BAB II TINJAUAN PUSTAKA

2.1 Umum

Dewasa ini, penggunaa beton bertulang sebagai suatu bahan koonstruksi semakin meningkat. Konstruksi dari beton banyak memiliki keuntungan yaitu bahan yang mudah diperoleh, harga relatif lebih terjangkau, mempunyai kekuatan tekan tinggi dan mudah dalam pembentukannya. Selain itu keuntungan lain penggunaan beton dalam hal pengangkutan dan perawatannya. Sehingga banyak bangunan-bangunan yang didirikan memilih konstruksi dengan materian yang terbuat dari beton.

Penggunaan beton bertulang sebagai bahan konstruksi tidak terlepas dari permasalahan penurunan kekuatan struktur. Adanya perubahan fungsi yang mengakibatkan pertambahan beban yang dipikul dan kemungkinan terjadinya kesalahan perhitungan pada saat perencanaan dapat berdampak pada kekuatan struktur balok beton. Faktor lain yang dapat menyebabkan penurunan kekuatan seperti beton yang tidak sesuai dari perencanaan, adanya penambahan beban yang ditahan struktur, kebakaran, gempa bumi, perubahan fungsi bangunan, dan usia struktur bangunan. Untuk mengatasi penurunan kekuatan pada balok beton bertulang diperlukan tindakan tepat, cepat, efekif dan aman. Guna menghinari kemungkinan terjadinya kerusakan lebih lanjut dilakukan perbaikan atau perkuatan pada balok beton bertulang yang telah mengalami penurunan kekuatan.

Perkuatan balok beton bertulang dikembangan dalam berbagai metode dan inovasi untuk material perkuatannya. Metode yang digunakan dalam perkuatan diantaranya penggunaan profil baja, pemanfaatan serat kaca dan serat karbon. Sebagai pengembangan penggunaan material perkuatan kuat lentur balok beton bertulang yang telah mengalami penurunan kekuatan struktur akan digunakan pelat baja dengan variasi ketebalan. Penggunaan pelat baja dipilih karena kekuatan tinggi, elastisitas, permanen, daktilitas, pemasangan mudah dan material

pelat baja banyak ditemukan. Kekurangan dari penggunaan material tersebut adalah biaya pemeliharaan besar, rentan terhadap *buckling*.

Studi pustaka merupakan kerangka teoritik yang dijadikan landasan dalam mempertajam konsep penelitian agar memiliki landasan teori yang kuat dan dapat memberikan hasil yang baik. Untuk menghindari terjadinya duplikasi dalam pengerjaan tugas akhir berikut beberapa hasil penelitian yang pernah dilakukan untuk menunjang penyusunan dan dapat dijadikan sebagai acuan penyusunan dalam menyelesaikan penelitian tugas akhir ini.

2.2 Pemetaan Penelitian Terdahulu

Tinjauan pustaka terhadap hasil- hasil penelitian sebelumnya yang sejenis sehubungan dengan perkuatan balok beton dijelaskan sebagai berikut:

 Perbaikan Balok Beton Bertulang yang Telah Mengalami Beban Puncak dengan Baja Siku

Penelitian ini disusun oleh Masdar Helmi (2009) dengan judul "perbaikan balok beton bertulang yang telah mengalami beban puncak dengan baja siku". Penelitian ini bertujuan untuk menganalisa perilaku lentur balok bertulang setelah diperbaiki dengan baja siku terhadap kuat lentur lendutan dan pola kehancuran. Kesimpulan dari penelitian ini adalah sebagai berikut ini:

- a. Kekuatan bahan dasar balok (beton dan tulangan tarik) setelah mengalami pembebanan tidak mengalami perubahan yang signifikan sedangkan kekuatan balok menurun hingga mencapai 19 % dari kekuatan awalnya
- b. Beban maksimum dari balok beton bertulang setelah diperbaiki mengalami peningkatan dibandingkan balok original sebesar 15%, dan peningkatan terbesar pada balok BRB3 (sebesar 15%).
- c. Secara teori balok yang diperbaiki dengan posisi 3 mampu menahan beban yang paling besar dikarenakanmempunyai tinggi efektif balok terhadap baja siku (d2) yang lebih besar dibandingkan posisi lain sehingga menghasilkan momennominal yang besar, maka eban yang dihasilkan menjadi lebih besar.

