FAKTOR HARGA, DESAIN, FITUR DAN JAMINAN PURNA JUAL DALAM PEMBELIAN TELEPON SELULER NOKIA

(Studi Kasus Mahasiswa FTI, FMIPA, FTSP, dan FPSIKOLOGI UII Jogjakarta Yang Masih Aktif Pada Tahun Ajaran 2003/2004)

TUGAS AKHIR

Diajukan sebagai salah satu syarat untuk memperoleh gelar sarjana

Jurusan Statistika

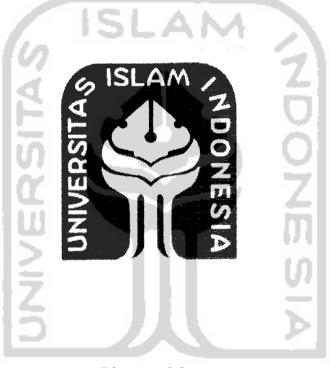
Disusun oleh:

NAMA

: NENSI YENI ASTUTI

No. Mhs

: 00 611 010


JURUSAN STATISTIKA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS ISLAM INDONESIA
JOGJAKARTA
2004

FAKTOR HARGA, DESAIN, FITUR DAN JAMINAN PURNA JUAL DALAM PEMBELIAN TELEPON SELULER NOKIA

(Studi Kasus Mahasiswa FTI, FMIPA, FTSP, dan FPSIKOLOGI UII Jogjakarta Yang Masih Aktif Pada Tahun Ajaran 2003/2004)

TUGAS AKHIR

Diajukan sebagai Salah Satu Syarat Memperoleh Gelar Sarjana Statistika

Disusun oleh:

Nama : Nensi Yeni Astuti

NIM : 006 11 010

JURUSAN STATISTIKA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS ISLAM INDONESIA
JOGJAKARTA
2004

i

HALAMAN PENGESAHAN DOSEN PENGUJI

FAKTOR HARGA, DESAIN, FITUR DAN JAMINAN PURNA JUAL DALAM PEMBELIAN TELEPON SELULER NOKIA

(Studi Kasus Mahasiswa FTI, FMIPA, FTSP, dan FPSIKOLOGI UII Jogjakarta Yang Masih Aktif Pada Tahun Ajaran 2003/2004)

TUGAS AKHIR

Nama : NENSI YENI ASTUTI

No. Mbs : 096 11 010

Telah dipertahankan dihadapan Panitia Penguji Skripsi Jurusan Statisrika Fakultas Matematika dan Ilmu Pengetahuan Alam

Universitas Islam Indonesia

Tanggal : 3 Juli 2000

Penguji:

1. Prof. Drs. Sucyo Guritno, M.Stats, Ph.D

Edy Widodo, M.Si

3. Drs. Supriyono, M.Sc

4. Rohmatul Fajriyah, M.Si

Tanda Tangan

Mengetahui

Dekan Fakultas matematika dan Ilmu Pengetahuan Alam

versitas Islam Indonesia

aka Nugraha, M.Si)

HALAMAN PERSEMBAHAN

Kupersembahkan Tugas Akhir ini Dengan setulus hatiku Buat:

Abah "Sumulyono" dan Umi "Tiami Ratnawati" Atas cinta kasih, doa
restu , kesabaran dan kasih sayang yang diberikan selama ini sehingga
nensi dapat menyelesaikan tugas akhir ini.
Kakakku "Nike Susanawati" Makasih telah mendukung dan selalu
memberi nensi semangat.
Adiku" Roma" Moga Cepat Selesai Sekolahnya ya, Mbak sayang
sama Roma.

Nensi Sayang Sama Semuanya.....

HALAMAN MOTTO

"Allah pasti akan mengangkat orang yang beriman dan berpengetahuan diantaramu beberapa tingkat lebih tinggi". (Q.S. Al Mujadilah : 11)

"Ya Allah! Tak ada kemudahan melainkan apa-apa yang Engkau mudahkan, Engkau menjadikan kesusahan dengan mudah Engkau kehendaki, Do'a menyelesaikan segala urusan". (H.R. Ibnu Hibban)

Sabda Rasulullah :

"Barang siapa menginginkan (kebahagiaan), maka ia harus memiliki ilmunya; barang siapa menghendaki (kebahagiaan), maka ia harus memiliki ilmunya dan siapapun yang ingin meraih keduanya, maka ia harus memiliki ilmunya"

"Tiga hal penting yang diperlukan untuk meraih sesuatu yang berarti adalah, pertama: kerja keras; kedua: berpegang pada kata-kata yang terakhir dengan tif; ketiga: akal sehat". (Thomas A Edison)

"Senyum dari sahabat bisa jadi semangat tersendiri. Sampai kapanpun hal yang terindah adalah persahabatan yang tulus"

16-29 1 HILL ASIGN 114 SE

KATA PENGANTAR

Assalamu'alaikum Wr. Wb.

Puji syukur kami panjatkan kehadirat ALLAH SWT yang telah memberikan rahmat dan karuniaNya kepada kami sehingga Tugas Akhir ini dapat diselesaikan dengan baik.

Penulisan Tugas Akhir ini disusun sebagai syarat untuk meraih gelar sarjana (SI) di Fakultas MIPA, Jurusan Statistika, Universitas Islam Indonesia. Penyusunan Tugas Akhir ini didasarkan atas penelitian lapangan, data-data kuesioner serta ditunjang oleh sumber-sumber bacaan yang relevan selama penulis melakukan penelitian.

Penghargaan yang tiada terkira kepada semua pihak yang telah memberikan andilnya dalam penyelesaian Tugas akhir ini. Melalui kesempatan ini penulis mengucapkan terima kasih terutama kepada :

- Bapak Jaka Nugraha, M. Si., selaku Dekan Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Islam Indonesia.
- Ibu Rohmatul Fajriyah, M. Si., selaku Dosen Pembimbing II dan Ketua Jurusan Statistika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Islam Indonesia.
- 3. Bapak Prof. Drs. Suryo Guritno, M.Stats., Ph. D., selaku Dosen Pembimbing I yang telah membimbing dalam menyelesaikan tugas akhir ini.

- 4. Buat Ratna, Retno, Maya, Sukma, terima kasih kalian selalu mendukung aku dan terimakasih kalian selalu ada saat aku butuhkan.
- Widi dan Memi makasi atas persahabatan dan canda tawa yang kalian berikan buat aku.
- 6. Weti, Ita, Lia, Inggit, Ira, dan Intan atas segala dukungan dan bantuannya.
- 7. Udin, Mas Leo, Meyer, Nata dan Rian yang telah membantu dalam menyebarkan kuesioner.
- 8. Teman-teman Statistika, khususnya Statistika Angkatan 2000, terima kasih atas persahabatan yang terjalin selama ini .
- Semua pihak yang tidak dapat penulis sebutkan satu persatu, yang telah memberikan bantuan hingga selesainya Tugas Akhir ini.

Semoga amal ibadah dan kebaikan yang telah diberikan mendapatkan imbalan yang setimpal dari Allah SWT.

Penulis menyadari bahwa Tugas akhir ini masih jauh dari kesempurnaan, untuk itu penulis sangat mengharapkan kritik dan saran yang bersifat membangun

Wassalamu'alaikum Wr. Wb.

Jogjakarta,2004

Penyusun

DAFTAR ISI

HALA	MAN JUDUL	i		
LEME	BAR PENGESAHAN PEMBIMBING	ii		
LEMBAR PENGESAHAN DOSEN PENGUJI				
HALA	MAN PERSEMBAHAN	iv		
HALA	MAN MOTTO	v		
KATA	PENGANTAR	vi		
DAFT	AR ISI	viii		
DAFT	AR TABEL	хi		
	AR GAMBAR	xii		
DAFT	AR LAMPIRAN	xiii		
	ARI	xiv		
BAB I	PENDAHULUAN			
	1.1 Latar Belakang Masalah	1		
	1.2 Rumusan Masalah	2		
	1.3 Batasan Masalah	3		
	1.4 Tujuan Penelitian	3		
	1.5 Manfaat Penelitian	4		
	1.6 Sistematika Penulisan	4		
BAB II	LANDASAN TEORI PENUNJANG			
	2.1 Pemasaran	6		
	2.2 Pengertian Perilaku Konsumen.	7		
	2.3 Faktor-Faktor yang Mempengaruhui Perilaku Konsumen	7		
	2.4 Keputusan Pembelian	9		
	2.5 Produk	10		
	2.6 Merk	12		
	2.7 Definisi Harga, Desain, Fitur, dan Jaminan Purna Jual			
	Membeli	15		

2.7.1 Harga	. 15
2.7.2 Desain	16
2.7.3 Fitur	17
2.7.4 Jaminan Purna Jual	17
2.8 Metode Analisis Data	17
2.8.1 Validasi dan Reliabilitas	17
2.8.1.1 Uji Validitas	18
2.8.1.2 Uji Reliabilitas	19
2.9 Uji U Mann-Whitney	
2.9.1 Sampel yang Sangat Kecil	
2.9.2 Sampel Besar (n ₂ Lebih Besar dari 20)n ₂ >20	24
2.9.3 Angka Sama (Ties)	24
2.9.4 Ikhtisar Prosedur Pada Uji Mann-Whitney	26
2.9.5 K-Sampel Independen Uji Kruskal-Wallis	28
2.9.6 K-Sampel Dependen Uji Friedman Rank Test	29
2.9.7 K-Sampel Dependen Uji Sign Test	31
BAB III METODOLOGI PENELITIAN	
3.1 Obyek dan Tempat Penelitian	33
3.2 Waktu Penelitian	34
3.3 Variabel Penelitian	34
3.3.1 Variabel Harga	34
3.3.2 Variabel Desain	35
3.3.3. Variabel Fitur	35
3.3.4 Variabel Jaminan Purna Jual	35
3.4 Pengumpulan Data dan Penentuan Sampel	42
3.5 Angket Sebagai Alat Ukur	39
3.6 Tahap-tahap Pelaksanaan Penelitian	43
3.6.1 Penyusunan Kuesioner	43
3.6.2 Penyebaran Kuesioner Awal	45
3.6.3 Penyebaran Kuesioner Akhir	46

	3.7 Analisis Data	48
	3.8 Langkah-Langkah Penelitian	49
DADI	WANTAL TOTAL DATE OF THE PARTY DESCRIPTION OF	
DAB I	V ANALISIS DATA DAN PEMBAHASAN	
	4.1 Data Penelitian	51
	4.11 Profil Responden	51
	4.2 Uji Validitas dan Reliabilitas	52
	4.2.1 Uji Validitas	52
	4.2.2 Uji Reliabilitas	55
	4.3 Demografi Responden	59
	4.4 Analisis Hasil Penelitian	62
	4.4.1 Uji U Mann-Whitney	62
	4.4.2 Uji Kruskal-Wallis Fakultas	64
	4.4.3 Uji Kruskal-Wallis Usia	66
	4.4.4 Uji Friedman Jenis Kelamin	68
	4.4.5 Uji Friedman Fakultas	69
	4.4.6 Uji Friedman Usia	71
	in in	
BAB V	KESIMPULAN DAN SARAN	
	5.1 Kesimpulan	73
	5.2 Saran	74
	15 /// 6	, 4
DAFTA	R PUSTAKA	
LAMPI	RAN	
	THE STATE OF THE S	

DAFTAR TABEL

Tabel 3.1	Tabel Data Mahasiswa yang Mengisi KRS 2003/200433
Tabel 3.2	Tabel Data Jenis Kelamin Mahasiswa Yang Mengisi
	KRS 2003/200434
Tabel 3.3	Tabel Perincian Pembagian Kuesioner FTI, FMIPA, FTSP, dan
	FPSIKOLOGI46
Tabel 3.4	Tabel Peincian Pembagian Kuesioner Laki-Laki dan perempuan
	di FTI, FMIPA, FTSP, dan FPSIKOLOGI47
Tabel 4.1	Profil Responden51
Tabel 4.2	Hasil Analisis Validitas Faktor Harga, Desain, Fitur, dan
	Jaminan Purna Jual53
Tabel 4.3	Hasil Analisis Reliabilitas Faktor Harga, Desain, Fitur, dan
	Jaminan Purna Jual56
Tabel 4.4	Jumlah dan Persentase Responden Menurut Jenis
	Kelamin Berdasarkan Fakultas59
Tabel 4.5	Jumlah dan Persentase Responden Menurut Usia dan
	Fakultas61
Tabel 4.6	Uji Mann-Whitney Untuk Jenis Kelamin Pada Faktor Harga,
	Desain, Fitur, dan Jaminan Purna Jual62
Tabel 4.7	Uji Kruskal-Wallis Fakultas Pada Faktor Harga, Desain, Fitur,
	dan Jaminan Purna Jual64
Tabel 4.8	Uji Mann-Whitney Untuk fakultas Pada Faktor Harga, Desain,
	Fitur, dan Jaminan Purna Jual65
Tabel 4.9	Uji Kruskal-Wallis Untuk Klasifikasi Usia dan Pada Faktor
	Harga, Desain, Fitur, dan Jaminan Purna Jual
Tabel 4.10	Uji Friedman Untuk Keempat Faktor Menurut Jenis Kelamin68
Tabel 4.11	Uji perbandingan Untuk Keempat Faktor Menurut Jenis
	Kelamin68
Tabel 4.12	Uji Friedman Untuk Keempat Faktor Menurut Fakultas69
Tabel 4.13	Uji perbandingan Untuk Keempat Faktor Menurut Jenis

	Fakultas	70			
Tabel 4.14	Uji Friedman Untuk Keempat Faktor Menurut Usia	71			
Tabel 4.15					
	Umur	71			
	DAFTAR GAMBAR				
	ISL ANA				
Gambar 2.1	Proses Pembelian Konsumen	9			
Gambar 3.1	Bagan Langkah-Langkah Penelitian	49			
	IF ASSESSED. U				
	4				
	iu m				
	15 11 12				
	14 11 5				
	ID JAL D				
	No well that the state of the state of	r			

DAFTAR LAMPIRAN

Lampiran 1 Kuesioner Penelitian

Lampiran 2 Matrik Data Untuk Sampel yang diuji Validitas dan reliabilitas

Lampiran 3 Validitas dan Reliabilitas Faktor Harga, Desain, Fitur, dan Jaminan Purna Jual

Lampiran 4 Matrik Data Mentah

Lampiran 5 Uji Mann-Whitney

Lampiran 6 Uji Kruskal-Wallis Untuk Fakultas dan Umur Terhadap Faktor Harga, Desain, fitur dan Jaminan Purna Jual.

Lampiran 7 Uji Friedman Untuk Fakultas dan Umur Terhadap Faktor Harga, Desain, fitur dan Jaminan Purna Jual.

Lampiran 8 Uji Sign Test

Lampiran 9 Tabel Distribusi Normal Srandar

Lampiran 10 Tabel Wilcoxon-Mann-Whitney

Lampiran 11 Tabel Nilai Kritik U

Lampiran 12 Tabel Nilai Kritik r

INTI SARI

Penelitian yang dilakukan dalam rangka Tugas Akhir ini dilaksanakan di FTI, FMIPA, FTSP, dan FPSIKOLOGI Universitas Islam Indonesia. Penelitian ini bertujuan untuk mengetahui apakah terdapat perbedaan skor pada variabel demografi (jenis kelamin, fakultas dan umur) terhadap faktor desain, fitur, dan jaminan purna jual dalam pembelian telepon seluler Nokia, untuk mengetahui apakah terdapat perbedaan skor faktor harga, desain, fitur, dan jaminan purna jual berdasarkan variabel demografi (jenis kelamin, fakultas, dan umur). Pengumpulan data diperoleh dengan cara menyebar kuesioner yang telah valid dan reliabel kepada mahasiswa yang masih aktif pada tahun ajaran 2003/2004. Dengan menggunakan uji Mann-Whitney dan uji Kruskal-Wallis, dapat disimpulkan bahwa terdapat pengaruh jenis kelamin terhadap faktor desain, dimana laki-laki tidak begitu memperhatikan faktor desain dalam pembelian telepon seluler Nokia dibanding dengan perempuan. Terdapat pengaruh fakultas terhadap faktor fitur, dimana FTI lebih memperhatikan faktor fitur dalam membeli telepon seluler Nokia dibanding dengan FTSP. Dengan menggunakan uji Friedman, dapat disimpulkan bahwa terdapat perbedaan skor faktor harga, desain, fitur, dan jaminan purna jual terhadap variabel demografi responden (jenis kelamin, fakultas, dan umur).

Kata kunci : uji Mann-whitney, uji Kruskal-Wallis, dan uji Friedman

BABI

PENDAHULUAN

1.1. Latar Belakang Masalah

Dalam era globalisasi ini persaingan bisnis menjadi sangat tajam, baik dipasar domestik (nasional) maupun dipasar internasional/global untuk memenangkan persaingan, perusahaan harus mampu memberikan kepuasan terhadap pelanggannya, misalnya dengan memberikan produk yang mutunya lebih baik, harganya lebih murah, pelayanan yang lebih ramah dan pelayanan yang lebih baik daripada pesaingnya. Hal ini menjadikan kondisi persaingan diantara produk itu sendiri semakin ketat.

Dalam kondisi yang demikian, berhasil tidaknya pencapaian tujuan bisnis tergantung pada keahlian suatu perusahaan dibidang pemasaran, yaitu untuk mengetahui, memilih dan menguasai kesempatan pemasaran yang selalu berubah dan berbeda. Namun jika kondisi pasar yang semakin kompleks dengan berbagai tuntutan pembeli dengan disertai pula oleh semakin pesatnya persaingan maka perusahaan harus mampu menawarkan sesuatu yang mempunyai nilai lebih kepada konsumennya.

Demikian pula, saat ini perdagangan produk telepon seluler makin marak dan kompetitif sehubungan kian dinamisnya pasar Indonesia. Peta pasar 2004 pun jadi jelas, yaitu sepanjang 2003 pola 'nafsu' konsumen Indonesia akan telepon seluler ternyata bisa diklasifikasi kedalam (Seluler, 2004):

Pertama, sudah pasti yang murah dan mudah digunakan. Kedua, mahal sedikit tidak masalah asal ngetrend. Ketiga, mahal sekalian tak apa-apa karena memang mendukung buat kepentingan bisnis.

Dengan memperhatikan latar belakang pemikiran diatas tentunya dibutuhkan suatu pemecahan dimana perusahaan harus dapat melakukan pemahaman mengenai perlakuan konsumen terhadap suatu produk. Produk yang bagaimana yang diinginkan konsumen serta faktor-faktor yang mempengaruhi keputusan konsumen dalam membeli produk.

