BAB IV METODOLOGI PENELITIAN

4.1 **PEMODELAN STRUKTUR**

Dalam penelitian ini, model struktur beton yang akan dianalisis adalah portal tiga dimensi. Adapun gambar pemodelan dapat dilihat pada Gambar 4.1 dengan beberapa informasi yang berhubungan dengan model bangunan yang akan dianalisis dirangkum dalam Tabel 4.1.

1.	Fungsi bangunan	Hunian atau bangunan untuk tempat		
		tinggal (apartemen)		
2.	Letak bangunan	Yogyakarta		
3.	Jenis tanah dasar	Tanah sedang		
4.	Jumlah lantai	4 lantai		
5.	Tinggi antar lantai	4,0 m		
6.	Panjang bangunan arah X	4@6 m = 24 m		
7.	Panjang bangunan arah Y	6@6 m = 36 m		
8.	Pemodelan	3 dimensi (open frame)		
9.	Mutu beton pada kolom, balok,	25 MPa		
	dan pelat (f'c)			
10.	Mutu baja tulangan $fy \ (\emptyset < 13)$	240 MPa		
	mm, polos)			
11.	Mutu baja tulangan $fy \ (\emptyset > 13)$	400 MPa		
	mm, ulir)			

Tabel 4.1 Informasi model bangunan yang akan dianalisis

Gambar 4.1 Denah bangunan yang akan diteliti

Gambar 4.2 Gambar tampak bangunan dengan dimensi kolom seragam pada tiap tingkat

Gambar 4.3 Gambar tampak bangunan dengan variasi dimensi kolom pada tiap dua tingkat

4.2 DESAIN STRUKTUR TAHAN GEMPA

Desain struktur tahan gempa meliputi perhitungan pembebanan struktur bangunan, analisis struktur, desain balok, dan desain kolom.

4.2.1 Pembebanan

Perhitungan pembebanan mengacu pada peraturan pembebanan Indonesia untuk gedung SNI 03-1727-1989.

Beban-beban yang bekerja antara lain :

1. Beban mati

Beban mati terdiri dari berat sendiri struktur yaitu pelat, balok, kolom, dan dinding.

2. Beban hidup

Beban hidup untuk hunian adalah 250 kg/m², dan beban hidup untuk lantai atap adalah 100 kg/m².

3. Beban gempa

Beban gempa dihitung dengan mengacu pada tata cara perencanaan ketahanan gempa untuk struktur gedung dan non gedung SNI 03-1726-2012.

4.2.2 Analisis Struktur

Analisis struktur bangunan dilakukan dengan menggunakan program bantu SAP2000 v 14 untuk memudahkan dalam penelitian ini.

4.2.3 Desain Balok Beton Bertulang

Adapun langkah-langkah dalam melakukan perencanaan balok beton bertulang :

- 1. membuat estimasi ukuran balok,
- 2. menghitung momen dan gaya lintang (hasil output SAP2000 v14),
- 3. menghitung kebutuhan tulangan lentur dan tulangan geser balok pada kedua gedung yang ditinjau.

4.2.4 Desain Kolom Beton Bertulang

Adapun langkah-langkah dalam melakukan perencanaan kolom beton bertulang adalah sebagai berikut :

- 1. membuat estimasi ukuran kolom,
- menghitung gaya aksial, momen dan gaya lintang kolom (hasil *output* SAP2000 v14),
- menghitung kebutuhan tulangan kolom pada kedua bangunan yang ditinjau.

4.3 ANALISIS NONLINIER PUSHOVER

4.3.1 Input Parameter FEMA 356 Kedalam Software SAP2000

Parameter yang dipakai dalam penelitian ini adalah FEMA 356, parameter ini akan dijalankan oleh *software* SAP 2000 agar didapatkan grafik hasil *pushover* yang sesuai dengan peraturan analisis yang digunakan. Input parameter FEMA 356 adalah *Define - Pushover Parameter Sets -* FEMA 356 *Coefficient Method* seperti pada Gambar 4.4.

Gambar 4.4 Input parameter SAP2000

Dialog box akan muncul seperti pada Gambar 4.5, pilih *Add New Parameter* lalu masukan nilai-nilai parameter yang dibutuhkan sesuai dengan parameter yang digunakan seperti pada Gambar 4.6.