- d. Balok yang diperbaikidengan baja siku lebihbesar kekakuannya daripada balok original, dilihat dari kemiringan grafik hubungan beban-lendutan dimana pada level beban yang sama balok yang diperbaiki mengalami lendutan yang lebih kecil
- Perbaikan dan Perkuatan Balok Beton Bertulang dengan Cara Penambahan Profil Baja Kanal

Penelitian ini disusun oleh Khairul Miswar (2010) dengan judul "Perbaikan Dan Perkuatan Balok Beton Bertulang Dengan Cara Penambahan Profil Baja Kanal". Penelitian ini bertujuan sebagai berikut :

- a. Mengetahui porsentase kapasitas lentur balok beton bertulang setelah tulangan tarik melampaui tegangan leleh dengan cara penambahan perkuatan dengan profil baja kanal.
- b. Mengetahui pola keruntuhan balok beton bertulang setelah balok tersebut mengalami tegangan leleh pada daerah tarik dengan cara penambahan perkuatan dengan profil baja kanal.

Sedangkan manfaat dari penelitian ini diharapkan dapat diketahui peningkatan kapasitas lentur balok beton bertulang tampang persegi dengan penambahan profil baja kanal pada daerah tarik dan hasil penelitian ini diharapkan dapat di jadikan referensi apabila perkuatan profil baja kanal diaplikasikan pada balok yang mengalami lentur. Kesimpulan dari penelitian ini adalah sebagai berikut ini :

a. Perkuatan lentur dengan penambahan profil baja kanal 70x30x1,2 menyebabkan kenaikan kapasitas lentur sebesar 37,858%, untuk penambahan profil baja kanal 100x50x2 kenaikan kapasitas lentur sebesar dan 217,045% untuk penambahan profil baja kanal 125x50x2 kenaikan kapasitas sebesar 288,737% terhadap balok kontrol, untuk BP-PC-2 dan BP-PC-3 peningkatan kapasitas lenturnya sangat besar dikarenakan tegangan pada tulangan tarik belum mengalami leleh

- b. Besarnya nilai kekuatan lentur dari hasil pengujian untuk BK, BP-PC-1, BP-PC-2 dan BP-PC-3 berturut-turut adalah 23,350 KN, 32,190 KN, 74,030 KN dan 90,770 KN.
- c. Perkuatan lentur dengan penambahan profil baja kanal 70x30x1,2 menyebabkan kenaikan kekakuan sebesar 7,529%, untuk penambahan profil baja kanal 100x50x2 mengalami kenaikan 66,617% untuk penambahan profil baja kanal 125x50x12 mengalami kenaikan kekakuan sebesar 99,210 terhadap balok kontrol.
- d. Dengan penambahan perkuatan profil baja kanal 70x30x1,2 mm, profil baja kanal 100x50x2 mm dan profil baja kanal 125x50x2 mm dapat meningkatkan kapasitas momen sebesar 37,858%, 217,045% dan 288,737% terhadap balok kontrol.
- e. Pola keruntuhan yang terjadi di antara pembebanan dua titik adalah keruntuhan lentur adapun pembebanannya dilakukan sampai dengan profil canal lepas dari dynabolt.
- f. Besarnya penurunan daktilitas balok beton bertulang yang telah diperkuat sebesar 15,24%, 29,72%, -31,03% pada Pc.1 Pc.2 dan Pc.3 terhadap Balok Kontrol.
- 3. Studi Perkuatan Lentur Balok Beton Bertulang dengan Metode Retrofit Menggunakan *Wiremesh* dan *Scc*

Penelitian ini disusun oleh Arwin Amaruddin (2014) dengan judul "Studi Perkuatan Lentur Balok Beton Bertulang Dengan Metode Retrofit Menggunakan *Wiremesh* dan *Scc*". Penelitian ini bertujuan untuk mengetahui pengaruh penambahan Wiremesh dan *scc* pada kemampuan balok untuk menahan beban. Kesimpulan dari penelitian ini adalah sebagai berikut ini:

- a. Lapisan Wiremesh dan SCC mampu meningkatkan kapasitas beban pada balok WK sebesar 6.44 % dan untuk balok WB sebesar 40.06 % terhadap balok normal.
- b. Pola retak pada balok kontrol seluruhnya mengalami retak lentur akan tetapi pola retak yang terjadi pada alok yang telah diberi perkuatan

mengalami retak lentur dan geser. Hal ini terjadi akibat lapisan Wiremesh dan SCC menyebabkan meningkatnya kekuatan pada balok dalam menahan gaya lentur yang diberikan, namun peningkatan kekuatan ini menyebabkan tulangan geser tidak mampu menahan gaya geser yang terjadi.

c. Mode kegagalan yang terjadi pada balok seluruhnyamengalami leleh pada tulangan lentur akan tetapi pada balok WK terjadi putus pada Wiremeshkarena tidak mampu menahan beban yang diberikan pada balok. Hal ini menunjukkan bahwa lapisan SCC memberikan lekatan yang cukup pada Wiremesh maupun pada balok eksisting. Sedangkan pada balok WB, Wiremesh masih dalam keadaan utuh. Hal ini menunjukkan bahwa Wiremesh mampu menahan beban yang diberikan pada balok hingga inti beton rusak karena tekanan yang diberikan.