Bertitik tolak dari permasalahan ini peneliti memilih judul "FAKTOR HARGA, DESAIN, FITUR dan JAMINAN PURNA JUAL dalam PEMBELIAN TELEPON SELULER NOKIA (Studi Kasus Mahasiswa FTI, FMIPA, FTSP, dan FPSIKOLOGI Universitas Islam Indonesia yang Masih Aktif Pada Tahun Ajaran 2003/2004)

1.2. Rumusan Masalah

Berdasarkan latar belakang permasalahan tersebut, maka dalam penelitian ini akan dibahas tentang :

- Apakah terdapat perbedaan skor pada variabel demografi (jenis kelamin, fakultas, dan umur) untuk faktor desain, fitur, dan jaminan purna jual dalam pembelian telepon seluler Nokia.
- 2. Apakah terdapat perbedaan skor faktor harga, desain, fitur, dan jaminan purna jual berdasarkan variabel demografi (jenis kelamin, fakultas, dan umur).

1.3. Batasan Masalah

Agar pembahasannya tetap dan tidak terlalu luas, maka dalam penelitian diberikan batasan-batasan sebagai berikut :

- Ruang lingkup penelitian dilakukan di FTI, FMIPA, FTSP, dan FPSIKOLOGI.
- 2. Obyek penelitian hanya dilakukan pada konsumen yang memiliki telepon seluler nokia di FTI, FMIPA, FTSP, dan FPSIKOLOGI UII.
- Responden adalah mahasiswa UII Jogjakarta yang masih aktif pada tahun ajaran 2003/2004.
- 4. Bidang yang tidak berhubungan dengan bidang diatas dianggap berada diluar bidang penelitian.

1.4. Tujuan Penelitian

Tujuan yang ingin dicapai dalam penelitian ini adalah :

- Untuk mengetahui apakah terdapat perbedaan skor pada variabel demografi (jenis kelamin, fakultas dan umur) terhadap faktor desain, fitur, dan jaminan purna jual dalam pembelian telepon seluler Nokia.
- 2. Untuk mengetahui apakah terdapat perbedaan skor faktor harga, desain, fitur, dan jaminan purna jual berdasarkan variabel demografi (jenis kelamin, fakultas, dan umur).

1.5. MANFAAT PENELITIAN

Dalam berbagai kegiatan termasuk penelitian ini, tidak akan mempunyai arti ataupun nilai lebih bila hasil dari kegiatan tersebut jika tidak ditindak lanjuti atau dengan kata lain tidak diimplementasikan. Dari penelitian yang dilakukan diharapkan akan memberi manfaat sebagai berikut :

1. Bagi Peneliti

Dapat menambah ilmu pengetahuan dan wawasan lebih mendalam khususnya dalam mengaplikasihkan statistika yang telah diperoleh dikampus selama masa kuliah.

2. Bagi Nokia

Dapat memberi sedikit masukan sebagai bahan pertimbangan dalam pemasaran produk Nokia, sehingga dapat meningkatkan jumlah penjualan produk Nokia.

3. Bagi Pembaca

Dapat menambah literatur dalam pembelian telepon seluler Nokia.

1.6. SISTEMATIKA PENULISAN

Sistematika penulisan yang digunakan dalam penulisan tugas akhir ini dapat diuraikan sebagai berikut :

BABI: PENDAHULUAN

Menguraikan tentang latar belakang pemilihan judul, pokok masalah, batasan masalah, tujuan masalah, manfaat penelitian, dan sistematika penulisan.

BAB II: LANDASAN TEORI

Bab ini berisi tentang beberapa dasar teori yang digunakan dalam memecahkan dan membahas masalah yang ada.

BAB III: METODOLOGI PENELITIAN

Merupakan bagian yang menguraikan langkah-langkah ilmiah yang ditempuh dalam penelitian.

BAB IV: HASIL PENELITIAN DAN PEMBAHASAN

Berisikan tentang data-data yang akan dibahas dan analisis data yang diperlukan serta pembahasan mengenai hasil yang diperoleh dari pengolahan data untuk mengambil keputusan dari penelitian ini.

BAB V: PENUTUP

Bab ini berisikan kesimpulan dan saran-saran dari hasil penelitian.

BAB II

LANDASAN TEORI

2.1 Pemasaran

2.1.1 Pengertian Pemasaran

Pengertian pemasaran sering disamakan dengan istilah penjualan, perdagangan dan distribusi, istilah-istilah tersebut sebenarnya hanya istilah dari pemasaran.

"William J. Stanton mengemukakan, bahwa pemasaran adalah sistem keseluruhan dari kegiatan usaha yang ditujukan untuk merencanakan, menentukan harga, mempromosikan, dan mendistribusikan barang serta jasa yang dapat memuaskan kebutuhan kepada pembeli yang ada." (Swasta, 1984)

Pemasaran bermula dari suatu ide tentang produk dan tidak berakhir sampai kebutuhan pelanggan terlayani, yang kadang-kadang terjadi sesudah penjualan dilakukan dengan mencapai sukses. Pelanggan harus dilayani dengan memuaskan agar bersedia membeli kembali pada perusahaan yang bersangkutan.

Peter Drucken, salah seorang ahli teori manajemen mengatakan bahwa: "tujuan pemasaran adalah untuk mengetahui penjualan berlebihan. Tujuannya adalah untuk mengetahui dan memahami konsumen demikian baiknya, sehingga produk atau jasa itu bisa terjual dengan sendiri" (Kotler, 1993).

Jadi, pemasaran merupakan suatu interaksi yang berusaha untuk menciptakan pertukaran.

2.2 Pengertian Perilaku Konsumen

Syarat yang harus dipenuhi oleh suatu perusahaan agar dapat sukses dalam berusaha mencapai tujuan menciptakan untuk adalah persaingan mempertahankan pelanggan (Levitt, 1987). Agar tujuan tersebut tercapai, maka setiap perusahaan harus mampu memahami perilaku konsumen pada dasar sasarannya, karena kelangsungan hidup perusahaan tersebut sebagai organisasi yang berusaha memenuhi kebutuhan dan keinginan konsumen sangat tergantung Perilaku konsumen sendiri didefinisikan pada perilaku konsumennya. sebagai"tindakan-tindakan individu yang secara langsung terlihat dalam usaha memperoleh, menggunakan, dan menentukan produk dan jasa, termasuk proses pengambilam keputusan yang mendahului dan mengikuti tindakan-tindakan tersebut" (Permana, 2002). Dari pengertian ini dapat diketahui bahwa pemahaman terhadap perilaku konsumen bukanlah pekerjaan yang mudah, tetapi cukup sulit dan kompleks. Meskipun demikian, bila hal tesebut dapat dilakukan maka perusahaan yang bersangkutan dapat meraih keuntungan yang jauh lebih besar dari pada para pesaingnya, karena dengan dipahaminya perilaku konsumennya, perusahaan dapat memberikan kepuasan secara baik kepada konsumennya(Kotler, 1993)

2.3 Faktor-faktor yang Mempengaruhi Perilaku Konsumen

Mempelajari dan menganalisis perilaku konsumen bukanlah suatu hal yang mudah untuk dilakukan, karena terdapat banyak faktor yang berpengaruh dan saling berinteraksi satu sama lain. Dalam pengambilan keputusan mengenai

produk yang akan dibeli atau dikonsumsi, konsumen akan dipengaruhi oleh faktor-faktor tertentu. Menurut Kotler latar belakang dan keadaan dari konsumen akan diwarnai perilaku pembeliannya. Latar belakang dan keadaan seseorang tersebut adalah kebudayaan, sosial, dan psikologis (Kotler, 1993)

Perilaku konsumen sangat dipengaruhi oleh lapisan masyarakat dimana ia dilahirkan dan dibesarkan sehingga akan mempunyai perilaku penilaian, pendapat, kebutuhan, sikap serta selera yang berbeda-beda. Faktor-faktor tersebut adalah :

a. Kebudayaan

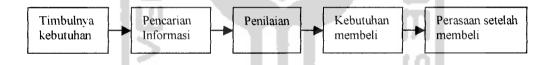
Oleh Stanton, Kebudayaan ini didefinisikan sebagai berikut:

Kebudayaan adalah simbul dan fakta yang komplek, yang diciptakan oleh manusia, diturunkan dari generasi ke generasi sebagai penentu dan pengatur tingkah laku manusia dalam masyarakat yang ada.

b. Kelas Sosial

Dalam masyarakat yang hidup teratur adanya sistem lapisan-lapisan sosial merupakan ciri-ciri yang tetap dan teratur. Menurut ahli sosiologi Phitrik A. Sorokin, lapisan sosial adalah perbedaan pendidikan atau masyarakat kedalam kelas-kelas yang tinggi dan rendah secara definisi dapat dikemukakan:

Kelas sosial adalah kelompok kelompok yang relatif homogen dan bertahan lama dalam suatu masyarakat, yang tersusun secara hirearki dan keanggotannya mempunyai nilai, minat dan perilaku yang serupa (Kotler, 1989).


c. Psikologis

Pilihan membeli seseorang juga akan dipengaruhi empat faktor psikologis utama, yaitu motivasi, persepsi, proses belajar, kepercayaan dan sikap.

2.4 Keputusan Pembelian

Perilaku manusia dalam melakukan suatu proses pembelian cukup sulit untuk dipelajari. Hal ini disebabkan banyaknya informasi yang harus diperoleh, tetapi secara umum proses pembelian yang biasanya dilakukan oleh konsumen terdiri dari lima tahapan.

Keputusan untuk membeli pada hakekatnya terdiri dari sekumpulan keputusan. Dalam pembelian melalui tahap-tahap sebagai berikut (Kotler, 1993)

Gambar 2.1. Proses Pembelian Konsumen

Keterangan:

1. Timbulnya Kebutuhan

Kebutuhan ditimbulkan oleh dorongan-dorongan intern dan ekstern.

Dorongan yang bersifat intern dapat berupa rasa lapar, haus dsb. Sedangkan dorongan yang bersifat ekstern ini berasal dari diri manusia.

2. Pencarian Informasi

Bila kebutuhan yang timbul bersifat intern dan obyek yang dapat memuaskan kebutuhan tersebut adalah jelas dan mudah diperoleh pada saat dibutuhkan.

3. Penilaian

Informasi yang didapat calon pembeli digunakan untuk memperoleh gambaran yang lebih jelas mengenai alternatif—alternatif yang dihadapi.

4. Kebutuan Membeli

Tahap evaluasi berakibat bahwa konsumen membentuk preferensi diantara alternatif-alternatif merk barang. Biasanya barang yang dibelinya merupakan fungsi dari sikap.

5. Perasaan Setelah Membeli

Apabilah barang yang dibeli tidak memberikan kepuasan yang diharapkan maka pembeli akan berubah sikap terhadap barang yang bersangkutan menjadi sikap negatif, bahkan mungkin akan menghindar dari daftar pilihan.

2.5 Produk

Produk adalah sesuatu yang dapat ditawarkan kepada seseorang untuk memuaskan suatu kebutuhan atau keinginan (Kotler, 1993).

Dalam pengolahan produk termasuk perencanaan dan pengembangan produk atau jasa harus adanya pedoman yang dapat mempengaruhi kebijaksanaan dalam penentuan produk. Selain itu keputusan-keputusan yang perlu diperhatikan dalam masalah pemberian merk, pembungkusan, warna, dan bentuk produknya lainnya.

Pengolahan barang menurut tujuan pemakaiannya (Swasta, 1984):

1. Barang konsumsi

Barang konsumsi adalah barang yang dibeli untuk dikonsumsikan atau pembelinya adalah konsumen terakhir, Kalau barang tersebut tidak diproses melainkan dipakai sendiri.

Barang konsumsi dibedakan menjadi tiga golongan:

a. Barang konvergen

Barang konvergen adalah barang yang mudah dipakai, membelinya dapat disebarang tempat dan dapat setiap waktu.

b. Barang shopping

Barang shopping adalah barang yang harus dibeli dengan mencari dahulu dan dalam membelinya harus dipertimbangkan masak-masak, misal mutu, harga dan lain sebagainya.

c. Barang spesial

Barang spesial adalah barang yang mempunyai ciri khas dan dapat dibeli di tempat tertentu.

Pada dasarnya penggolongan barang konsumsi sangat relatif karena sangat dipengaruhi oleh pandangan si pembeli, misalnya sebuah mobil. Bagi golongan menengah dan bawah, mobil dapat dimasukkan ke dalam golongan barang spesial, tapi bagi orang kaya, mobil dapat digolongkan ke dalam barang shopping.

2. Barang Industri

Barang Industri adalah barang yang dibeli untuk diproses lagi atau untuk kepentingan dalam industri.

Barang industri dapat dibedakan menjadi 5 golongan:

a. Bahan Baku

Bahan baku merupakan bahan pokok untuk membuat barang lain.

b. Komponen dan Barang Setengah Jadi

Yaitu, barang yang sudah masuk dalam proses produksi dan diperlukan untuk melengkapi produk akhir.

c. Perlengkapan Operasi

Yaitu, barang yang dapat digunakan untuk membantu lancarnya proses produksi maupun kegiatan-kegiatan lain dalam perusahaan.

d. Instalasi

Yaitu, alat produksi utama dalam sebuah pabrik, perusahaan yang dapat dipakai untuk jangka waktu lama.

e. Peralatan Ekstra

Yaitu, alat-alat yang dipakai untuk membantu instalasi, seperti alat angkatan dalam pabrik.

2.6 Merk

Kebanyakan konsumen akan membeli suatu barang mengutamakan merk yang sudah dikenal, sedangkan faktor, mutu, harga, kurang diperhatikan.

Definisi merk oleh panitia definisi dalam The American Marketing Association (Swasta, 1984:):

"Merk adalah suatu nama, istilah, simbul atau desain (rancangan), atau kombinasinya yang dimaksudkan untuk memberi tanda pengenal barang atau jasa

dari seorang penjual dan untuk membedakannya dari barang-barang yang dihasilkan oleh pesaingnya"

Keuntungan penggunaan Merk bagi pembeli (Swasta, 1984):

- ⇒ Mempermudah pembeli dalam mengenal barang yang diinginkan.
- ⇒ Pembeli dapat mengandalkan keseragaman kualitas barang yang bermerk.
- ➡ Melindungi konsumen, karena dari merk barang dapat diketahui perusahaan yang membutuhkan.
- ⇒ Barang yang bermerk cenderung untuk ditingkatkan kualitasnya, karena perasaan yang memiliki merk tersebut akan berusaha mempertahankan dan meningkatkan nama baik merknya.

Keuntungan penggunaan merk bagi penjual:

- ⇒ Membantu program periklanan dan peragaan perusahaan.
- ⇒ Membantu meningkatkan pengawasan terhadap barang yang dijual.
- ⇒ Membantu dalam market share.

Market Share adalah bagian pasar yang sebagian besar dikuasahi oleh perusahaan

Pada dasarnya merk dapat digolongkan menurut empat cara yaitu :

a. Pemilikan

Berdasarkan pemilikannya, merk dibagi menjadi dua macam, yaitu :

- ⇒ Merk Produsen (merk yang dimiliki oleh produsen).
- ⇒ Merk Distributor (merk yang dimiliki oleh penyalur).

b. Luas Daerah Geografis

Berdasarkan luas daerah geografis, merk dibagi menjadi dua macam yaitu;

- ⇒ Merk Nasional (merk barang yang dipasarkan secara nasional atau internasional).
- ⇔ Merk Regional (merk yang hanya penjualannya didaerah tertentu saja).

c. Tingkat Pentingnya Barang yang Memakai Merk

Berdasarkan tingkat pentingnya barang yang memakai merk, merk dibagi menjadi dua macam yaitu;

- ⇒ Merk Primer, yaitu merk untuk barang yang kualitasnya tinggi, biasanya diutamakan dalam periklanan.
- ⇒ Merk Sekunder, yaitu merk yang digunakan barang untuk maksud tertentu atau untuk menjual barang yang berkalitas rendah.
- d. Banyaknya Barang Yang Menggunakan Merk.

Berdasarkan banyaknya barang yang menggunakan merk, merk dibagi menjadi dua macam yaitu;

- ➡ Merk Individual, yaitu yang digunakan hanya pada satu macam barang saja.
- ⇔ Merk Kelompok (family brand)

Merk yang digunakan pada beberapa macam barang.

2.7 Definisi Harga, Desain, Fitur, dan Jaminan Purna Jual

2.7.1 Harga

Pada setiap produk atau jasa yang ditawarkan, bagian pemasaran berhak menentukan harga pokok. Penetapan besarnya harga suatu barang atau jasa akan dapat mempengaruhi permintaan pasar. Oleh karena itu harga dapat mempengaruhi berhasil tidaknya program pemasaran. Faktor-faktor yang perlu dipertimbangkan dalam penetapan harga antara lain : biaya, keuntungan, dan perubahan keinginan pasar. Kebijakan harga mencakup antara lain : penetapan jumlah potongan, merk-up dan sebagainya. *Merk-up* adalah kelebihan harga jual diatas harga beli.

"Harga adalah jumlah uang (ditambah beberapa barang kalau mungkin) yang dibutuhkan untuk mendapatkan sejumlah kombinasi dari barang beserta pelayanannya" (Swasta, 1984)".

Kebijakan dan Strategi harga:

a. Potongan

Potongan dapat diberikan produsen kepada konsumen pada saat konsumen membeli barang dalam jumlah besar atau pada saat pembayaran yang tepat atau tunai, karena potongan merupakan pengurangan dari harga yang ada.

b. Kebijakan Satu Harga

Menentukan harga yang sama kepada semua pembeli yang membeli barang yang sama dan syarat penjualan yang sama.

c. Kebijakan Satu Variabel

Menetapkan harga yang berbeda kepada pembeli barang dalam jumlah yang sama dan syarat penjualan yang sama pula. Kebanyakan harga variabel ditawarkan kepada pembeli yang mempunyai hubungan kerabat, sehingga harga akan lebih murah.

d. Kebijakan Saingan Harga

Jika perusahaan menitik beratkan pada persaingan harga, perusahaan akan menghadapi dua alternatif:

- 1. Mengadakan perubahan harga.
- 2. Mengadakan reaksi terhadap perubahan harga yang dilakukan oleh perusahaan.

e. Kebijakan Bukan Harga

Usaha perusahaan dalam mempertahankan suatu tingkatan harga yang stabil, dengan cara peningkatan posisi pasar yang lebih menitik beratkan pada barang yang dijual.

2.7.2 Desain

Desain Produk, atau dalam bahasa keilmuan disebut juga Desain produk industri, adalah sebuah bidang keilmuan atau profesi yang menentukan bentuk atau form dari sebuah produk manufaktur, mengolah bentuk tersebut agar sesuai dengan pemakaianya dan sesuai dengan kemampuan proses produksinya pada industri yang memproduksinya.