Define Pushover Parameters for FEMA356 C	oeff Method
Pushover Parameters Click to	Add New Parameters Add Copy of Parameters Modify/Show Parameters Delete Parameters OK Cancel

Gambar 4.5 Pembuatan parameter baru

Parameters For FEMA 356 Coefficient Method

Pushover F	arameters Name		Units	
Name	JE356PU1		Tonf, m, C	
Demand Sp	ectrum Definition			
Effective	Viscous Damping (0 < D)amp < 1)	0,05	
O Define	d Function	Response		
Sca	le Factor		9,81	
Cha	racteristic Period of Resp	Spec, Ts	0,5	
C FEMA	356 General Response	Spectrum		
Map	ped Spectral Accel at SI	hort Period, Ss	[
Map	ped Spectral Accel at 1	Sec Period, S1	[
Site	Class			
Selected C	pefficients			
🔽 User \	alue for C2		1.	
🔽 User \	alue for C3		1.	
🔽 User \	alue for Cm		0,9	
Items Visibl	e On Plot			
🔽 Show	Capacity Curve		Color	
Show	Idealized Bilinear Force-D	Displ Curve	Color	
	Rese	t Default Colors		
	Update Plot	Set Axis	Labels and Range	
	ОК	Cance	<u> </u>	

Gambar 4.6 Input parameter FEMA 356

4.3.2 Input *Plastic Hinge* pada SAP2000

Pada penelitian ini digunakan *auto hinge* untuk FEMA 356 yang sudah disediakan pada SAP2000. Langkah yang harus dilakukan adalah dengan memilih *frame* yang akan dimasukkan sendi plastisnya, kemudian klik *Assign – Hinges* maka akan muncul *dialog box* seperti pada Gambar 4.7.

Frame Hinge Assignments

Auto	▼[]0	
		Modify
		Delete
	1	
ito Hinge Assig	nment Data	
ito Hinge Assig ype: From Tab	nment Data	
ito Hinge Assig ype: From Tab able: Table 6- 0F: M3	nment Data oles In FEMA 356 7 (Concrete Beams - Flexure) Ite	
ito Hinge Assig ype: From Tab able: Table 6- OF: M3	nment Data oles In FEMA 356 7 (Concrete Beams - Flexure) Ite	

Gambar 4.7 Frame hinge assignments

Pada kotak *Relative Distance* diisikan nilai 0 kemudian klik *Add* sehingga muncul *dialog box Auto Hinge Assignment Data* seperti Gambar 4.8.

Auto Hinge Type	
From Tables In FEMA 356	
Select a FEMA356 Table	
Table 6-7 (Concrete Beams - Flexure) Item i	
Component Type Degree of Freedom C Primary C Secondary	V Value From C Case/Combo PUSH C User Value V2
Transverse Reinforcing Transverse Reinforcing is Conforming	Reinforcing Ratio (p - p') / pbalanced From Current Design User Value
Deformation Controlled Hinge Load Carrying Capacity	

Gambar 4.8 Auto Hinge Assignment Data

Data di atas digunakan untuk balok primer pada bangunan yang diteliti. Kemudian klik OK, selanjutnya dengan cara yang sama seperti di atas namun Relative Distance diisikan nilai 1.

Load Case Name	Notes	Load Case Type
GRAVITASI Set Def Name	Modify/Show	Static 🗾 🗸 D
Initial Conditions		Analysis Type
 Zero Initial Conditions - Start from Unstress 	sed State	C Linear
C Continue from State at End of Nonlinear C	ase 👻	Nonlinear
Important Note: Loads from this previous current case	case are included in the	C Nonlinear Staged Construction
Modal Load Case		Geometric Nonlinearity Parameters
All Modal Loads Applied Use Modes from Cas	e MODAL 💌	R None None
		C P-Delta
Loads Applied Load Type Load Name Scale P	Factor	C P-Delta plus Large Displacement
Load Patterr 🕶 DEAD 💌 1.		
Load Pattern DEAD 1.	Add	
Load Pattern LIVE 0.25		

Full Load

Final State Only

Default

4.3.3 Input Load Case Gravitasi pada SAP2000

Other Parameters

Load Application

Results Saved

Nonlinear Parameters

Gambar 4.9 Pembuatan kasus pembebanan Gravitasi

Modify/Show...

Modify/Show..

Modify/Show.

Modify Delete

Dalam analisis pushover salah satu bagian penting adalah pembuatan kasus POFIRST dengan rincian inputnya sesuai dengan Gambar 4.10.

Load Application Control for Nonlinear Static Analysis

1		
e.	Displacement Control	
or	trol Displacement	
6	Use Conjugate Displacement	
ö	Use Monitored Displacement	
-03	id to a Monitored Displacement	t Magnitude of
lor		007
1or (€	DOF U3 💌	at Joint 297

Gambar 4.10 Load Application Control for Nonlinear Static Analysis

OK I

Cancel

Input dalam parameter *Load Application* mengikuti Gambar 4.10 dengan *Monitor Displacement* untuk DOF (*Degree Of Freedoom*), yang berarti perpindahan suatu masa diasumsikan menjadi satu titik.