4. Perilaku Balok Beton Bertulang Dengan Perkuatan Pelat Baja Dalam Memikul Lentur

Penelitian ini disusun oleh Nomi Novita Sitepu (2014) dengan judul "Perilaku Balok Beton Bertulang Dengan Perkuatan Pelat Baja Dalam Memikul Lentur". Penelitian ini bertujuan untuk mengetahui pengaruh dari pelat baja terhadap peningkatan kapasitas lentur dari balok beton bertulang. Kesimpulan dari penelitian ini adalah sebagai berikut ini :

- a. Berdasarkan hasil perhitungan secara teoritis bahwa pelat perkuatan dapat meningkatkan kapasitas balok dalam memikul lentur, dan mengurangi lendutan yang terjadi pada balok. Di mana kapasitas balok dalam memikul lentur meningkat sebesar 70,59%.
- Berdasarkan hasil pengujian balok beton bertulang dengan perkuatan pelat baja dapat meningkatkan kapasitas balok dalam memikul lentur sebesar 84,62%
- c. Berdasarkan hasil pengujian untuk balok beton yang sudah dibebani kemudian diberi perkuatan pelat baja, dapat meningkatkan kapasitas balok dalam memikul lentur sebesar 69,23%

- d. Dari hasil perhitungan pada pengujian balok beton bertulang tanpa pelat baja diperoleh Ec'=0,002 dan Es=0,003. Untuk balok beton bertulang dengan pelat baja diperoleh Ec'=0,003dan Es=0,004
- e. Efisiensi balok beton bertulang yang diberi pelat baja kemudian dibebani adalah 45,83% dan efisiensi balok beton bertulang yang dibebani terlebih dahulu kemudian diperkuat dengan pelat baja adalah 40,90%.

2.3 Perbedaan Penelitian dengan Penelitian Terdahulu

Tugas akhir ini berupa penelitian yang bersifat eksperimental, dalam penelitian ini yang akan dilakukan adalah pembuatan balok beton dengan 3 balok sebagai balok kontrol dan 3 balok dengan perkuatan pelat baja. Hasil dari tugas akhir ini akan menganalisis perbandingan kuat lentur balok, pola keretakan dan lendutan. Setelah itu dapat diperkirakan biaya yang dibutuhkan untuk melakukan perkuatan balok beton bertulang menggunakan pla baja.

Kategori yang membedakan penelitian sekarang dengan penelitian terdahulu antara lain perkuatan balok dengan penggunaan material yang berbeda serta metode pengujian dengan pedoman yang berbeda. Penelitian ini menggunakan metode pengujian SNI 03-4431-1997 dengan material perkuatan yaitu pelat baja.

Tabel 2.1 Perbandingan Penelitian dengan Penelitian Terdahulu

No	Judul Penelitian	Tujuan Penelitian	Metode	Hasil Penelitian	Perbedaan
1	Perbaikan balok	Menganalisa perilaku	Di lakukan perkuatan	Hasil pengujian	Material
	beton bertulang	lentur balok bertulang	pada daerah lentur balok	menunjukkan	perkuatan
	yang telah	setelah diperbaiki	menggunakan baja siku	bahwa pemasangan	menggunakan
	mengalami	dengan baja siku	ada 3 macam baja siku	baja siku dapat	baja siku di
	beban puncak	terhadap kuat lentur	yang dipasang pada 3	meningkatkan	pasang
	dengan baja	lendutan dan pola	posisi didalam balok sisi	sebesar 15%	menggunakan
	siku.	kehancuran	bawah, dibawah,		Dynabolt
	(Masdar helmi		disamping dan di pasang		
	,2009)		menggunakan Dynabolt		