2.7.3 Fitur

Fitur merupakan fasilitas tambahan yang dimiliki sentral telepon guna memaksimalkan fungsi pesawat telepon yang memungkinkan anda bisa memperoleh informasi secara akurat, sehingga dapat menciptakan peluang untuk memicu laju bisnis ke puncak sukses.

2.7.4 Jaminan Purna Jual

Jaminan purna jual merupakan pelayanan terhadap konsumen setelah melakukan pembelian. Hal ini dimaksudkan untuk menjaga agar konsumen tetap merasakan kepuasan terhadap produk yang dibelinya. Jaminan purna jual sangat perlu untuk produk-produk yang mempunyai keterkaitan dengan teknologi tinggi dan mempunyai umur pakai yang lama seperti, mobil, motor, komputer, telepon seluler, televisi dan lain-lain.

2.8 Metode Analisis Data

2.8.1 Validasi dan Reliabilitas

Ketepatan pengujian suatu hipotesa tentang hubungan variabel penelitian sangat tergantung pada kualitas data yang dipakai dalam pengujian tersebut. Data penelitian yang dalam proses pengumpulannya seringkali menuntut pembiayaan, waktu dan tenaga yang besar, tidak akan berguna bilamana alat pengukur yang digunakan untuk mengumpulkan data penelitian tersebut tidak memilliki validitas dan reliabilitas yang tinggi. Pengujian hipotesa penelitian tidak akan mengenai sasarannya, bilamana alat ukur yang dipakai untuk menguji hipotesa data adalah

alat ukurnya tidak reliabel dan tidak menggambarkan secara tepat konsep yang diukur.

Karena pada penelitian ini menggunakan metode kuesioner, maka ada dua syarat penting yang berlaku pada sebuah angket kuisioner yaitu *validitas dan reliabilitas*.

2.8.1.1 Uji validitas

Validitas berasal dari kata *validity* yang mempunyai arti sejauh mana ketepatan dan kecermatan suatu instrumen pengukur (tes) dalam melakukan fungsi ukurnya. Sisi lain yang sangat penting dalam konsep validitas adalah kecermatan pengukuran. Suatu angket dikatakan valid (sah) jika pertanyaan pada suatu angket mampu untuk mengungkapkan sesuatu yang akan diukur oleh angket tersebut. Suatu tes yang validitasnya tinggi tidak saja akan menjalankan fungsi ukurnya dengan tepat dan akurat akan tetapi juga dengan mendeteksi perbedaan-perbedaan kecil yang ada pada atribut yang diukurnya.

Pengujian validitas tiap butir dengan menggunakan analisis korelasi, yaitu mengkorelasikan skor butir dengan skor total yang merupakan jumlah tiap skor butir. Adapun rumus korelasinya dapat dilihat di bawah ini :

keterangan : X = item tiap pertanyaan

Y = skor total item pertanyaan

Secara statistika, angka korelasi tersebut harus dibandingkan dengan angka kritik tabel korelasi nilai r.

Uji hipotesis untuk validitas suatu angket adalah sebagai berikut:

1. Hipotesis:

H₀: skor butir tidak berkorelasi positif dengan skor faktornya (butir tidak valid)

H₁: skor butir berkorelasi positif dengan skor faktornya (butir valid)

2. Tingkat signifikansi 5 %

3. Daerah kritis:

 r_{hasil} positif $\leq r_{tabel}$, maka Ho tidak ditolak

 r_{hasil} positif $> r_{\text{tabel}}$, maka Ho ditolak

4. Statistik uji: dengan menggunakan program SPSS yaitu, dapat dilihat pada kolom *corrected item total correlation* pada ouput komputer.

5. Kesimpulan:

 r_{hasil} positif $\leq r_{tabel}$, maka butir tersebut adalah tidak valid

r_{hasil} positif > r_{tabel}, maka butir tersebut adalah valid

Jika terdapat butir yang tidak valid, maka butir yang tidak valid tersebut harus dikeluarkan dan proses analisis diulang untuk butir yang valid saja.

2.8.1.2 Uji reliabilitas

Reliabilitas merupakan penerjemahan dari kata reliability yang mempunyai asal kata realy dan ability yang mempunyai arti indeks yang menunjukan sejauh mana suatu alat pengukur dapat dipercaya atau dapat

diandalkan. Bila suatu alat dipakai dua kali untuk mengukur gejala yang sama dan menghasilkan pengukuran yang relatif konsisten, maka alat pengukur tersebut reliabel. Dengan kata lain reliabilitas menunjukan kekonsistensiannya suatu alat pengukur didalam mengukur gejala yang sama. Pengukuran yang mempunyai reliabilitas tinggi disebut sebagai pengukuran yang reliabel. Walaupun reliabilitas mempunyai berbagai nama lain seperti kepercayaan, keterandalan, keajegkan, kestabilan, konsistensi dan sebagainya. Namun ide pokok yang terkandung dalam konsep reliabilitas adalah sejauh mana sesuatu pengukuran dapat dipercaya.

Pengukuran reliabel pada dasarnya dapat dilakukan 2(dua) cara:

1. Repeated Measure atau mengukur ulang

Metode ini bila seseorang responden akan diberi pertanyaan yang sama pada waktu ke waktu yang berbeda, dan kemudian dilihat apakah responden tetap konsisten dengan jawabannya.

2. One Shoot atau mengukur sekali

Disini pengukuran hanya sekali dan kemudian hasilnya dibandingkan dengan hasil pertanyaan lain.

Dalam penelitian ini, untuk mengetahui reliabilitas suatu instrumen digunakan cara *One Shoot* atau mengukur sekali.

Langkah kerja yang perlu diperhatikan adalah :

- 1. Memisahkan item yang valid dan membuang item yang tidak valid.
- Membagi item valid tersebut menjadi dua belahan. Caranya adalah membagi item dengan cara acak (random), separuh masuk belahan pertama dan separuh masuk belahan kedua atau membagi item berdasarkan nomor genap dan ganjil.

- 3. Menjumlahkan skor total untuk belahan pertama dan kedua.
- Mengkorelasikan skor belahan pertama dan kedua dengan menggunakan teknik korelasi product moment yang rumus dan caranya sudah dijelaskan sebelumnya.
- 5. Karena angka korelasi yang diperoleh adalah dari alat pengukur yang dibelah, maka angka korelasi yang dihasilkan lebih rendah dari angka korelasi alat pengukur yang tidak dibelah. Karena itu, harus dicari angka korelasi reliabilitas keseluruhan item tanpa dibelah, rumusnya adalah:

r.tot: angka reliabilitas keseluruhan item

r.tt: angka korelasi belahan pertama dan kedua

Adapun langkah pengujian reliabilitas adalah sebagai berikut:

1. Hipotesis:

H₀: skor butir tidak berkorelasi positif dengan komposit faktornya (butir tidak reliabel)

H₁: skor butir berkorelasi positif dengan komposit faktornya (butir reliabel)

- 2. Tingkat signifikansi 5 %
- 3. Daerah kritis:

r_{Alpha} positif > r_{tabel}, maka Ho ditolak (butir reliabel)

Jika r_{Alpha} positif $\leq r_{tabel}$, maka butir tersebut adalah tidak reliabel

 Statistik uji: dengan menggunakan program SPSS yaitu, dapat dilihat pada bagian nilai Alpha pada ouput komputer. 5. Kesimpulan : r_{Alpha} positif $> r_{tabel}$, maka Ho ditolak, maka butir tersebut adalah reliabel.

Dalam penelitian ini jenis data yang diperoleh adalah data kualitatif yang diangkakan (*skoring*) dengan interval jawaban mulai dari kata sangat setuju sampai dengan sangat tidak setuju.

2.9 Uji U Mann-Whitney

Uji *U Mann-Whitney* dipakai untuk menguji apakah dua (2) kelompok yang independen ditarik dari populasi yang sama.

Uji *U Mann-Whitney* adalah alternatif dari uji-t parametrik sebagai contoh kita memiliki sampel dari dua populasi, popolasi *A* dan *B*. Hipotesis-nol adalah populasi *A* dan *B* mempunyai distribusi yang sama dan hipotesis-alternatif adalah yang menunjukkan perbedaan. Untuk menerapkan uji *U Mann-Whitney*, pertamatama kita menggabungkan observasi-observasi atau skor-skor dari kedua kelompok itu, dan memberi ranking observasi-observasi itu dalam urutan dari yang terkecil hingga yang terbesar.

2.9.1 Sampel yang sangat Kecil

Jika n_1 ataupun n_2 tidak lebih besar daripada 8, tabel di lampiran 10 dapat digunakan untuk menetapkan kemungkinan eksak yang berkaitan dengan terjadinya sembarang harga U yang seekstrem harga U observasi. Dibawah H_0 , nilai probabilitas dapat dibaca dari tabel yang sesuai dengan n_2 yang dimilikinya.

Harga U, jika harga n_1 dan n_2 yang cukup besar, dihitung dengan memberikan ranking I untuk skor terendah dalam kelompok gabungan skor (n_1+n_2) , dan seterusnya. Diperoleh :

$$U = n_1 n_2 + \frac{n_1(n_1 + 1)}{2} - R_1 \qquad \dots 2.3$$

atau, ekuivalen dengan:

$$U = n_1 n_2 + \frac{n_2 (n_2 + 1)}{2} - R_2 \qquad \dots 2.4$$

dimana:

 R_1 = jumlah ranking yang diberikan pada kelompok yang ukuran sampelnya n_1

 R_2 = jumlah ranking yang diberikan pada kelompok yang ukuran sampelnya n_2

Untuk rumus di atas menghasilkan nilai U yang berlainan, yang kita kehendaki adalah nilai U yang lebih kecil, harga yang lebih besar adalah U'. untuk itu peneliti haruslah teliti yang diperoleh U atau U'dengan menerapkan transformasi sebagai berikut:

harga terkecil diantara keduanya adalah harga U.

2.9.2 Sampel Besar (n_2 lebih besar daripada 2θ) $n_2 > 2\theta$

Baik tabel di lampiran 10 maupun tabel di lampiran 11 untuk kasus $n_2 \approx 20$ tidak dapat dipergunakan. Selagi n_1 dan n_2 meningkat ukurannya, distribusi sampling U secara cepat mendekati distribusi normal, dengan

Mean=
$$\mu_U = \frac{n_1 n_2}{2}$$
 ...2.6)

dan Standar Deviasi

$$\sigma_U = \sqrt{\frac{(n_1)(n_2)(n_1 + n_2 + 1)}{12}} \qquad \dots 2.7)$$

Artinya, bila $n_2 \ge 20$ dapat ditentukan signifikan suatu harga U observasi dengan:

$$z = \frac{U - \mu_U}{\sigma_U} = \frac{U - \frac{n_1 n_2}{2}}{\sqrt{\frac{(n_1)(n_2)(n_1 + n_2 + 1)}{12}}} \dots 2.8$$

Dimana z berdistribusi normal dengan mean nol dan variansi satu, hargaharga z observasi dapat dilihat di tabel lampiran 9.

2.9.3 Angka Sama (Ties)

Uji *U Mann-Whitney* menganggap bahwa, skor-skor mewakili suatu distribusi yang kontinyu. Dengan pengukuran yang sangat tepat pada variabel yang kontinyu, kemungkinan terjadinya angka sama adalah nol. Tetapi dengan ukuran-ukuran yang relatif kasar, yang biasa kita pergunakan dalam penelitian ilmiah mengenai perilaku, angka sama sangat mungkin terjadi. Anggap bahwa, dua observasi yang menghasilkan angka sama sungguh-sungguh berbeda, tetapi

bahwa perbedaan itu terlalu halus atau kecil sehingga tidak terlacak oleh pengukuran secara kasar.

Jika terjadi angka sama, diberikan pada masing-masing kedua observasi itu rata-rata ranking yang akan dimiliki. Jika angka sama antara dua observasi atau lebih dalam kelompok yang sama, harga U tidak terpengaruh. Tetapi jika angka sama itu muncul antara dua observasi atau lebih dan menyangkut kedua kelompok, maka harga U akan terpengaruh.

Akibat dari ranking-ranking yang sama adalah mengubah variabilitas himpunan ranking itu. Dengan demikian, koreksi untuk angka sama harus diterapkan pada standar deviasi distribusi sampling U, kemudian setelah koreksi untuk angka sama, standar deviasi menjadi:

$$\sigma_U = \sqrt{\frac{n_1 n_2}{N(N-1)} \left(\frac{N^3 - N}{12} - \sum T\right)}$$
 ...2.9)

dimana:

$$N = n_1 + n_2$$

$$T = \frac{t^3 - t}{12}$$

(dimana t adalah banyaknya observasi yang berangka sama untuk suatu ranking tertentu).

Harga $\sum T$ diperoleh dengan menjumlahkan harga-harga T semua kelompok yang memiliki observasi-observasi berangka sama. Dengan koreksi untuk angka sama ini di dapatkan nilai z sebagai berikut:

$$z = \frac{U - \frac{n_1 n_2}{2}}{\sqrt{\left(\frac{n_1 n_2}{N(N-1)}\right)\left(\frac{N^3 - N}{12} - \sum T\right)}} \qquad \dots 2.10)$$

Dapat dilihat bahwa, jika tidak terdapat angka sama, pernyataan di atas secara langsung menyusut menjadi pernyataan yang semula diberikan untuk mencari z, harga z dengan koreksi untuk angka sama adalah sedikit lebih besar daripada yang ditemukan sebelumnya jika koreksi tidak dijalankan, jika dilakukan koreksi, maka koreksi itu cenderung sedikit menaikan harga z, yang membuatnya lebih signifikan. Oleh karena itu, bila tidak dilakukan koreksi untuk angka sama, tes adalah tes yang "konservatif" dalam arti bahwa, harga p akan sedikit lebih besar. Akibatnya harga kemungkinan yang berkaitan dengan data observasi, di bawah H_0 akan sedikit lebih besar daripada harga yang akan ditemukan seandainya koreksi itu diadakan.

2.9.4 Ikhtisar Prosedur Pada Uji U Mann-Whitney

Langkah-langkah dalam pemakaian Uji U Mann-Whitney:

- 1. Tentukan harga-harga n_1 dan n_2 , n_1 = banyak kasus dalam kelompok yang lebih kecil; n_2 = banyak kasus dalam kelompok yang lebih besar.
- 2. Berikan ranking bersama skor-skor kedua kelompok itu; ranking 1 diberikan kepada skor yang paling rendah. Ranking tersusun mulai 1 hingga $N = n_1 + n_2$. untuk observasi-observasi berangka sama, berikanlah rata-rata ranking yang berangka sama.
- 3. Tentukan harga *U*, dengan menerapkan rumus 2.3 atau 2.4.

- 4. Metode untuk menetapkan signifikansi harga U observasi tergantung pada ukuran n_2 :
 - a) Jika n_2 adalah 8 atau kurang, kemungkinan eksak yang berkaitan dengan suatu harga yang sekecil harga U observasi ditunjukan dalam tabel di lampiran 10. Untuk suatu tes dua sisi, kalikan dua harga p yang ditunjukan dalam tabel itu. Jika harga U observasi yang dipunyai tidak ditunjukkan dalam di lampiran 10, ini berarti harga U itu adalah U' dan harus diubah menjadi U dengan rumus 2.5.
 - b) Jika n_2 antara 9 dan 20, signifikansi sembarang harga observasi untuk U dapat ditentukan pada lampiran 11. jika harga U observasi yang dimiliki lebih besar dari $n_1 n_2 2$, maka harga itu adalah U'.
 - c) Jika $n_2 > 20$, maka kemungkinan yang berkaitan dengan suatu harga yang seekstrem harga U observasi dapat ditetapkan dengan menghitung harga z seperti pada rumus 2.8 dan menguji harga ini dengan memakai tabel pada lampiran 9. untuk suatu tes dua sisi, kalikan dua p yang ditunjukan dalam tabel. Jika proporsi angka sama sangat besar, atau jika p yang diperoleh sangat berdekatan dengan α , terapkanlah koreksi untuk angka sama, gunakan rumus 2.10.
- 5. Jika harga observasi U mempunyai kemungkinan yang lebih kecil dari α tolak H_0 dan menerima H_1 .