Results Saved	C Multiple States
For Each Stage Minimum Number of Save Maximum Number of Save	ed States 1 ved States 1
Save positive Displac	cement Increments Only

Results Saved for Nonlinear Static Load Cases

Gambar 4.11 Result Saved for Nonlinear Static Load Cases

Input dalam Result Saved mengikuti Gambar 4.11, dengan penjelasan bahwa hasil yang disimpan dari hasil analisis untuk kasus ini hanya pada saat *final state* saja (keadaan terakhir).

4.3.4 Input Load Case Push X dan Push Y pada SAP2000

Load Case Name		- Notes	Load Case Type
PUSHX	Set Def Name	Modify/Show	Static 💌 Design.
Initial Conditions			Analysis Type
 Zero Initial Conditions Continue from State a Important Note: Loa curr 	 Start from Unstressed at End of Nonlinear Cas ds from this previous ca ent case 	d State GRAVITASI	Linear Nonlinear Nonlinear Staged Construction
Modal Load Case All Modal Loads Applied	Use Modes from Case	MODAL	Geometric Nonlinearity Parameters
Loads Applied			C P-Delta
Load Type Loa	d Name Scale Fac	stor	
Load Patterr 💌 EX			
Load Pattern EX		Add	
		Modify	
		Delete	
Other Parameters			
Load Application	Displ Control	Modify/Show	<u> </u>
Results Saved	Multiple States	Modify/Show	Cancel
	U. D.C. I		

Gambar 4.12 Input pembebanan *Push*X

PushX akan meneruskan kasus sebelumnya yaitu Gravitasi pada kasus non-linier terakhir dengan tipe analisis non-linear. Pembebanan yang digunakan adalah beban EX sebagai beban gempa arah sumbu X untuk kasus PushX dan beban EY sebagai beban arah Y untuk kasus PushY. Perlu diperhatikan pada kasus PushX dan PushY parameter lain yang penting adalah Load Application dan Result Saved yang akan mempengaruhi hasil dari analisis.

Load Application Control for Nonlinear Static Analysis

G Diselas	amont Control				
v• Displac	ement control				
Control Disp	lacement				
C Use Co	njugate Displa	cement			
Ise Mo	nitored Displa	cement			
3. 030 M	nikored Dispidi	Somork			
Load to a M	Ionitored Displa	acement Ma	agnitude of	0,9	
Monitored D	isplacement				
Monitored D	isplacement — U1	•	at Joint	297	
Monitored D	isplacement	ment	at Joint	297	~

Gambar 4.13 Load application control for nonlinear static analysis pada PushX

Input dalam parameter load Application mengikuti Gambar 4.13, dengan kontrol pembebanannya mengacu pada *Displacement Control* (kontrol perpindahan). Kontrol perpindahan tersebut akan dimonitor sendiri oleh program.

Results Saved for Nonlinear Static Load Cases
Results Saved C Final State Only © Multiple States
For Each Stage Minimum Number of Saved States 10 Maximum Number of Saved States 100
Save positive Displacement Increments Only

Gambar 4.14 Result Saved for Nonlinear Static Load Cases pada PushX

Input dalam Result Saved mengikuti Gambar 4.14, dengan penjelasan bahwa hasil analisis yang disimpan tiap tingkat minimalnya adalah 10 dan maksimalnya adalah 100 dan tambahan perpindahan yang disimpan hanya dalam bentuk positif. Untuk *Push*Y cara yang digunakan sama dengan *Push*X hanya yang membedakan hanyalah pengisian dalam *Monitored Displacement* menggunakan U2 yang berarti sumbu yang diteliti adalah arah Y.

4.3.5 Pelaksanaan Running Pushover Analisys

Setelah beban mati, beban angin, dan beban gempa dimasukan kedalam pemodelan. Maka analisis dapat dijalankan dengan menjalankan seluruh kasus yang ada seperti pada Gambar 4.15. Perlu diperhatikan *plastic hinge* harus sudah dimasukan sesuai dengan profil yang digunakan.

Set Load Cases to Run

Lase Name	lype	Status	Action	Run/Do Not Run Case
	Linear Static	Not Run	Run	Chau Case
	Linear Static	NotBun	Bun	oriuw case
EX	Linear Static	Not Run	Run	Delete Results for Case
EY RSX RSY GRAFITASI	Linear Static Response Spectrum Response Spectrum Nonlinear Static	Not Run Not Run Not Run Not Run	Run Run Run Run	Run/Do Not Run All
PUSHX PUSHY	Nonlinear Static Nonlinear Static	Not Run Not Run	Run Run	Show Load Case Tree
alysis Monitor O	ptions			Model-Alive
Always Show Never Show				Run Now
Show After	4 seconds			OK Canad

Gambar 4.15 Running analisis pushover

4.4 BAGAN ALIR PENELITIAN

Gambar 4.16 Bagan alir penelitian

Lanjutan Gambar 4.16 Bagan alir penelitian