Lanjutan Tabel 2.1 Perbandingan Penelitian dengan Penelitian Terdahulu

No	Judul	Tujuan Penelitian	Metode	Hasil Penelitian	Perbedaan
110	Penelitian	Tujuan Tenendan	Wictouc	Hash I chehtan	1 ci bedaan
2	Perbaikan Dan	Mengetahui	Di lakukan perkuatan pada	penambahan	Material
	Perkuatan Balok	porsentase	daerah lentur balok	profil baja kanal	perkuatan
	Beton Bertulang	kapasitas lentur	menggunakan profil baja	70x30x1,2	menggunakan
	Dengan Cara	balok beton	kanal terdapat 3 macam	100x50x2 dan	profil baja
	Penambahan	bertulang dan pola	profil baja kanal yang	125x50x12	kanal di
	Profil Baja	keruntuhan balok	dipasang pada posisi	menyebabkan	pasang
	Kanal. (Khairul	beton bertulang	dibawah balok dan di	kenaikan kekakuan	menggunakan
	Miswar ,2010)	setelah balok	pasang menggunakan	sebesar 7,529%,	Dynabolt
		tersebut mengalami	Dynabolt	66,617% dan	
		tegangan leleh pada		99,210% terhadap	
		daerah tarik		balok kontrol.	
3	Studi Perkuatan	Penelitian ini	Di lakukan perkuatan pada	Hasil pengujian	Material
	Lentur Balok	bertujuan untuk	daerah lentur balok	menunjukkan	perkuatan
	Beton Bertulang	mengetahui	menggunakan Wiremesh	bahwa pemasangan	menggunakan
	Dengan Metode	pengaruh	dan Scc diperkuat dengan	Wiremesh dan Scc	Wiremesh dan
	Retrofit	penambahan	menggunakan variasi	kapasitas beban	Scc
	Menggunakan	Wiremesh dan scc	Wiremesh berdiameter	pada balok WK	
	<i>Wiremesh</i> dan	pada kemampuan	tulangan 2.3 mm dengan	sebesar 6.44 % dan	
	Scc. (Arwin	balok untuk	spasi 2.5 x 2.5 cm dan	untuk balok WB	
	Amarudin,	menahan beban	tulangan 3 mm dengan	sebesar 40.06 %	
	2014)		spasi 5 x 5 cm	terhadap balok	
				normal	
4	Perilaku Balok	mengetahui	Perkuatan pada daerah	Hasil pengujian	Material yang
	Beton Bertulang	pengaruh dari pelat	lentur balok menggunakan	menunjukkan	digunakan
	Dengan	baja terhadap	pelat baja dengan 3 buah	bahwa pemasangan	menggunakan
	Perkuatan Pelat	peningkatan	benda uji dengan metode	pelat baja dapat	pelat baja.
	Baja Dalam	kapasitas lentur	pengujian tanpa pelat,	meningkatkan	
	Memikul Lentur	dari balok beton	dibebani kemudian diberi	sebesar 84,62%.	
	. (Nomi Novita	bertulang	pelat dan diberi pelat baja		
	Sitepu ,2014)		kemudian dibebani		

Penelitian Masdar Helmi (2009) menganalisa perilaku lentur balok bertulang setelah diperbaiki dengan baja siku terhadap kuat lentur lendutan dan pola kehancuran. Persamaan penelitian dengan penelitian tersebut pada daerah perkuatan balok yang diuji yaitu kuat lentur balok. Sedangkan perbedaannya pada material perkuatan yang digunakan, penelitian tersebut menggunakan baja siku dan penelitia ini menggunakan pelat baja. Selain itu perbedaan pada cara pemasangan material perkuatan pada penelitian ini menggunakan baut dengan cara di bor.

Pada penelitian Khairul Miswar (2010) dengan judul "Perbaikan Dan Perkuatan Balok Beton Bertulang Dengan Cara Penambahan Profil Baja Kanal" bertujuan untuk mengetahui prsentase kapasitas lentur balok beton bertulang dan pola keruntuhannya. Balok beton bertulang yang diuji dalam kondisi balok tersebut mengalami tegangan leleh pada daerah tarik. Persamaan penelitian dengan penelitian tersebut pada variabel uji yaitu pada daerah perkuatan balok lentur. Pebedaan penelitian adalah material perkuatan yang digunakan. Penelitian Khairul Miswar (2010) menggunakan profil baja kanal, sedangan penelitian ini menggunakan baja *strpplat*.

Penelitian Arwin Amarudin (2014) bertujuan untuk mengetahui pengaruh penambahan Wiremesh dan *scc* pada kemampuan balok untuk menahan beban. Penelitian tersebut menguji perkuatan lentur balok beton bertulang dengan metode retrofit. Persamaan penelitian dengan penelitian tersebut adalah daerah perkuatan yang diuji, yaitu perkuatan lentur balok beton bertulang. sedangkan perbedaannya pada material perkuatan yang digunakan.

Penelitian selanjutnya dengan judul "Perilaku Balok Beton Bertulang Dengan Perkuatan Pelat Baja Dalam Memikul Lentur" disusun oleh Nomi Novita Sitepu (2014). penelitian tersebut bertujuan untuk mengetahui pengaruh dari pelat baja terhadap peningkatan kapasitas lentur dari balok beton bertulang. Persamaan penelitian dengan penelitian tersebut pada daerah perkuatan yaitu kuat lentur balok dan material perkuatan yang digunakan yaitu pelat baja. Perbedaan penelitian dengan penelitian tersebut pada spesifikasi pelat baja yang digunakan.