2.9.5 K-Sampel Independen Uji Kruskal Wallis test

Misal dipunyai K - sampel dari suatu populasi (satu atau beberapa populasi) yang distribusinya tidak diketahui. Sampel-sampel tersebut bersifat independen. Contoh kasusnya adalah, data penjualan barang tertentu pada beberapa daerah, data kinerja beberapa tipe kepemimpinan managerial, data produksi gandum pada beberapa varitas tertentu, dll. Jika sampel pertama adalah S1, sampel kedua S2, ... dan sampel ke -K adalah SK, dengan sampel observasi masing-masing banyaknya adalah, n_1 , n_2 , ..., dan n_K , maka hipotesisnya disusun sebagai berikut:

1. Hipotesis

$$H_0: M_1 = M_2 = ... = M_K$$

 $H_1: M_i \neq M_i$, untuk setiap $i \neq j; i, j = 1, 2, ..., K$

- 2. Tingkat Signifikansi α
- 3. Statistik Uji T
 - ♦ Jika ada data yang sama $T = \frac{1}{S^2} \left\{ \sum_{i=1}^{K} \frac{R_i^2}{n_i} \frac{N(N+1)^2}{4} \right\}$ dimana

$$S^{2} = \frac{1}{N-1} \left\{ \sum_{i=1}^{K} \sum_{j=1}^{n_{i}} R(X_{ij})^{2} - \frac{N(N+1)^{2}}{4} \right\}$$
* ...2.11)

Jika tak ada data yang sama $T = \frac{12}{N(N+1)} \sum_{i=1}^{K} \frac{R_i^2}{n_i} - 3(N+1)$ dimana

$$S^2 = \frac{N(N+1)}{12}$$
 ** ...2.12)

4. Perhitungan

a. Semua data dari tiap-tiap sampel dianggap satu sampel (digabung), $\mbox{kemudian dihitung Ranknya. Selanjutnya akan diperoleh } R_1,\,R_2,\,\dots\,,\,R_K\;; \\ \mbox{dimana } R_I \mbox{ adalah jumlah Rank pada sampel ke} - i.$

b. T, S² dan
$$N = n_1 + n_2 + ... + n_K$$

5. Daerah Kritik

$$T > \chi^2(K-1,1-\alpha)$$

6. Kesimpulan

Tolak H₀ bila T >
$$\chi^2(K-1,1-\alpha)$$

Catatan:

Bila H₀ ditolak, dilanjutkan dengan perbandingan ganda. Secara Manual yaitu :

$$\left| \frac{R_{i}}{n_{i}} - \frac{R_{j}}{n_{j}} \right| > \iota \left(N - K_{i}, 1 - \alpha / 2 \right) \left(S^{2} \frac{\left(N - 1 - T_{i} \right)}{N - K_{i}} \right)^{\frac{1}{2}} \left(\frac{1}{n_{j}} + \frac{1}{n_{j}} \right)^{\frac{1}{2}} \qquad \dots 2.13)$$

S² dihitung berdasarkan * dan **

2.9.6 K-Sampel Dependen Uji Friedman Rank Test

Misal dipunyai K sampel dari suatu populasi (satu populasi atau lebih) yang distribusinya tidak diketahui. Sampel tersebut bersifat dependen. Contoh kasusnya adalah sekumpulan anak yang mengikuti les bahasa pada beberapa lembaga kursus tertentu, sekumpulan orang yang mengikuti kegiatan tertentu (diet, metode belajar, metode bekerja, metode eksperimen dll). Ingin diketahui, apakah kegiatan-kegiatan itu mempunyai pengaruh yang sama pada setiap

anak/orang/unit – nya ? Jika sampel pertama adalah S1, sampel kedua S2, ... dan sampel ke –K adalah SK, dengan sampel pengukuran masing-masing banyaknya sama, yaitu n, maka hipotesisnya disusun sebagai berikut:

a. Hipotesis

$$H_0: M_1 = M_2 = ... = M_K$$

$$H_1: M_i \neq M_j$$
, untuk setiap $i \neq j; i, j = 1, 2, ..., K$

- 2. Tingkat Signifikansi α
- 3. Statistik Uji

T

- 4. Perhitungan
 - a. Untuk setiap sampel pengukuran ke- i, beri rank bagi setiap sampelnya. i = 1, 2, ..., n

b. Hitung
$$R_j = \sum_{i=1}^n R(X_{ij}), B = \frac{1}{n} \sum_{j=1}^K R_j^2$$
 ...2.14)

c. Hitung $A = \sum_{i=1}^{n} \sum_{j=1}^{K} (R(X_{ij}))^2$ jika ada data yang sama atau

$$A = \frac{nK(K+1)(2K+1)}{6}$$
 jika tidak ada data yang sama ...2.15)

d.
$$T = \frac{(n-1)\left(B - \frac{nK(K+1)^2}{4}\right)}{A-B}$$
, jika $A = B$, maka dihitung $\hat{\alpha} = \left(\frac{1}{K!}\right)^{n-1}$

5. Daerah Kritik

$$T > F(K-1, (n-1)(K-1), 1-\alpha)$$

6. Kesimpulan

Tolak
$$H_0$$
 bila $T > F(K-1, (n-1)(K-1), 1-\alpha)$

Catatan:

Bila H₀ ditolak, dilanjutkan dengan perbandingan ganda. Secara manual yaitu:

$$|R_{j}-R_{i}| > t((n-1)(K-1),1-\alpha/2)\left(\frac{2n(A-B)}{(n-1)(K-1)}\right)^{2}$$

2.9.7 Dua Sampel Dependen Sign Test

Uji Sign test dapat digunakan untuk kasus dua sampel berhubungan, ketika peneliti ingin menetapkan bahwa kondisi yang ada adalah berbeda. Asumsi yang digunakan adalah variabel yang sedang diuji memiliki distribusi kontinyu.

Misal dipunyai dua buah sampel, dari suatu populasi yang distribusinya tidak diketahui. Sampel tersebut sifatnya dependen, yaitu sampel tersebut diukur dari suatu unit, subyek atau individu yang sama untuk dua treatment tertentu. Misalnya, anak kembar, seseorang/sesuatu yang mengikuti kegiatan tertentu (diet, metode belajar, metode bekerja, metode eksperimen dan lain-lain). Untuk mengetahui hal tersebut, digunakan, Sign Test. Jika sampel pertama adalah X dan sampel kedua Y, dengan sampel pengukuran sebanyak n, maka hipotesis yang dapat diuji adalah:

1. Hipotesis

$$H_0: M_X = M_Y$$

$$H_0: M_X \neq M_Y$$

- 2. Tingkat Signifikansi α
- 3. Statistik Uji

T

4. Perhitungan

Hitung $D_i = Y_i - X_i$

Hitung $T = D_1 > 0$,

$$C_1 = \frac{n}{2} - Z_{\frac{\alpha}{2}} \frac{\sqrt{n}}{2}$$
 ...2.16)

$$T_1 = \frac{n}{2} + Z_{\frac{\alpha}{2}} \frac{\sqrt{n}}{2} \qquad \dots 2.17)$$

5. Daerah Kritik

 $T < C_1$

atau

 $T > T_1$

6. Kesimpulan

Tolak H₀, bila

 $T < C_1$

atau

 $T > T_1$

BAB III

METODE PENELITIAN

Dalam penelitian ini data yang dikumpulkan merupakan data primer dan data sekunder. Data primer yaitu, data yang diperoleh langsung dari sumbernya (dalam hal ini dengan cara pengisian angket atau kuesioner oleh responden). Data sekunder adalah data yang tidak diperoleh langsung dari sumbernya, dalam hal ini adalah data yang diperoleh dari *homepage* UII (SIMAK UII). Data tersebut adalah jumlah mahasiswa UII yang masih aktif pada tahun ajaran 2003/2004.

3.1. Obyek dan Tempat Penelitian

Dalam penelitian ini, peneliti mengadakan penelitian di kampus FTI, FMIPA, FTSP, dan FPSIKOLOGI Universitas Islam Indonesia Jogjakarta. Adapun yang dijadikan obyek penelitian adalah para mahasiswa yang masih aktif pada tahun ajaran 2003/2004.

Tabel 3.1 Data Mahasiswa yang Mengisi KRS 2003/2004

NO	FAKULTAS	JUMLAH MAHASISWA YANG KRS	KUESIONER YG DISEBAR
1	FTI	3883	87
2	FMIPA	1369	31
3	FTSP	2623	60
4	FPSIKOLOGI	1057	24

Sumber: SIMAK Universitas Islam Indonesia 2003/2004

Tabel 3.2 Data Mahasiswa yang Mengisi KRS 2003/2004 Berdasarkan Jenis Kelamin

No Fakultas			Mahasiswa g KRS	Sampel		
		Lak-laki	Perempuan	Laki-laki	Perempuan	
1	FTI	2745	1115	62	25	
2	FMIPA	335	1029	6	23	
3	FTSP	1782	660	41	19	
4	F_PSIKOLOGI	295	762	7	17	

Sumber: SIMAK Universitas Islam Indonesia 2003/2004

3.2 Waktu Penelitian

Waktu penelitian yang dilakukan peneliti adalah dari tanggal 25 februari sampai dengan 13 Maret 2004.

3.3 Variabel Penelitian

Variabel-variabel yang merupakan faktor-faktor pembelian telepon seluler Nokia, adalah faktor harga, desain, fitur, dan jamian purna jual.

3.3.1 Variabel Harga (Swasta, 1984)

Variabel harga yang diteliti dalam penelitian ini dirinci sebagai berikut:

- 1. Faktor Harga Yang Murah.
- 2. Jenis (type) telepon seluler.
- 3. Faktor Potongan Harga.
- 4. Faktor Mutu dan Kualitas yang Baik.
- 5. Pertimbangan mutu atau kualitas terhadap harga.

3.3.2 Variabel Desain (Seluler, 2004)

Variabel desain yang diteliti dalam penelitian ini dirinci sebagai berikut:

- Clamshell (telepon seluler dengan desain lipat), Candy bar (telepon seluler berbentuk batang), dan Sliding (seperti Nokia 7650).
- 2. Desain HP dengan menggunakan antena luar (eksternal) dan tanpa antena.
- 3. Desain yang Simpel dan Mungil.
- 4. Desain yang unik dengan layar lebar dan suara yang jelas.

3.3.3 Variabel Fitur (Seluler, 2004)

Variabel fitur yang diteliti dalam penelitian ini dirinci sebagai berikut:

- 1. SMS, EMS, MMS, Polifonik, dan Phone Book
- 2. Games, Dwonloaddable, Screensever. Bluethooth, dan GPRS
- 3. Kamera Digital.
- 4. Layar Warna.

3.3.4 Variabel Jaminan Purna Jual (Swasta, 1984)

Variabel jaminan purna jual yang diteliti dalam penelitian ini dirinci sebagai berikut:

- 1. Garansi.
- 2. Pengganti Suku Cadang.
- 3. Pelayanan Servis.
- 4. Kemudahan Dalam Memperoleh Suku Cadang.
- 5. Harga Jual Kembali.
- 6. Kemudahan Menjual Kembali.

3.4 Pengumpulan Data dan Penentuan Sampel

Pada proses penelitian sering hanya terdapat satu jenis data yaitu data kuantitatif atau data kualitatif, tapi mungkin juga gabungan keduanya. Data kualitatif adalah data yang berbentuk kata, kalimat, skema, atau gambar. Data kuantitatif adalah data yang berbentuk angka atau bisa juga data kualitatif yang diangkakan. Data kualitatif yang diangkakan (*skoring*), misalnya terdapat dalam skala pengukuran. Suatu pertanyaan atau pernyataan yang memerlukan alternatif jawaban, misalnya: sangat setuju, setuju, tidak setuju, dan sangat tidak setuju, yang masing-masing diberi bobot angka, 4 (empat), 3 (tiga), 2 (dua) dan 1 (satu).

Dalam suatu penelitian yang menggunakan metode survei, tidaklah selalu perlu untuk meneliti semua individu dalam populasi, karena disamping membutuhkan biaya banyak juga memerlukan waktu yang cukup lama. Sebuah sampel haruslah dipilih sedemikian rupa, sehingga setiap elemen mempunyai kesempatan dan peluang yang sama untuk dipilih menjadi sampel. Suatu metode pengambilan sampel yang ideal mempunyai sifat-sifat sebagai berikut:

- a. Dapat menghasilkan gambaran yang dapat dipercaya dari seluruh populasi yang diteliti.
- b. Dapat menentukan presisi dari hasil perhitungan dengan menentukan penyimpangan baku.
- c. Sederhana, hingga mudah dilaksanakan.
- d. Dapat memberikan keterangan sebanyak mungkin dengan biaya sedikit mungkin.

Berikut ini akan dijelaskan beberapa metode penentuan sampel yang digunakan dalam penelitian ini (Sukandarrumidi, 2002):

1. Purposive Sampling

Sesuai dengan namanya, sampel yang diambil adalah sampel yang digunakan untuk maksud dan tujuan tertentu. Seseorang atau sesuatu diambil sebagai sampel karena peneliti menganggap bahwa seseorang atau sesuatu tersebut memiliki informasi yang diperlukan bagi penelitinya. Kegiatan dalam penelitian ini juga hanya ingin mengetahui faktor harga, desain , fitur dan jaminan purna jual dalm pembelian telepon seluler Nokia tanpa melihat telepon seluler yang lain.

2. Accidental Sampling

Dalam memilih sampel (responden), peneliti tidak mempunyai pertimbangan lain kecuali berdasarkan kemudahan saja. Seseorang diambil sebagai sampel karena kebetulan orang tersebut ada atau dia mengenal orang tersebut. Jenis sampel ini baik jika diamanfaatkan untuk penelitian penjajagan, yang kemudian diikuti oleh penelitian lanjutan yang sampelnya diambil secara acak (random).

3. Sequential Sampling

Cara pengambilan sampel yang dilakukan adalah mulai dengan pengambilan sampel kecil (pra-penyebaran), kemudian dianalisa. Kalau hasilnya masih meragukan, maka dapat diambil sampel yang lebih besar lagi. Dalam penelitian ini, cara pengambilan sampel seperti ini digunakan untuk mengetahui asumsi validitas dan reliabilitas data. Bila kuesioner yang

disebarkan awal dengan sampel kecil sudah memenuhi asumsi validitas dan reliabilitas, maka penelitian dilanjutkan dengan mengambil sampel yang lebih besar yang akan digunakan dalam analisa data.

Adapun rumus jumlah minimal sampel yang akan diteliti adalah sebagai berikut: (Sukandarrumidi, 2002)

$$n = \frac{N}{Nd^2 + 1} \tag{3.1}$$

dimana:

n = Jumlah sampel

N = Jumlah populasi

d = Presisi

Yaitu:

$$n = \frac{8932}{8932(0.0049) + 1}$$

$$= \frac{8932}{44.78}$$

$$= 199.52 \approx 200$$

Jadi, berdasarkan besarnya populasi yang telah diketahui, maka sampel yang harus diambil adalah sekurang-kurangnya sebanyak 200 orang responden. Dalam penelitian ini, dengan jumlah sampel sebanyak 402 responden berarti telah memenuhi batas kualitas minimal sampel yang harus diambil (sehingga dapat dilakukan analisa statistik lebih lanjut).

3.5 Angket Sebagai Alat Ukur Variabel

Salah satu teknik pengumpul data sebagai alat ukur variabel adalah dengan menggunakan angket. Ciri khas angket terletak pada pengumpulan data melalui daftar pertanyaan tertulis yang disusun dan disebarkan untuk mendapatkan informasi atau keterangan dari sumber data yang berupa orang atau responden. Karena ciri khasnya, maka sikap penelitian yang menggunakan angket sebagai alat dan teknik pengumpulan data, maka sudah tentu:

- ⇒ Berkepentingan dengan sumber daya yang ada yang berupa orang atau responden.
- ⇒ Perlu menyusun daftar pertanyaan tertulis sesuai dengan informasi atau keterangan yang diperlukan.
- ⇒ Perlu menyebarkan angket dan menghimpunnya kembali setelah diisi oleh responden.

Dalam hubungan ini, perlu ditegaskan bahwa daftar pertanyaan pada angket bukanlah dimaksudkan untuk mengkaji kemampuan responden sebagaimana halnya pada alat dan teknik tes lain. Tetapi, hanya untuk merekam dan menggali informasi dan keterangan yang relevan serta bisa dijelaskan atau diterangkan untuk responden. Skala yang digunakan pada penelitian ini adalah skala likert yang telah dimodifikasi. Skala likert merupakan skala yang berisi lima tingkat jawaban mengenai kesetujuan responden terhadap suatu pernyataan yang dikemukakan. Skala ini memiliki beberapa keuntunggan yaitu pembuatan dan pengolahannya lebih sederhana dibandingkan dengan skala pengukuran yang

lain. Selain itu, tidak menyita waktu terlalu banyak untuk menjawab kuesioner tersebut.

Dalam skala likert yang asli, tingkat kesetujuan responden terhadap suatu pernyataan dalam angket diklasifikasikan sebagai berikut :

SS: Sangat Setuju

S Setuju

BM: Netral/Belum memutuskan

TS: Tidak setuju

STS: Sangat tidak setuju

Modifikasi skala likert meniadakan kategori jawaban yang ditengah berdasarkan tiga alasan : (Hadi,1990)

- 1. Kategori *undecided* itu mempunyai arti ganda, bisa diartikan belum dapat memutuskan atau memberi jawaban (menurut konsep aslinya), bisa diartikan netral, setuju tidak, tidak setujupun tidak, atau bahkan ragu-ragu.
- 2. Tersedianya jawaban yang ditengah itu menimbulkan kecenderungan menjawab ke tengah (central tendency effect), terutama bagi mereka yang ragu-ragu atas arah kecenderungan jawabannya, kearah setuju ataukah kearah tidak setuju.
- 3. Maksud kategorisasi jawaban SS-S-TS-STS adalah terutama untuk melihat kecenderungan pendapat responden, kearah setuju atau kearah tidak setuju. Jika disediakan kategori jawaban itu, akan menghilangkan banyak data penelitian, sehingga mengurangi banyaknya informasi yang dapat dijaring dari para responden.

seseora

naka v

emudi outir-bu

ligunak

C

Jaw

Jaw

Jawa

Jawa

S

idak, B

ikert tei

ada ska

etuju.

Pe

enurut a

ari skala

Nomir

Skala

hanyala

digunal

kelamin, kita memberikan kode 1 untuk jenis kelamin laki-laki dan 0 untuk wanita.

2. Ordinal

Tingkat pengukuran ini memungkinkan peneliti untuk mengurutkan respondennya dari tingkatan paling rendah ke yang paling tinggi. Misalnya untuk ukuran tingkat pendidikan, 1 untuk SD, 2 untuk SMP, 3 untuk SMU dan 4 untuk Perguruan Tinggi.

3. Interval

Ukuran ini mengurutkan obyek atau orang berdasarkan suatu atribut. Skala dan indeks biasanya menghasilkan ukuran yang interval. Misalnya skala termometer, walaupun ada nilai 0 0 C, namun tetap ada nilainya. Dengan kata lain ukuran ini memiliki nilai titik nol tidak tetap.

4. Rasio

Ukuran rasio adalah suatu bentuk interval yang jaraknya (intervalnya) tidak dinyatakan sebagai nilai perbedaan antar responden, tetapi antara seorang responden dengan angka nilai nol tetap. Misalnya data tentang berat badan, panjang dan volume. Berat 0 (nol) kilogram, berarti tidak ada beratnya atau tidak mempunyai berat, panjang 0 (nol) meter, berarti tidak ada panjang. Dengan kata lain jenis ukuran memiliki titik nol tetap.

3.6 Tahap-tahap Pelaksanaan Penelitian

3.6.1 Penyusunan Kuesioner

Tujuan pokok pembuatan kuesioner adalah memperoleh informasi yang relevan dengan tujuan, dan memperoleh informasi dengan reliabilitas dan validitas setinggi mungkin.

Berikut merupakan langkah-langkah yang dilakukan dalam menyusun sebuah angket atau kuesioner:

1. Mendefinisikan Konstrak (constract definition).

Yaitu, membuat batasan mengenai variabel yang akan diteliti misal, tentang sikap konsumen, maka perlu dipertegas dahulu apa yang dimaksud dengan sikap konsumen tersebut.

2. Menetapkan faktor-faktor

Yaitu, mencoba menemukan unsur-unsur yang ada pada sebuah konstrak. Jadi, faktor pada dasarnya adalah perincian lebih lanjut dari sebuah konstrak. Misal, untuk mengukur sikap konsumen terhadap sebuah produk, faktor yang bisa dinyatakan adalah harga produk, promosi produk dan sebagainya.

3. Menyusun butir-butir pertanyaan

Yaitu, mencoba menjabarkan sebuah faktor lebih lanjut dalam berbagai pertanyaan yang langsung berinteraksi dengan pengisi angket.

Sebelum atau ketika membuat kuesioner, ada baiknya dipelajari kuesioner yang sudah ada dan relevan dengan topik penelitian yang akan dilakukan.

