudah
				didapatkan
3	Aprilia, R	Pelat Beton	Penelitian ini bertujuan	Dari penelitian
	(2014)	Bertulang	untuk mengetahui	maka didapa hasil
			definisi dari pelat beton	dari kesimpulan
			bertulang dan	penelitian adalah
			penerapan pelat beton	pelat beton
			bertulang dalam suatu	bertulang sifatnya
			konstruksi bangunan	sangat kaku dan
			serta mengetahui	arahnya

Lanjutan Tabel 2.2 Perbedaan Penelitian Terdahulu

No	Penulis	Judul	Tujuan dan Metode	Hasil penelitian
			kelebihan dan	horizontal,
			kekurangan dari beton.	sehingga pada
			Penelitian ini hanya	bangunan gedung
			terfokuskan pada	pelat ini berfungsi
			sistem penulangan pada	sebagai diafragma
			pelat beton bertulang	atau unsur
			dan sistem penerapan	pengaku
			pelat beton bertulang	horizontal yang
			dalam dunia konstruksi.	sangat bermanfaat
				untuk mendukung
				ketegaran balok
				portal dengan
				memperhitungkan
				beban yang
				bekerja pada pelat
				terhadap beban
				gravitasi tumpuan
				saling sejajar

2.2.3 Perbedaan Penelitian Saat Ini Dengan Penelitian Terdahulu

Perbedaan dengan penelitian yang diajukan dengan penelitian terdahulu adalah sebagai berikut:

- 1. Penulis membahas biaya pekerjaan pelat konvensional dengan pelat pracetak tipe *flyslab* dan membandingkan seberapa besar selisih biaya pada tahap pelaksanaan dan mentukan metode manakah yang lebih ekonomis dengan mutu sesuai dengan rencana.
- 2. Objek penelitian dilakukan di Rusunawa Jongke, Sleman, Yogyakarta