Isi pertanyaan:

- 1. Pertanyaan tentang fakta. Misal: umur, pendidikan dan status perkawinan.
- Pertanyaan tentang pendapat dan sikap. Ini menyangkut perasaan dan sikap responden tentang sesuatu.
- Pertanyaan tentang informasi. Ini menyangkut apa yang diketahui oleh responden dan sejauh mana hal tersebut diketahuinya.
- 4. Pertanyaan tentang persepsi diri. Responden menilai perilakunya sendiri dalam hubungannya dengan yang lain.

Beberapa cara pemakaian kuesioner:

- Kuesioner dilakukan dalam wawancara tatap muka dengan responden (cara ini yang lazim di lakukan).
- Kuesioner diisi sendiri oleh kelompok. Misalnya, seluruh murid dalam satu kelas dan mereka mengisi kuesioner secara serentak.
- 3. Wawancara melalui telepon.
- 4. Kuesioner *diposkan*, dilampiri amplop yang dibubuhi perangko, untuk dikembalikan oleh responden setelah diisi.

Jenis pertanyaan:

- Pertanyaan tertutup. Kemungkinan jawabannya sudah ditentukan terlebih dahulu dan responden tidak diberi kesempatan memberikan jawaban lain.
- Pertanyaan terbuka. Kemungkinan jawabannya tidak ditentukan dulu sehingga responden mempunyai kesempatan memberikan jawaban sendiri.
- 3. Kuisoner tertutup dan terbuka. Jawabannya sudah ditentukan dulu disusul dengan pertanyaan terbuka.

 Pertannyan semi terbuka. Jawabannya sudah tersusun tapi dimungkinkan tambahan jawaban.

Petunjuk membuat pertanyaan:

- Gunakan kata-kata yang sederhana dan dimengerti oleh semua responden.
 Hindarkan istilah yang hebat tetapi kurang dimengerti responden secara umum.
- 2. Usahakan supaya pertanyaan jelas dan khusus.
- 3. Hidarkan pertanyaan yang memiliki lebih dari satu pengertian
- 4. Hindarkan pertanyaan yang mengandung sugesti.
- 5. Pertanyaan harus berlaku bagi semua responden.

3.6.2 Penyebaran Kuesioner Awal (Pre-test/Pra-Penyebaran)

Pre-test diadakan untuk menyempurnakan kuesioner. Pengujian dengan teknik pengujian awal dilakukan untuk menguji kereliabilitas dari instrumen (kuesioner) yang telah dibagikan kepada 50 responden yang telah mengisi kuesioner pada pembagian pertama. Koefisien kereliabilitasan dari instrumen yang telah diterjemahkan mempunyai nilai yang lebih tinggi, mungkin hal ini disebabkan karena adanya perbedaan kebudayaan, kesalahan penterjemahan dan kesalah pahaman arti dari item-item karena perbedaan struktur bahasa dan arti.

Melalui pre-test akan diketahui beberapa hal:

- Apakah pernyataan tertentu perlu dihilangkan.
- Apakah pernyataan tertentu perlu ditambah.

- Apakah tiap pernyataan dapat dimengerti dengan baik oleh responden dan apakah pewawancara dapat menyampaikan pernyataan tersebut dengan mudah.
- Apakah urutan pernyataan perlu diubah.
- Apakah pernyataan sensitif dapat diperlunak dengan mengubah bahasa.
- Berapa lama wawancara memerlukan waktu.
- Apakah kuesioner sudah valid (sahih) dan reliable (andal).

Untuk penentuan jumlah responden dalam *pre-test* ini tidak ada patokan pasti dan tergantung pula pada homogenitas responden. Untuk *pre-test* biasanya sebanyak 30-50 angket atau kuesioner sudah mencukupi dan dipilih responden yang keadaannya kurang lebih sama dengan responden yang sesungguhnya akan diteliti.

3.6.3 Penyebaran Kuesioner Akhir

Seperti halnya kuesioner awal, penyebaran kuesioner akhir dilakukan secara langsung kepada mahasiswa FTI, FMIPA, FTSP, dan FPSIKOLOGI UII. Kuesioner yang disebarkan berjumlah 402 kuesioner. Jumlah kuesioner pada setiap Fakultas, sebagaimana pada tabel berikut ini:

Tabel 3.3 Perincian Pembagian Kuesioner FTI, FMIPA, FTSP, dan FPSIKOLOGI

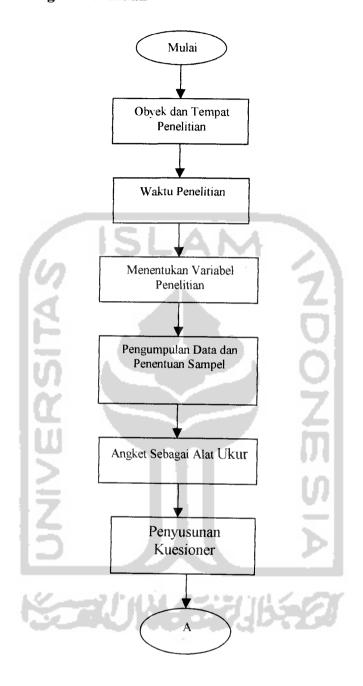
NO	FAKULTAS	JUMLAH	KUESIONER YG
		MAHASISWA	DISEBAR
		YANG KRS	
1	FTI	3883	172
2	FMIPA	1369	65
3	FTSP	2623	116
4	FPSIKOLOGI	1057	50

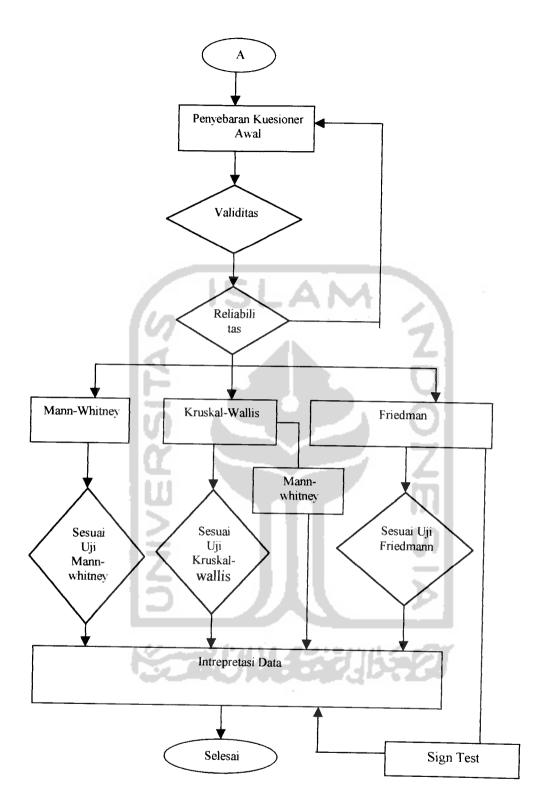
Tabel 3.4 Perincian Pembagian Kuesioner Laki-Laki dan Perempuan di FTI, FMIPA, FTSP, dan FPSIKOLOGI

No	Fakultas	Jumlah Mahasiswa Yang KRS		Sai	mpel	
		Lak-laki		Laki-laki	Perempuan	
1	FTI	2745	1115	77	65	
2	FMIPA	335	1029	12	53	
3	FTSP	1782	660	79	36	
4	F PSIKOLOGI	295	762	11	39	

Kuesioner disebar keempat fakultas yaitu FPSIKOLOGI, FTSP, FTI, dan FMIPA secara acak dengan menyerahkan kuesioner secara langsung kepada responden maupun tidak langsung sebanyak 402 kuesioner.

Dalam penelitian ini, kampus FTI, FMIPA, FTSP, dan FPSIKOLOGI Universitas Islam Indonesia Jogjakarta sebagai tempat penelitian adalah dengan menggunakan *purposive sampling*, yaitu sampel dengan maksud dan tujuan tertentu. Untuk penarikan sampel dilakukan dengan menggunakan *accidental sampling*. Banyaknya sampel yang dikumpulakan berdasarkan pada metode *sequential sampling*, yaitu dengan melakukan pra-penyebaran terlebih dahulu kemudian dilakukan penyebaran secara menyeluruh.


Dalam tahap ini, peneliti juga melakukan penyebaran kuesioner setelah item-item dalam kuesioner tersebut diuji validitas dan reliabilitasnya terlebih dahulu yang kemudian dilanjutkan dengan analisis data.


3.7 Analisa Data

Analisa dilakukan dengan menggunakan Uji U Mann-Whitney, Uji Kruskal-Wallis, dan Uji Friedman. Uji Mann-Whitney dan Uji Kruskal-Wallis bertujuan untuk mengetahui apakah terdapat pengaruh variabel demografi (jenis kelamin, fakultas dan umur) terhadap faktor harga, desain, fitur dan jaminan purna jual. Sedangkan Uji Friedman bertujuan untuk mengetahui apakah terdapat perbedaan score faktor harga, desain, fitur, dan jaminan purna jual berdasarkan variabel demografi (Jenis kelamin, fakultas, dan umur). Perhitungan analisa ini dilakukan dengan menggunakan bantuan program SPSS Versi 10.

3.8 Langkah-Langkah Penelitian

Gambar 3.1 Bagan Langkah-langkah Penelitian

BAB IV

ANALISIS DAN PEMBAHASAN

4.1 Data Penelitian

Sebagaimana yang telah dijelaskan sebelumnya, dalam penelitian ini untuk mendapatkan data digunakan angket atau kuesioner. Angket yang digunakan berjumlah 402 (empat ratus dua) yang kemudian digunakan dalam analisis data. Namun, sebelum dilakukan penyebaran sebanyak 402, maka dilakukan prapenyebaran angket untuk menguji asumsi valid (sahih) dan reliabel (andal) sebanyak 50 (lima puluh) angket atau kuesioner. Data untuk analisis validitas dan reliabilitas terdapat pada lampiran 2. Adapun data lengkap penelitian ini sebagaimana tertera pada lampiran 4

4.1.1 Profil Responden

Tabel 4.1 Profil Responden

Fakultas	Gender							
		15-19	20-24	25-29	30-34			
FTI	Laki-laki	7	67	3	0			
	Perempuan	21	69	5	0			
FMIPA	Laki-laki	4 4 4	8 1	0	0			
	Perempuan	17	26	0	0			
FTSP	Laki-laki	14	54	8	2			
	Perempuan	3	23	0	0			
FPSIKOLOGI	Laki-laki	0	11	0	0			
	Perempuan	1	38	0	0			

4.2 Uji Validitas dan Reliabilitas

Data yang diperoleh dari kuesioner sebelum digunakan untuk analisis selanjutnya terlebih dahulu diuji kesahian (validitas) dan keandalannya (reliabilitas). Kemudian dilanjutkan dengan analisis Mann-Whitney, Kruskal-Wallis, Friedman dan Sign Test.

Syarat yang harus dipenuhi oleh sebuah instrumen (angket atau kuesioner) adalah validitas dan reliabilitas. Untuk mengetahui adanya validitas dan reliabilitas angket atau kuesioner, maka penulis menggunakan bantuan program SPSS (Statistical Product and Service Solutions) Versi 10. Hasil keluaran program ada pada lampiran 3.

4.2.1. Uji Validitas

Adapun pengujian validitas yang dilakukan adalah sebagai berikut :

1. Hipotesis

H₀: Skor butir tidak berkorelasi positif dengan skor faktor (butir tidak valid)

H₁: Skor butir berkorelasi positif dengan skor faktor (butir valid).

2. Tingkat signifikansi ($\alpha = 0.05$)

db = n-2; n : jumlah kasus (responden)

= 50-2 = 48 (karena dalam tabel r pada lampiran 10 tidak ada db = 48, maka dilakukan interpolasi).

$$r_{tabel}$$
 (untuk db = 45) = 0.288, r_{tabel} (untuk db = 50) = 0.273

$$r_{\text{tabel}}$$
 (untuk db = 48) = 0.288- $\left(\frac{48-45}{50-45}x(0.288-0.273)\right)$ = 0.279

3. Menentukan r tabel

Dengan menggunakan program SPSS, yaitu r_{hasil} ini dapat dilihat pada output komputer bagian kolom nilai *Corrected Item Total Correlation* (tedapat pada lampiran 3).

4. Dasar Pengambilan keputusan:

- Jika r_{hasil} positif dan $r_{hasil} \le r_{tabel}$, maka Ho ditolak (butir tidak valid).
- Jika r_{hasil} positif dan r_{hasil} > r_{tabel}, maka Ho diterima (butir valid).

Tabel 4.2 Hasil Analisis Validitas Faktor Harga, Desain, Fitur, dan Jaminan Purna Jual

Purna Jual								
NO	PERNYATAAN	R _{HASIL}	KETERA NGAN					
Α.	FAKTOR HARGA PRODUK							
1.	Faktor harga yang murah mempengaruhi keputusan anda dalam membeli telepon seluler Nokia.	0.1140	Tidak Valid					
2.	Jenis (<i>type</i>) HP mempengaruhi keputusan anda dalam membeli telepon seluler Nokia.	0.3532	Valid					
3.	Faktor potongan harga menjadi pertimbangan anda dalam membeli HP Nokia.	0.4988	Valid					
4.	Telepon seluler dengan mutu dan kualitas yang baik lebih mahal dari pada yang kualitasnya kurang baik.	-0.1012	Tidak Valid					
5.	Anda akan cenderung membeli telepon seluler yang mahal dengan kualitas baik daripada membeli dengan harga murah tapi kualitasnya kurang baik.	0.4708	Valid					
B.	FAKTOR DESAIN							
1.	Desain berbentuk Clamshell (telepon seluler dengan desain lipat), Candy Bar (telepon seluler berbentuk batang) atau Sliding (seperti Nokia 7650) menjadi daya tarik tersendiri bagi Anda dalam membeli HP Nokia.	0.1430	Tidak Valid					
2.	Desain HP dengan Antena luar	0.2858	Valid					

	(Eksternal), dan tanpa Antena menjadi pertimbangan anda dalam menentukan pilihan membeli HP Nokia.		
3.	Desain yang simpel dan mungil menjadi alasan tersendiri buat Anda untuk membeli HP Nokia.		Valid
4.	Desain unik dengan layar yang lebar dan dukungan suara yang jelas mempengaruhi keputusan Anda dalam membeli HP Nokia.		Valid
<u>C.</u>	FAKTOR FITUR (NILAI JUAL)		
1.	Dengan adanya fasilitas SMS, EMS*, MMS**, Phone Book, Polifonik mempengaruhi keputusan anda dalam	0.7218	Valid
	membeli HP Nokia.	4	
2.	Dengan adanya Bluetooth, Games, GPRS***, Donwloadable dan screenserver mempengaruhi keputusan anda dalam membeli HP Nokia.	0.7375	Valid
3.	Dengan adanya kamera digital yang ada dalam HP (Built in) menjadi daya tarik tersendiri buat Anda untuk membeli HP Nokia.	0.5090	Valid
4.	Dengan layar warna, akan lebih mendukung keputusan Anda dalam membeli HP Nokia	0.6142	Valid
D.	FAKTOR JAMINAN PURNA JUAL	171	
1.	Faktor garansi atau jaminan yang lama mempengaruhi keputusan anda dalam membeli HP Nokia.	0.4084	Valid
2.	Jaminan pengganti <i>spare-part</i> baru jika ada kerusakan dalam masa garansi mempengaruhi keputusan anda dalam membeli HP Nokia.	0.7272	Valid
3.	Pelayanan atau service yang tersedia diseluruh Indonesia mempengaruhi keputusan anda dalam membeli HP Nokia.	0.5222	Valid
4.	Spare-part (suku cadang) yang mudah didapatkan mempengaruhi keputusan anda dalam membeli telepon seluler	0.5707	Valid

^{*} Enhanced Message Servise(pesan berbentuk logo)

** Multymedia Mesage Servise(pesan berbentuk gambar)

*** GPRS (kemampuan untuk mengakses ke internet)

D٤	
ko	
4. Da	
•	
•	
Tabel	
NO	
Α.	
1.	
2.	
3.	
В.	
2. 3. 1 2.	1
2.	l a n
3.	L d

n

11

	Natrio		
5.	Nokia. Harga jual kembali yang tinggi mempengaruhi keputusan anda dalam membeli telepon seluler Nokia.	0.6797	Valid
6.	to taken meniual kembali	0.6576	Valid

5. Kesimpulan

Dari 19 (sembilan belas) item pertanyaan yang disajikan untuk faktor harga terdapat 2 (dua) item atau atribut yang tidak valid, sedangkan dari 4 (empat) item pertanyaan yang disajikan untuk faktor desain terdapat 1 (satu) item atau atribut yang tidak valid. Langkah selanjutnya adalah menggugurkan 3 (tiga) butir atau item yang tidak memenuhi kaidah uji tersebut. Kemudian butir atau item yang sudah valid tersebut digunakan dalam uji reliabilitas.

4.2.2. Uji Reliabilitas

Langkah-langkah yang dilakukan dalam uji reliabilitas adalah sebagai berikut:

1. Hipotesis

H₀ : Skor butir tidak berkorelasi positif dengan komposit faktornya (butir tidak reliabel).

H₁: Skor butir berkorelasi positif dengan komposit faktornya (butir reliabel).

2. Tingkat signifikansi ($\alpha = 0.05$)

db = n-2; n : jumlah kasus (responden)

= 50-2 = 48 Menentukan r tabel (sama dengan cara perhitungan r_{tabel} untuk uji validitas)

1. Kesimpulan:

Untuk Faktor Harga

Di lihat dari nilai *Corrected Item Total Correlation* (terdapat pada lampiran 3), maka terlihat semua butir untuk faktor harga mempunyai nilai r_{hasil} lebih besar r_{tabel} dan semua r_{hasil} adalah positif. Sehingga, bisa dikatakan semua butir adalah valid. Karena butir sudah valid semua, maka analisis dilanjutkan pada reliabilitas. Berdasarkan dasar pengambilan keputusan di atas, maka terlihat bahwa $r_{Alpha} > r_{tabel}$ (0.5563 > 0.279). Sehingga dapat ditarik kesimpulan bahwa butir untuk faktor harga adalah reliabel.

Untuk Faktor Desain

Di lihat dari nilai *Corrected Item Total Correlation* (terdapat pada lampiran 3), maka terlihat semua butir untuk faktor desain mempunyai nilai r_{hasil} lebih besar r_{tabel} dan semua r_{hasil} adalah positif. Sehingga, bisa dikatakan semua butir adalah valid. Karena butir sudah valid semua, maka analisis dilanjutkan pada reliabilitas. Berdasarkan dasar pengambilan keputusan di atas, maka terlihat bahwa $r_{Alpha} > r_{tabel}$ (0.7742 > 0.279). Sehingga, dapat ditarik kesimpulan bahwa butir untuk faktor desain adalah reliabel.

Untuk Faktor Fitur

Di lihat dari nilai *Corrected Item Total Correlation* (terdapat pada lampiran 3), maka terlihat semua butir untuk faktor fitur mempunyai nilai r_{hasil} lebih besar r_{tabel} dan semua r_{hasil} adalah positif. Sehingga, bisa

dikatakan semua butir adalah valid. Karena butir sudah valid semua, maka analisis dilanjutkan pada reliabilitas. Berdasarkan dasar pengambilan keputusan di atas, maka terlihat bahwa $r_{Alpha} > r_{tabel}$ (0.8159 > 0.279). Sehingga, dapat ditarik kesimpulan bahwa butir untuk faktor fitur adalah reliabel.

Untuk Faktor Jaminan Purna Jual

Di lihat dari nilai *Corrected Item Total Correlation* (terdapat pada lampiran 3), maka terlihat semua butir untuk faktor jaminan purna jual mempunyai nilai r_{hasil} lebih besar r_{tabel} dan semua r_{hasil} adalah positif. Sehingga, bisa dikatakan semua butir adalah valid. Karena butir sudah valid semua, maka analisis dilanjutkan pada reliabilitas. Berdasarkan dasar pengambilan keputusan di atas, maka terlihat bahwa $r_{Alpha} > r_{tabel}$ (0.8159 > 0.279). Sehingga, dapat ditarik kesimpulan bahwa butir untuk faktor jaminan purna jual adalah reliabel.

4.3 Demografi Responden

A. Jenis Kelamin

Tabel 4.4 Jumlah dan Persentase Responden Menurut Jenis Kelamin Berdasarkan Fakultas

FAKULTAS	RESPONDEN					
	Lak	ri-laki	Pere	mpuan		
	Jumlah Persentase		Jumlah	Persentase		
	(%)			(%)		
FTI	77	0.43	95	0.43		
FMIPA	12	0.07	53	0.24		
FTSP	79	0.44	36	0.16		
FPSIKOLOGI	11	0.06	39	0.17		

Keterangan:

- ⇒ Dari tabel diatas dapat diketahui bahwa dari 172 responden mahasiswa FTI, mahasiswa perempuan yang menggunakan telepon seluler Nokia berjumlah 77 mahasiswa dengan persentase 43%, sedangkan jumlah responden laki-laki yang menggunakan telepon seluler Nokia berjumlah 95 mahasiswa dengan persentase 43%.
- ⇒ Dari tabel diatas dapat diketahui bahwa dari 65 responden mahasiswa FMIPA, mahasiswa perempuan yang menggunakan telepon seluler Nokia berjumlah 53 mahasiswa dengan persentase 24%, sedangkan jumlah responden laki-laki yang menggunakan telepon seluler Nokia berjumlah 36 mahasiswa dengan persentase 7%.
- ⇒ Dari tabel diatas dapat diketahui bahwa dari 115 responden mahasiswa FTSP, mahasiswa perempuan yang menggunakan telepon seluler Nokia berjumlah 79 mahasiswa dengan persentase 16%, sedangkan jumlah responden laki-laki yang menggunakan telepon seluler Nokia berjumlah 36 mahasiswa dengan persentase 44%.
- ⇒ Dari tabel diatas dapat diketahui bahwa dari 50 responden mahasiswa FPSIKOLOGI, mahasiswa perempuan yang menggunakan telepon seluler Nokia berjumlah 39 mahasiswa dengan persentase 17%, sedangkan jumlah responden laki-laki yang menggunakan telepon seluler Nokia berjumlah 6 mahasiswa dengan persentase 22%.

B. Menurut Usia

Tabel 4.5 Jumlah dan Persentase Responden Menurut Usia dan Fakultas

FAKULTAS	USIA									
THOBIA	15-19		20-24		25-29		30-34			
	Jum	%	Jum	%	Jum	%	Jum	%		
TI	28	0.36	136	0.44	8	0.5	0	0_		
MIPA	21	0.27	44	0.14	0	0	0	0		
TSP	27	0.35	78	0.25	8	0.5	2	1		
PSIKOLOGI	1	0.01	49	0.16	0	0	0	0		

Keterangan:

Dari tabel diatas dapat diketahui bahwa dari 172 responden mahasiswa FTI ternyata rata-rata mahasiswa yang memiliki telepon seluler Nokia berusia 20-24 tahun yaitu sebanyak 136 mahasiswa dengan persentase 44%, setelah itu rata-rata mahasiswa yang memiliki telepon seluler Nokia usia 15-19 tahun sebesar 28 mahasiswa dengan persentase 36%.

ISLAM

- ⇒ Dari tabel diatas dapat diketahui bahwa dari 65 responden mahasiswa FMIPA ternyata rata-rata mahasiswa yang memiliki telepon seluler Nokia berusia 20-24 tahun yaitu sebanyak 45 mahasiswa dengan persentase 27%, setelah itu rata-rata mahasiswa yang memiliki telepon seluler Nokia adalah berusia 15-19 tahun yang berjumlah 20 mahasiswa dengan persentase 14%.
- ⇒ Dari tabel diatas dapat diketahui bahwa dari 115 responden mahasiswa FTSP ternyata rata-rata mahasiswa yang memiliki telepon seluler Nokia berusia 20-24 tahun yaitu sebanyak 78 mahasiswa dengan persentase 35%, setelah itu rata-rata mahasiswa yang memiliki telepon seluler Nokia berusia 15-19 tahun berjumlah 27 mahasiswa dengan persentase 25%.

⇒ Dari tabel diatas dapat diketahui bahwa dari 50 responden mahasiswa FPSIKOLOGI ternyata rata-rata mahasiswa yang memiliki telepon seluler Nokia berusia 20-24 tahun yaitu sebanyak 49 mahasiswa dengan persentase 16%, setelah itu rata-rata mahasiswa yang memiliki telepon seluler Nokia berusia 15-19 tahun sebesar 1 mahasiswa dengan persentase 1%.

4.4 Analisis Hasil Penelitian

4.4.1 Uji Mann-Whitney

Tabel 4.6 Uji Mann Whitney Untuk Jenis Kelamin Pada Faktor Harga,

Desain, Fitur, dan Jaminan Purna Jual

FAKTOR	MANN- WHITNEY U	WILCOXON	Z	ASIMP SIG (2 TAILED)
Harga	18897.500	35007.500	937	0.349
Desain	16756.000	32866.000	-2.831	0.005
Fitur	19488.000	35598.000	-0.041	0.681
Jaminan Purna Jual	19328.500	35438.500	0.549	0.583

Analisis:

1. Analisis statistik Mann-Whitney U dengan nilai U = 188897.500, statistik jumlah rangking bertanda Wilcoxon W dengan nilai W = 35007.500 dan statistik z = -0.937. Karena nilai Asimp.Sig (2 tailed) 0.349 lebih besar dari taraf nyata 0.05, maka dapat disimpulkan bahwa Ho diterima, artinya tidak ada perbedaan skor antara jenis kelamin laki-laki dan perempuan terhadap faktor harga dalam pembelian telepon seluler Nokia. Dengan kata lain ada pengaruh jenis kelamin terhadap faktor harga dalam pembelian telepon seluler Nokia.

- 2. Analisis statistik U Mann-Whitney dengan nilai U = 16756.000, statistik jumlah rangking bertanda Wilcoxon W dengan nilai W = 32866.000 dan statistik z = -2.831. Karena nilai Asimp.Sig (2 tailed) 0.005 lebih kecil dari taraf nyata 0.05, maka dapat disimpulkan bahwa Ho ditolak, artinya ada perbedaan skor antara jenis kelamin laki-laki dan perempuan terhadap faktor desain dalam pembelian telepon seluler Nokia. Dengan kata lain ada pengaruh jenis kelamin terhadap faktor desain dalam pembelian telepon seluler Nokia. Dilihat dari mean rank ternyata mean rank jenis kelamin perempuan adalah 215.86 sedangkan mean rank laki-laki adalah 183.61. Jadi dapat diambil kesimpulan bahwa mean rank perempuan lebih besar dari mean rank laki-laki artinya perempuan lebih memperhatikan faktor desain dalam pembelian telepon seluler Nokia, jika dibandingkan dengan laki-laki.
- 3. Analisis statistik U Mann-Whitney dengan nilai U = 19488.000 statistik jumlah rangking bertanda Wilcoxon W dengan nilai W = 35598.000 dan statistik z = -.411. Karena nilai Asimp.Sig (2 tailed) 0.681 lebih besar dari taraf nyata 0.05, maka dapat disimpulkan bahwa Ho diterima, artinya tidak ada perbedaan skor antara jenis kelamin laki-laki dan perempuan terhadap faktor fitur dalam pembelian telepon seluler Nokia. Dengan kata lain tidak ada pengaruh jenis kelamin terhadap faktor fitur dalam pembelian telepon seluler Nokia.
- Analisis statistik U Mann-Whitney dengan nilai U = 19328.500 statistik jumlah rangking bertanda Wilcoxon W dengan nilai W = 35438.500 dan statistik z = -0.549. Karena nilai Asimp.Sig (2 tailed) 0.583 lebih besar dari

taraf nyata 0.05, maka dapat disimpulkan bahwa Ho diterima, artinya tidak ada perbedaan skor antara jenis kelamin laki-laki dan perempuan terhadap faktor jaminan purna jual dalam pembelian telepon seluler Nokia. Dengan kata lain tidak ada pengaruh jenis kelamin terhadap faktor jaminan purna jual dalam pembelian telepon seluler Nokia.

4.4.2 Uji Kruskal-Wallis

4.4.2.1 Uji Kruskal-Wallis Fakultas

Tabel 4.7 Uji Kruskal Wallis Fakultas Pada Faktor Faktor Harga, Desain, Fitur, dan Jaminan Purna Jual

FAKTOR	CHI-SQUARE	DF	ASIMP.SIG
Harga	1,635	3	0,651
Desain	7,217	3	0,065
Fitur	8,710	3	0,033
Jaminan Purna Jual	5,085	3	0,166

Analisis:

- 1. Terlihat bahwa pada tabel diatas didapatkan Asimp.Sig adalah 0.651, atau probabilitas diatas 0.05 (0.651 > 0.05) maka Ho diterima. Ini berarti, tidak ada perbedaan skor antara FTI, FMIPA, FTSP, dan FPSIKOLOGI terhadap faktor harga dalam pembelian telepon seluler Nokia. Dengan kata lain tidak ada pengaruh fakultas terhadap faktor harga dalam pembelian telepon seluler Nokia.
- Terlihat bahwa pada tabel diatas didapatkan Asimp.Sig adalah 0.065, atau probabilitas diatas 0.05 (0.065 > 0.05) maka Ho diterima. Ini berarti, tidak ada perbedaan skor antara FTI, FMIPA, FTSP, dan FPSIKOLOGI terhadap

faktor desain dalam pembelian telepon seluler Nokia. Dengan kata lain tidak ada pengaruh fakultas terhadap faktor desain dalam pembelian telepon seluler Nokia.

3. Terlihat bahwa pada tabel diatas didapatkan nilai *Asimp.Sig* adalah 0.033, atau probabilitas dibawah 0.05 (0.033 < 0.05) maka Ho ditolak. Ini berarti, ada perbedaan skor antara FTI, FMIPA, FTSP, dan FPSIKOLOGI terhadap faktor fitur dalam pembelian telepon seluler Nokia. Dengan kata lain ada pengaruh fakultas terhadap faktor fitur dalam pembelian telepon seluler Nokia. Karena dalam uji Kruskal-Wallis terdapat perbedaan maka, dilanjutkan ke uji perbandingan ganda (Uji Mann-Whitney).

Tabel 4.8 Uji Mann-Whitney Fakultas Pada Faktor Fitur

Group 1	Group 2	Mann- Whitney	Wilcoxon	Z	Asymp.Sig (2-tailed)
i	FMIPA	5253,500	7398,500	-,733	0,464
FTI	FTSP	8159,000	14829,000	-2,566	0,010
	FPSIKOLOGI	4104,000	5379,000	-0,502	0,616
FMIPA	FTSP	3234,000	9904,000	-1,535	0,125
	FPSIKOLOGI	1608,000	3753,000	-0,099	0,921
FTSP	FPSIKOLOGI	2447,000	9117,000	-1,553	0,120

Analisis:

Pada tabel di atas didapatkan nilai *Asimp.Sig (2 tailed)* 0.01 antara group FTI dan FTSP, karena nilai *Asimp.Sig (2 tailed)* lebih kecil dari taraf nyata 0.05, maka dapat disimpulkan Ho ditolak, artinya dalam membeli telepon seluler Nokia ada perbedaan skor antara FTI dan FTSP dalam faktor fitur. Dilihat dari *mean rank*, ternyata nilai *mean rank* FTI adalah 154.06 sedangkan FTSP

adalah 128.95. Jadi dapat diambil kesimpulan bahwa FTI lebih memperhatikan faktor fitur dalam pembelian telepon seluler Nokia, dibanding dengan FTSP.

4. Terlihat bahwa pada tabel diatas didapatkan *Asimp.Sig* adalah 0.166, atau probabilitas diatas 0.05 (0.166 > 0.05) maka Ho diterima. Ini berarti, tidak ada perbedaan skor antara FTI, FMIPA, FTSP, dan FPSIKOLOGI terhadap faktor jaminan purna jual dalam pembelian telepon seluler Nokia. Dengan kata lain tidak ada pengaruh fakultas terhadap faktor jaminan purna jual dalam pembelian telepon seluler Nokia.

4.4.2.2 Kruskal-Wallis Usia

Tabel 4.9 Uji Kruskal-Wallis Untuk Klasifikasi Usia Pada Faktor Harga, Desain, Fitur, dan Jaminan Purna Jual

FAKTOR	CHI-SQUARE	DF	ASIMP.SIG
Harga	6,166	3	0,104
Desain	3,815	3	0,282
Fitur	5,034	3	0,169
Jaminan Purna Jual	3,840	3	0,279

Analisis:

1. Terlihat bahwa pada tabel diatas didapatkan *asimp sig* adalah 0,104, atau probabilitas diatas 0.05 (0.104 > 0.05) maka Ho diterima. Ini berarti, tidak ada perbedaan skor antara usia 15-19, 20-24, 25-29, 30-34 terhadap faktor Harga dalam pembelian telepon seluler Nokia. Dengan kata lain tidak ada pengaruh klasifikasi usia terhadap faktor harga dalam pembelian telepon seluler Nokia

- 2. Terlihat bahwa pada tabel diatas didapatkan *Asimp.Sig* adalah 0.282, atau probabilitas diatas 0.05 (0.282 > 0.05) maka Ho diterima. Ini berarti, tidak ada perbedaan skor antara usia 15-19, 20-24, 25-29, 30-34 terhadap faktor desain dalam pembelian telepon seluler Nokia. Dengan kata lain tidak ada pengaruh klasifikasi usia terhadap faktor desain dalam pembelian telepon seluler Nokia
- 3. Terlihat bahwa pada tabel diatas didapatkan *Asimp.Sig* adalah 0.169, atau probabilitas diatas 0.05 (0.169 > 0.05) maka Ho diterima. Ini berarti, tidak ada perbedaan skor antara usia 15-19, 20-24, 25-29, 30-34 terhadap faktor fitur dalam pembelian telepon seluler Nokia. Dengan kata lain tidak ada pengaruh klasifikasi usia terhadap faktor fitur dalam pembelian telepon seluler Nokia.
- 4. Terlihat bahwa pada tabel diatas didapatkan *Asimp.Sig* adalah 0.279, atau probabilitas diatas 0.05 (0.279 > 0.05) maka Ho diterima. Ini berarti, tidak ada perbedaan skor antara usia 15-19, 20-24, 25-29, 30-34 terhadap faktor jaminan purna jual dalam pembelian telepon seluler Nokia. Dengan kata lain tidak ada pengaruh klasifikasi usia terhadap faktor jaminan purna jual dalam pembelian telepon seluler Nokia.

4.4.3 Uji Friedman

4.4.3.1 Uji Friedman Jenis Kelamin

Tabel 4.10 Uji Friedman Untuk Keempat Faktor Menurut Jenis Kelamin

Gender	N	Chi-Square	df	Asymp-sig
Laki-laki	179	426.313	3	0.000
Perempuan	223	554.867	3	0.000

Analisis:

Berdasarkan tabel di atas terlihat bahwa, jenis kelamin mempunyai nilai Asymp.Sig adalah 0.000, atau probabilitas di bawah 0.05. Maka dapat disimpulkan bahwa H_0 di tolak, artinya terdapat perbedaan skor faktor harga, desain, fitur dan jaminan purna jual berdasarkan jenis kelamin.

Karena dalam uji Friedman, terdapat perbedaan antara skor faktor harga, desain, fitur, dan jaminan purna jual berdasarkan jenis kelamin, maka dilakukan uji perbandingan antara group untuk mengetahui group mana yang berbeda.

Tabel 4.11 Uji Perbandingan Untuk Keempat Faktor Menurut Jenis Kelamin

Group1	Group2	Jenis Kelamin		Nilai	Jenis	s Kelamin	
		Laki-	Perempuan	Probabilitas	Laki-	Perempuan	
		Laki			Laki		
Harga	Desain	0.001	0.014	0.05	Ditolak	Ditolak	
	Fitur	0.000	0.000	0.05	Ditolak	Ditolak	
	JP Jual	0.000	0.000	0.05	Ditolak	Ditolak	
Desain	Fitur	0.000	0.000	0.05	Ditolak	Ditolak	
	JP Jual	0.000	0.000	0.05	Ditolak	Ditolak	
Fitur	JP Jual	0.000	0.000	0.05	Ditolak	Ditolak	

Analisis:

- Berdasarkan tabel untuk jenis kelamin laki-laki dan perempuan diatas, maka dapat disimpulkan bahwa :
 - a. Faktor harga berbeda secara nyata dengan faktor desain.
 - b. Faktor harga berbeda secara nyata dengan faktor fitur.
 - c. Faktor harga berbeda secara nyata dengan faktor jaminan purna jual.
 - d. Faktor desain berbeda secara nyata dengan faktor fitur
 - e. Faktor desain berbeda secara nyata dengan faktor jaminan purna jual
 - f. Faktor fitur berbeda secara nyata dengan faktor jaminan purna jual

4.4.3.2 Uji Friedman Fakultas

Tabel 4.12 Uji Friedman Untuk Keempat Faktor Menurut Fakultas

Fakultas	N	Chi-Square	df	Asymp-sig
FTI	172	435.013	3	0.000
FMIPA	65	158.095	3	0.000
FTSP	115	271.709	3	0.000
FPSIKOLOGI	50	117.694	3	0.000

Analisis:

Berdasarkan tabel di atas terlihat bahwa, untuk tiap fakultas nilai Asymp.Sig adalah 0.000, atau probabilitas di bawah 0.05. Maka dapat disimpulkan bahwa H_0 di tolak, artinya terdapat perbedaan skor faktor harga, desain, fitur dan jaminan purna jual berdasarkan fakultas.

Karena dalam uji Friedman, terdapat perbedaan antara skor faktor harga, desain, fitur, dan jaminan purna jual berdasarkan fakultas, maka dilakukan uji perbandingan antara group untuk mengetahui group mana yang berbeda.

Tabel 4.13 Uji Perbandingan Untuk Keempat Faktor Menurut Fakultas

Group	Group	Nilai Asimp 2 (tailed)					
1 2		FTI	FMIPA	FTSP	FPSIKOLOGI		
Harga	Desain	1.000	0.175	0.002	0.155		
Č	Fitur	0.000	0.000	0.000	0.000		
	Jp Jual	0.000	0.000	0.000	0.000		
Desain	Fitur	0.000	0.000	0.000	0.000		
	JP Jual	0.000	0.000	0.000	0.000		
Fitur	JP Jual	0.000	0.000	0.000	0.000		

Analisis:

- Berdasarkan tabel diatas didapatkan nilai Asimp.Sig (2 tailed) antara faktor harga dan faktor desain yang lebih besar dari 0.05 untuk FTI, FMIPA, FPSIKOLOGI, maka Ho diterima. Artinya, tidak ada perbedaan yang nyata antara faktor harga dan faktor desain berdasarkan FTI, FMIPA, FPSIKOLOGI. Sedangkan untuk FTSP didapatkan nilai Asimp.Sig (2 tailed) yang lebih kecil dari 0.05, maka Ho ditolak. Artinya terdapat perbedaan antara faktor harga dan desain berdasarkan FTSP.
- Untuk group yang lain, karena nilai Asimp.Sig (2 tailed) 0.000 kurang dari
 0.05, maka Ho ditolak. Artinya ada perbedaan antara faktor harga dan fitur,
 harga dan jaminan purna jual, desain dan fitur, desain dan jaminan purna jual,
 fitur dan jaminan purna jual berdasarkan fakultas.

4.4.3.3 Uji Friedman Usia

Tabel 4.14 Uji Friedman Untuk Keempat Faktor Menurut Usia

Usia	N	Chi-Square	df	Asymp-sig
15-19	77	192.181	3	0.000
20-24	307	746.351	3	0.000
25-29	16	40.391	3	0.000
30-34	2	3.316	3	0.000

Analisis:

berdasarkan tabel di atas terlihat bahwa, untuk tiap klasifikasi umur nilai *Asymp.Sig* adalah 0.000, atau probabilitas di bawah 0.05. Maka dapat disimpulkan bahwa H₀ di tolak, artinya terdapat perbedaan skor faktor harga, desain, fitur dan jaminan purna jual berdasarkan usia.

Karena dalam uji Friedman, terdapat perbedaan antara skor faktor harga, desain, fitur, dan jaminan purna jual berdasarkan usia, maka dilakukan uji perbandingan antara group untuk mengetahui group mana yang berbeda.

Tabel 4.15 Uji Perbandingan Untuk Keempat Faktor Menurut Usia

Group 1	Group 2	Nilai A	Nilai Asimp Sig (2 tailed)			
		15-19	20-24	25-29		
Harga	Desain	0.068	0.006	0.549		
	Fitur	0.000	0.000	0.000		
	Jp Jual	0.000	0.000	0.000		
Desain	Fitur	0.000	0.000	0.000		
	Jp Jual	0.000	0.000	0.000		
Fitur	Jp Jual	0.000	0.000	0.000		

Analisis:

 Berdasarkan tabel diatas didapatkan nilai Asimp.Sig (2 tailed) antara faktor harga dan faktor desain yang lebih besar dari 0.05 untuk usia 15-19 tahun dan

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan hasil pengolahan data dan pembahasan yang menyangkut faktor harga, desain, fitur dan jaminan purna jual dalam pembelian telepon seluler Nokia dapat disimpulkan bahwa:

- Terdapat perbedaan jenis kelamin terhadap faktor desain dalam pembelian telepon seluler Nokia. Ternyata laki-laki tidak begitu memperhatikan faktor desain dalam membeli telepon seluler Nokia dibandingkan dengan perempuan.
 - Terdapat perbedaan fakultas terhadap faktor fitur dalam pembelian telepon seluler Nokia. Ternyata FTSP tidak begitu memperhatikan faktor desain dalam membeli telepon seluler Nokia dibandingkan dengan FTI.
 - Tidak ada perbedaan klasifikasi umur terhadap faktor harga, desain, fitur, dan jaminan puna jual.
- Terdapat perbedaan score faktor harga, desain, fitur, dan jaminan purna jual berdasarkan variabel demografi.

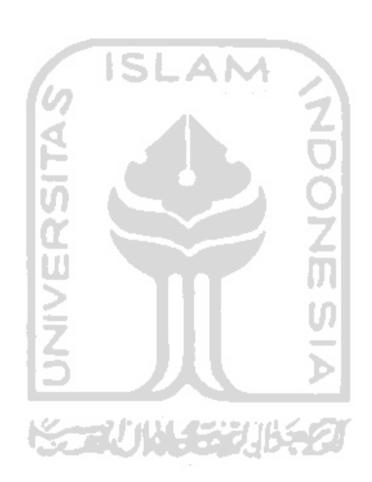
5.2 Saran

Berdasarkan kesimpulan serta teori yang diuraikan sebelumnya, maka beberapa hal yang perlu diperhatikan adalah sebagai berikut:

- 1. Hendaknya pihak Nokia memperhatikan faktor jaminan purna jual dalam memasarkan telepon seluler Nokia, dengan menambah masa jaminan purna dengan waktu yang agak lama. Selain itu pihak Nokia juga perlu menambah fitur yang ada pada telepon seluler Nokia dengan desain yang menarik, sehingga bisa merangsang konsumen untuk membeli telepon seluler Nokia, dengan harga yang sesuai kebutuhan konsumen.
- Dilihat dari banyaknya konsumen Nokia adalah perempuan, sebaiknya pihak Nokia memproduksi desain yang khusus buat perempuan. Atau bisa juga pihak Nokia memproduksi desain berdasarkan jenis kelamin.
- 3. Jika Nokia ingin produknya banyak dipakai oleh mahasiswa khususnya mahasiswa FTI UII maka, Nokia harus memperhatikan fitur yang berhubungan dengan mahasiswa FTI untuk masa yang akan datang.
- 4. Untuk penelitian lanjutan bisa dilakukan untuk mengetahui faktor-faktor apa saja yang mempengaruhi keputusan konsumen dalam membeli telepon seluler Nokia, selain faktor harga, desain, fitur dan jaminan purma jual.

DAFTAR PUSTAKA

- Azwar, S., 1997, Reliabilitas dan Validitas, Balai Pustaka, Jogjakarta
- Ghozali, M., dan Castellan, J., 2002, Statistik Non-Parametrik: Teori dan Aplikasi dengan Program SPSS, Undip, Semarang
- Hadi, S., 1990, Analisis Butir Instrumen, Angket, tes, dan Skala Nilai Dengan Basica, Andi Offset, Jogjakarta
- Kotler, P., 1989, Manajemen Pemasaran Analisis, Perencanaan, Implementasi, dan Pengendalian, Erlangga, Jakarta
- Kotler, P., 1993, Manajemen Pemasaran Analisis, Perencanaan, Implementasi, dan Pengendalian, Jakarta: Fakultas Ekonomi Universitas Indonesia
- Levitt, Theodore., 1987, Imajinasi Pemasaran, Erlangga, Jakarta
- Permana, H., 2002, Pengaruh Faktor Harga, Perawatan, Kualitas dan Jaminan Purna Jual terhadap Keputusan Konsumen membeli Sepeda Montor Honda Bebek: Skripsi FMIPA, Jogjakarta
- Santoso, S., 2001, SPSS Statistik Non Parametrik, Jakarta: PT.Elex Media Komputindo Kelompok Gramedia
- Santoso, S., 2002, SPSS Versi_10: Mengolah Data Statistik Secara Profesional,


 Jakarta: PT.Elex Media Komputindo Kelompok Gramedia
- Sukandarrumidi., 2002, Metodologi Penelitian" Petunjuk Praktis Untuk Pemula", UGM Press, Jogjakarta
- Supranto, J., 1992, Teknik Analisis dalam Penelitian Percobaan. Tarsito,
 Bandung

Swasta, B., 1984. Azas-azas Marketing, Edisi Ketiga, Liberty, Jogyakarta

Swasta, B., dan Irawan, 1990, Manajemen Pemasaran Modern, Liberty,,

Jogjakarta

Widodo, E., 2003, Diktat *Metodologi Penelitian*, FMIPA UII, Jogjakarta http://www.admin@desainproduk com Kamis 15 April 2004 10:15:02

KUESIONER PENELITIAN

PENGARUH FAKTOR HARGA, DESAIN, FITUR DAN JAMINAN PURNA JUAL TERHADAP KEPUTUSAN MEMBELI TELEPON SELULER MERK NOKIA

Responden Terhormat,

Bersama ini saya mohon kesediaan anda untuk mengisi kuesioner berikut. Kuesioner ini diajukan untuk mendapatkan data yang saya perlukan dalam penelitian sebagai prasarat kelulusan untuk memperoleh gelar sarjana di jurusan Statistika Fakultas MIPA Universitas Islam Indonesia Jogjakarta.

Kuesioner ini dipergunakan dalam penelitian untuk memperoleh gambaran mengenai sikap konsumen dalam memilih pembelian telepon seluler merk nokia.

Anda diharapkan mengisi menurut pendapat anda sendiri (bukan menurut pandangan umum), agar sesuai dengan tujuan penelitian. Seluruh informasi yang anda berikan dijamin kerahasiannya dan hanya dipergunakan untuk kepentingan penelitian ini.

Terima kasih atas kesedian anda untuk mengisi kuesioner ini.

Jogjakarta,

Nensi Yeni Astuti
(jurusan Statistika, Fak. MIPA UII Jogjakarta)

Kode	:	
No		
INU		

Bagian I

Petunjuk Pengisian:

Pada bagian ini, anda diminta untuk melingkari jawaban atau mengisi titik-titik sesuai dengan data pribadi anda.

1.	Usia	 	 	 th
1.	Osiu	 	 	

- Jenis kelamin: 2.
 - Pria
 - Wanita b

Bagian II

Petunjuk pengisisan:

- 1. Berilah tanda check list (√) pada setiap pertanyaan yang sesuai dengan pendapat anda.
- 2. Setiap jawaban yanga anda berikan sangat kami hargai dan dijamin kerahasiannya sebagai bahan penelitian saya.

Keterangan:

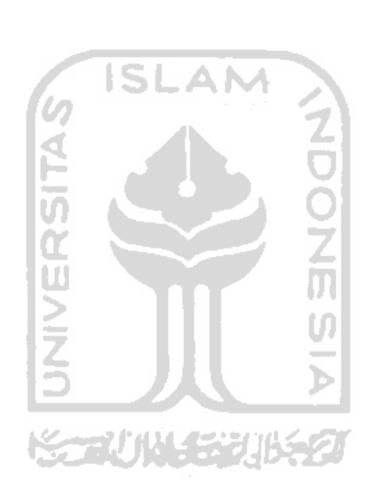
= sangat setuju SS

= setuju S

= tidak setuju TS

= sangat tidak setuju STS

NO	PERNYATAAN		PENDAPAT						
NO		SS	S	TS	STS				
A.	FAKTOR HARGA PRODUK	44	AT						
1.	Faktor harga yang murah mempengaruhi keputusan anda dalam membeli telepon seluler Nokia.	4.7							
2.	Jenis (type) HP mempengaruhi keputusan anda dalam membeli telepon sesuler Nokia.								
3.	Faktor potongan harga menjadi pertimbangan anda dalam membeli HP Nokia.								
4.	Telepon seluler dengan mutu dan kualitas yang baik lebih mahal dari pada yang kualitasnya kurang baik								
5.	Anda akan cenderung membeli telepon seluler yang								


	mahal dengan kualitas baik daripada membeli	1			
	dengan harga murah tapi kualitasnya kurang baik.				
B.	FAKTOR DESAIN				
1.	Desain berbentuk CLAMSHEL (telepon seluler				
	yang menggunakan flip), CANDYBAR (telepon			,	
	seluler yang tidak menggunakan flip) atau Sliding		Ì		
	(seperti Nokia 7650) menjadi daya tarik tersendiri				
	bagi Anda dalam membeli HP Nokia.				
2.	Desain HP dengan Antena luar (Eksternal), dan tanpa Antena menjadi pertimbangan anda dalam				
	tanpa Antena menjadi pertimbangan anda dalam				
	menentukan pilihan membeli HP Nokia. Desain yang simpel dan mungil menjadi alasan				
3.	tersendiri buat Anda untuk membeli HPNokia.				
					1
4.	Desain unik dengan layar yang lebar dan dukungan				
	suara yang jelas mempengaruhi keputusan Anda	t .			
	dalam membeli HP Nokia.	1			
	FAKTOR FITUR (NILAI JUAL)		7/ 1		
C.					
1.	Dengan adanya fasilitas SMS, EMS*, MMS**,		UI		
	Phone Book, Polifonik mempengaruhi keputusan		X I		
	anda dalam membeli HP Nokia.	-	$\left\{ \cdot \right\} =$		-
2.	Dengan adanya Bluetooth, Games, GPRS***,				
	Donwloadable dan screenserver mempengaruhi	r		}	1
	keputusan anda dalam membeli HPNokia.				-
3.	Dengan adanya kamera digital yang ada dalam HP				
	(Built in) menjadi daya tark tersendiri buat Anda		100		
	untuk membeli HP Nokia.				+
4.	Dengan layar warna, akan lebih mendukung		97		
	keputusan Anda dalam membeli HP Nokia				
D.	FAKTOR JAMINAN PURNA JUAL				+
1.	Faktor garansi/jaminan yang lama mempengaruhi				
	keputusan anda dalam membeli HP Nokia.			1	-
2.	Jaminan pengganti spare-part baru jika ada				
	kerusakan dalam masa garansi mempengaruhi		1,50		
	keputusan anda dalam membeli HP Nokia.				
	Pelayanan/service vang tersedia diseluruh				
3.	Pelayanan/service yang tersedia diseluruh Indonesia mempengaruhi keputusan anda dalam				
	membeli HP Nokia.				
	Spare-part (suku cadang) yang mudah didapatkan				
4.	Spare-part (suku cauang) yang mudan didapatkan	<u> </u>		<u> </u>	

^{*} Enhanced Message Servise(pesan berbentuk logo)

** Multymedia Messege Servise(pesan berbentu ganbar)

*** GPRS (kemampuan untuk mengakses ke internet)

	mempengaruhi keputusan anda dalam membeli telepon seluler Nokia.		
5.	Harga jual kembali yang tinggi mempengaruhi keputusan anda dalam membeli telepon seluler Nokia.		
6.	Faktor kemudahan menjual kembali telepon seluler		
3	nokia mempengaruhi keputusan anda dalam		
,	membeli HP.		

dſ	jual	18	19	20	22	20	38	50	24	17	16	20	19	19	23	23	18	24	23	17	18	20	21	22	14	10	130	23	9	19	24	18	18
Fitur		14	12	9	14	16	12	12	13	16	12	13	12	12	7	12	13	12	9	7	12	15	13	13	13	13	9	16	12	12	16	12	12
Desain		12	13	9	4	15	12	12	14	14	12	14	12	12	14	14	13	14	16	11	7	13	12	13	ω	13	12	14	12	13	16	12	12
Harga		15	15	15	16	18	16	15	19	20	14	19	17	18	20	17	14	17	20	15	17	16	14	17	12	15	7	20	18	17	17	15	14
	16	3	က	3	4	4	က	က	4	4	က	က	က	3	4	4	က	4	4	က	3	3	4	4		ო	ო	4	4	4	4	က	က
	18	3	3	က	4	4	က	က	4	7	က	3	က	က	4	4	က	4	4	ო	က	4	က	4	7	4	က	က	က	က	4	က	က
	17	ო	က	က	4	က	က	3	4	2	က	က	က	ო	4	4	က	4	4	က	က	က	က	က	က	က	3	4	က	7	4	က	က
	16	က	က	က	4	က	က	က	4	4	7	4	က	က	4	က	4	4	4	က	က	က	က	က	2	က	က	4	က	က	4	က	က
	15	က	က	4	က	က	က	4	4	က	က	က	က	က	4	4	7	4	4	က	က	က	4	4	3	က	က	4	က	က	4	က	က
	14	က	4	4	က	က	က	4	4	2	2	4	4	4	က	4	က	4	က	2	ო	4	4	4	ო	က	က	4	က	4	4	က	က
	13	က	က	က	က	4	က	3	4	4	က	4	က	ო	က	က	4	က	4	က	က	4	က	က	4	4	က	4	က	က	4	က	က
	12	4	က	2	က	4	က	က	2	4	က	2	က	က	က	က	က	က	4	2	က	က	က	က	က	က	2	4	က	က	4	က	က
Item	=	က	က	2	4	4	က	3	4	4	က	က	က	က	7	က	က	က	4	m	က	4	က	က	က	က	2	4	3	က	4	က	က
-	10	4	က	က	4	4	က	က	က	4	ന	4	က	က	က	8	c	က	4	ന	က	4	4	4	က	က	က	4	က	က	4	က	က
	6	က	3	3	4	4	က	က	4	2	က	က	m	က	4	4	co	4	4	(0)	(1)	4	ന	4	2	4	6	(n	က	က	4	က	က
	8	m	m	(0)	4	4	c	(C	4	4	(0)	3	6	က	4	7	(C)	4	4	3	(0)	(C)	4	4	~	က	3	4	4	4	4	က	က
	7	4	c	2	C.	4	. 6	· cc	2	4	· m	4	33	c	0) CC	· c	0	4	· m	2	l cc	0	m	2	က	C.	4	2	က	4	က	က
	-	-	1	_	\perp	+-	+	\perp	-	+	+	-	+	+	+-	+	+	+-	-	+	+	+	+	+-	+	+	+-	+-	+	t^-	+-	က	+
	v	· c	c.) (r.			\perp			\perp	+-	+	\bot	-	╄-	+	-	+	+	+-	+	+	+-	+-	+	+	+	+		+-	+	3	+-
	4			- 4		\perp			\perp		1			-	-4-		+	-		+	-		+-	+	+	+-	+	+	+-	+-	+	3	+
	\vdash	+	+		+-				2 4	+		+	+	-+	-	-+-		+	+	+	+	+	_	+		\top		1		Т		. 6	
	-	- (0	1	1		1				1					_	-	-		-	-	-	+	+	+	+	+-	+	-	٠.) (*	0	1 (2)	, 6
SZ	Resnanden	1		1		1-				1																						34	

	_		-,	_		т-	1		-								
23	0	6	φ	2 4	22	16	18	18	17	23	18	2 0	0,	18	23	5	18
16	14	12	12	15	16	15	12	12	12	1 4	5 5	12	13	12	12	10	10
9	-	12	12	12	16	10	12	11	σ	14	12	1 -	12	13	13	13	-
17	13	13	15	15	19	13	15	15	14	<u>ر</u>	, (C	15	15	15	17	14	15
4	6	က	က	2	4	က	က	m	0	4	. 6	n	4	က	4	4	က
4	က	က	က	က	4	7	က	က	2	4	က	က	4	m	4	4	က
4	က	2	က	3	4	က	က	က	6	4	(1)	က	2	က	က	က	က
က	က	က	က	2	က	က	က	က	က	4	3	က	က	က	4	က	က
4	ო	2	ო	က	4	က	က	က	2	4	m	က	က	က	4	က	3
4	4	က	က	က	က	7	က	က	7	က	m	က	က	က	4	2	3
4	4	က	က	က	4	4	က	က	က	4	က	က	ო	က	ო	2	2
4	7	ო	က	4	4	4	က	ო	က	4	က	က	4	က	ო	2	က
4	4	က	က	4	4	က	က	က	က	4	က	က	က	ო	က	က	7
4	4	ო	ო	4	4	4	က	က	က	4	က	က	က	က	က	က	က
4	က	က	က	က	4	7	က	က	7	4	က	က	4	က	4	4	က
4	3	က	က	2	4	က	က	က	7	4	က	က	4	က	4	4	က
_	7	က	က	က	4	7	က	က	0	က	က	က	_	က	2	က	2
_	က	က	က	4	4	က	က	7	ო	က	က	2	က	4	က	2	က
က	က	က	က	က	4	က	က	က	ო	4	က	က	က	က	4	7	က
7	4	4	က	4	4	4	က	က	က	7	က	က	4	က	4	4	က
4	7	-	က	က	4	-	က	က	က	ო	က	က	7	က	ო	7	က
4	က	က	က	7	4	က	ო	က	2	4	က	ო	4	က	4	4	3
4	~	7	က	က	က	7	က	က	က	က	က	က	7	က	7	7	က
33	34	35	36	37	88	29	40	41	42	43	44	45	46	47	48	49	20

Keterangan:

1. Harga: item 1, item2, item3, item 4, item 5.

2. Desain: item 6, item7, item8, item9.

3. Fitur : item 10, item11, item12, item13.

4. Jp_jual: item 14, item 15, item16, item17, item18, item 19.

Lampiran 3 Validitas dan Reliabilitas Faktor Harga, Desain, Fitur dan Jaminan Purna Jual

Faktor Harga

Reliability

***** Method 1 (space saver) will be used for this analysis

RELIABILITY ANALYSIS - SCALE (ALPHA)

		Mean	Std Dev	Cases
1. 2. 3. 4. 5.	BUTIR1 BUTIR2 BUTIR3 BUTIR4 BUTIR5	2.9400 3.3200 3.0400 3.3400 3.3000	.8184 .6528 .7548 .7453 .6145	50.0 50.0 50.0 50.0

Statistics for Mean Variance Std Dev Variables SCALE 15.9400 4.0576 2.0143 5

Item-total Statistics

Item	Scale Mean if Item	Scale Variance if Item	Corrected Item- Total	Alpha if
Deleted	Deleted	Deleted	Correlation	
BUTIR1 BUTIR2 BUTIR3 BUTIR4 BUTIR5	13.0000 12.6200 12.9000 12.6000 12.6400	3.0612 2.8527 2.3367 3.7959 2.7249	.1140 .3532 .4988 1012 .4708	.4932 .3178 .1756 .6156 .2465

Reliability Coefficients

N of Cases = 50.0

N of Items = 5

Faktor Desain

Reliability

***** Method 1 (space saver) will be used for this analysis

_

RELIABILITY ANALYSIS - SCALE (ALPHA)

		Mean	Std Dev	Cases
1. 2. 3. 4.	BUTIR6 BUTIR7 BUTIR8 BUTIR9	3.0200 2.8600 3.3200 3.2600	.6543 .7287 .6528 .5997	50.0 50.0 50.0 50.0

Statistics for Mean Variance Std Dev Variables SCALE 12.4600 2.7433 1.6563 4

Item-total Statistics

Item	Scale Mean if Item	Scale Variance if Item	Corrected Item- Total	Alpha if
Deleted	Deleted	Deleted	Correlation	
BUTIR6 BUTIR7 BUTIR8 BUTIR9	9.4400 9.6000 9.1400 9.2000	2.0473 1.6735 1.6739 1.8367	.1430 .2858 .3808 .3365	.5353 .4120 .3182 .3687

Reliability Coefficients

N of Cases = 50.0

 $N ext{ of Items} = 4$

Faktor Fitur

Reliability

***** Method 1 (space saver) will be used for this analysis

RELIABILITY ANALYSIS - SCALE (AL P H A)

			Mean	Std Dev	Cases
1. 2. 3. 4.	BUTIR10 BUTIR11 BUTIR12 BUTIR13		3.3400 3.1800 3.1000 3.2800	.4785 .5602 .6145 .5360	50.0 50.0
	tics for SCALE	Mean 12.9000	Variance 3.1122	Std Dev 1.7642	N of Variables 4
Item-to	otal Statis	tics		6	
Item	Me	ale an Item	Scale Variance if Item	Correcte Item- Total	ed Alpha if
Deleted		eted	Deleted	Correlati	on
BUTIR10 BUTIR11 BUTIR12 BUTIR13	9.1	5600 7200 8000 6200	1.9249 1.7159 1.8776 1.9139	.7218 .7375 .5090 .6142	.7186

Reliability Coefficients

N of Cases = 50.0

 $N ext{ of Items} = 4$

Faktor Jaminan Purna Jual

Reliability

***** Method 1 (space saver) will be used for this analysis

__

RELIABILITY ANALYSIS - SCALE (ALPHA)

		Mean	Std Dev	Cases
1. 2. 3. 4. 5.	BUTIR14 BUTIR15 BUTIR16 BUTIR17 BUTIR18 BUTIR19	3.2400 3.2400 3.1800 3.1400 3.2600 3.3200	.6565 .5555 .5226 .5349 .5997 .6528	50.0 50.0 50.0 50.0 50.0 50.0

Statistics for Mean Variance Std Dev Variables SCALE 19.3800 6.6078 2.5706 6

Item-total Statistics

Item	Scale Mean if Item	Scale Variance if Item	Corrected Item- Total	Alpha if
Deleted	Deleted	Deleted	Correlation	
BUTIR14 BUTIR15 BUTIR16 BUTIR17 BUTIR18 BUTIR19	16.1400 16.1400 16.2000 16.2400 16.1200 16.0600	4.9800 4.5718 5.1020 4.9616 4.5159 4.3841	.4084 .7272 .5222 .5707 .6797	.8350 .7644 .8062 .7969 .7726

Reliability Coefficients

 $N ext{ of Cases} = 50.0$

N of Items = 6

Faktor Harga

Reliability

***** Method 1 (space saver) will be used for this analysis

RELIABILITY ANALYSIS - SCALE (ALPHA)

		Mean	Std Dev	Cases
1.	BUTIR1	3.2400	.6247	50.0
2.	BUTIR2	3.0400	.7548	50.0
3.	BUTIR3	3.3000	.6145	50.0

Statistics for Mean Variance Std Dev Variables SCALE 9.5800 2.1261 1.4581 3

Item-total Statistics

Item	Scale Mean if Item	Scale Variance if Item	Corrected Item- Total	Alpha if
Deleted	Deleted	Deleted	Correlation	
BUTIR1 BUTIR2 BUTIR3	6.3400 6.5400 6.2800	1.3310 .8657 1.2669	.2809 .4917 .3482	.5765 .2263 .4845

Reliability Coefficients

N of Cases = 50.0 N of Items = 3

Faktor Desain

Reliability

***** Method 1 (space saver) will be used for this analysis *****

RELIABILITY ANALYSIS - SCALE (AL P H A)

,					
			Mean	Std Dev	Cases
1.	BUTIR4		3.1600	.5481	50.0
2.	BUTIR5		3.2600	.5997	50.0
3.	BUTIR6		3.3200	.6528	50.0
				A 15 1	N of
Statist	ics for	Mean	Variance	Std Dev	Variables
S	CALE	9.7400	2.1555	1.4682	3
		188			mil .
Item-to	tal Statist	cics			Ä
		10	A STATE OF		
	Sca	ale	Scale	Corrected	d
	Mea	an	Variance	Item-	Alpha
	if I	Item	if Item	Total	if
Item		1.71			
	Dele	eted	Deleted	Correlatio	วท
Deleted				11-10-00-01	111
					roll .
BUTIR4	6.5	800	1.3098	.4347	9000
DITTE			2.0000	• 104/	.8002

.9486

.9833

Reliability Coefficients

6.4800

6.4200

N of Cases =

.7254

.5763

.4682

.6575

Alpha = .7442

BUTIR5

BUTIR6

Faktor Fitur

Reliability

***** Method 1 (space saver) will be used for this analysis

RELIABILITY ANALYSIS - SCALE (ALPHA)

		Mean	Std Dev	Cases
	ΓIR7 ΓIR8	3.3400 3.1800	.4785 .5602	50.0 50.0
= '	rir9	3.1000	.6145	50.0
4. BUT	ΓIR10	3.2800	.5360	50.0
	I/n		N	of
Statistics f		Variance	Std Dev Vari	iables
SCALE	12.9000	3.1122	1.7642	4
Item-total S	Statistics		0	
icem cocai c	reactstics	,		
	Scale Mean	Scale Variance	Corrected Item-	Alpha
77.4	if Item	if Item	Total	if
Item			The state of the s	
Dolotod	Deleted	Deleted	Correlation	
Deleted			10	

1.9249

1.7159 1.8776

1.9139

Reliability Coefficients

9.5600

9.7200

9.6200

9.8000

N of Cases = 50.0

 $N ext{ of Items} = 4$

.7218

.5090

.6142

.7375

.7373

.7186

.8367

.7786

Alpha = .8159

BUTIR7

BUTIR8

BUTIR10

BUTIR9

Faktor Jaminan Purna Jual

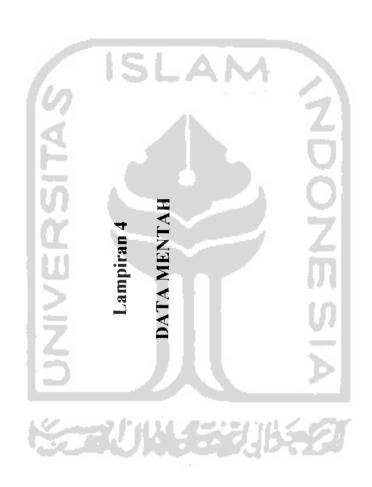
Reliability

***** Method 1 (space saver) will be used for this analysis

RELIABILITY ANALYSIS - SCALE (ALPHA)

	Mean	Std Dev	Cases
1. BUTIR13 2. BUTIR13 3. BUTIR13 4. BUTIR14 5. BUTIR15 6. BUTIR11	3.2400 3.1800 3.1400 3.2600	.6565 .5555 .5226 .5349 .5997 .6528	50.0 50.0 50.0 50.0 50.0

Statistics for Mean Variance Std Dev Variables SCALE 19.3800 6.6078 2.5706 6


Item-total Statistics

	Scale Mean if Item	Scale Variance if Item	Corrected Item- Total	Alpha
Item		41 10011	iocai	if
	Deleted	Deleted	Correlation	
Deleted	14			
BUTIR11	16.1400	4.9800	.4084	.8350
BUTIR12	16.1400	4.5718	.7272	.7644
BUTIR13	16.2000	5.1020	.5222	.8062
BUTIR14	16.2400	4.9616	.5707	.7969
BUTIR15	16.1200	4.5159	.6797	.7726
BUTIR116	16.0600	4.3841	.6576	.7772

Reliability Coefficients

N of Cases = 50.0

N of Items = 6

Lampiran Data Mentah

Jaminan Purna Jual		23	20	24	24	20	22	19	21	23	20	22	18	18	24	20	21	23	21	19	20	24	23	7	24	20
	91	4	2	4	4	က	4	က	က	က	က	4	က	က	4	4	က	က	4	7	က	4	က	-	4	4
	15	ო	3	4	4	က	4	4	ვ	4	က	4	က	3	4	က	4	4	က	က	က	4	4	-	4	က
щ	41	4	က	4	4	က	3	က	4	4	က	က	က	က	4	3	3	4	က	က	3	4	4	-	4	က
Item	13	4	4	4	4	က	က	2	က	4	4	က	က	က	4	3	4	4	3	က	4	4	4	1	4	7
	12	4	4	4	4	4	4	က	4	4	က	4	က	က	4	4	4	4	4	4	4	4	4	_	4	4
	=	4	4	4	4	4	4	4	4	4	4	4	3	က	4	က	3	4	4	4	က	4	4	2	4	4
Fitur		ი	15	16	16	14	15	11	13	12	13	15	12	12	15	10	12	10	14	12	12	12	14	13	15	14
	01	7	4	4	4	4	4	က	4	7	2	4	3	က	4	က	က	2	က	က	က	4	က	4	4	4
ltem	6	7	4	4	4	4	4	7	က	က	4	4	က	က	4	က	ო	က	4	က	က	7	ო	ო	က	က
=	∞	2	4	4	4	က	4	က	က	က	က	က	က	က	က	2	က	7	ო	က	က	~	4	က	4	4
	7	ო	က	4	4	က	က	က	က	4	4	4	က	က	4	7	က	က	4	က	က	4	4	က	4	က
Desain		6	11	12	12	9	ဖ	1	1,	7	œ	7	10	ω	ω	7	တ	တ	10	တ	∞	10	12	တ	တ	9
	9	က	4	4	4	4	-	4	က	က	က	4	က	က	4	က	က	က	4	4	က	4	4	က	4	4
Item	v .	က	4	4	4	က	•	4	4	4	က	4	က	7	2	2	က	က	က	2	7	7	4	က	7	က
	4	က	က	4	4	က	4	က	4	4	7	က	4	က	7	2	က	က	က	က	က	4	4	က	က	က
harga		o	10	11	12	11	တ	ნ	10	11	-	11	17	Φ	12	10	6	7	10	12	12	12	11	6	12	11
	3	က	4	4	4	4	4	က	က	4	က	က	ო	က	4	2	4	7	က	4	4	4	က	4	4	4
Itrm	2	က	က	4	4	ю	2	က	4	က	4	4	4	7	4	4	2	က	4	4	4	4	4	က	4	4
	_	က	က	က	4	4	က	3	က	4	4	4	4	က	4	4	က	2	က	4	4	4	4	7	4	က
No Responden		-	2	က	4	5	ဖ	7	æ	O	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

18	20	22	22	22	17	20	18	24	13	18	15	22	2	24	21	17	24	16	18	24	24	138	20	15	9	21	16	19	15	18	13	17	20
2	4	က	4	4	2	4	က	4	က	က	က	4	က	4	က	2	4	က	က	4	4	ო	က	7	ო	4	က	2	2	4	2	4	ď
က	4	4	4	4	2	4	က	4	က	က	က	4	4	4	4	က	4	-	က	4	4	က	4	7	7	4	7	2	2	4	7	4	~
7	က	က	4	4	4	က	ო	4	3	3	3	4	က	4	က	2	4	3	3	4	4	က	က	က	က	က	7	4	2	7	က	-	~
က	4	4	2	4	7	က	က	4	က	က	2	က	က	4	က	2	4	2	က	4	4	က	က	က	က	က	3	က	က	7	7	4	ď
4	က	4	4	က	4	က	က	4	က	က	2	4	က	4	4	4	4	4	င	4	4	က	4	က	7	က	က	4	က	က	7	-	7
4	2	4	4	က	က	က	က	4	က	က	2	က	4	4	4	4	4	က	က	4	4	က	က	2	က	4	က	4	က	က	7	က	_
12	16	14	13	9	16	14	14	12	ω	12	10	6	12	13	15	12	<u>(</u>	13	12	11	16	12	13	6	14	16	-	6	77	တ	တ	ω	4
က	4	3	က	7	4	က	4	က	2	ო	2	4	က	ო	4	က	က	က	က	ო	4	က	က	7	4	4	က	က	က	7	ო	2	c
က	4	က	က	7	4	က	m	က	2	က	2	-	က	က	က	2	4	4	က	4	4	က	2	က	4	4	2	7	7	-	7	4	C
က	4	4	3	4	4	4	က	n	2	က	В	2	က	4	4	4	4	က	က	2	4	က	4	7	က	4	က	7	က	4	2	-	c
က	4	4	4	2	4	4	4	က	7	က	က	2	က	က	4	3	7	က	က	2	4	က	4	2	က	4	က	7	က	2	2	-	C
10	6	11	1	1	ത	10	-	တ	ω	10	7	4	9	10	10	တ	11	6	တ	7	12	9	9	9	ဖ	10	တ	တ	6	တ	9	8	c
6	4	4	4	c	4	60	4	3	c	4	2	2	2	4	m	3	4	3	m	2	4	က	4	7	2	က	က	က	က	-	-	က	•
c	0	(0)	m	4	m	4	m	m	c	m	e	-	2	က	4	2	4	7	က	2	4	က	က	2	2	က	က	က	က	4	2	က	c
4	٠,	4	4	4	0	l co	4	3	0	l co	2	-	2	(0)	c	4	m	4	m	ന	4	4	က	7	2	4	m	က	က	4	က	2	C
11	7	12	17	10	σ.	α	5	10	10	10	8	α	7	6	11	-	12	5	00	7	17	10	10	0	ω	6	0	12	7	/	7	7	
4	7	4	4	٠,	4	٠,	2	10	1 () (r.	0	1 (7	0	ر. ا	4	4	· (r)	0	10	1 4	4	m	4	4	2	l w	4	0	2	m	2	1
cr) (r	7	۲.	4	-	- 0	1 4	4	4	4	c	0	1 (٠.	4	4	4	(r)	0 (0	6.	0	(C)	4	က	-	4	2	4	0	1	-	· က	,
7	7	7	4	(*	7	- (~	0 4	4	ď) (f	o c	o (*	7	4	4	رر.	4	r c) C	0	1 4	ď) (C	2	က	c	(C)	4	ď	4	8	2	1
	2 6	a	0 0		, -	-	J (*	2 4	- 6) (c) -	- α	σ		, -	- 0	1 (7	- 4	ي اد	2 1	. α	0		1	2	1 5	2 2	55	2 9	21/5	28	2

18	15	20	24	21	19	24	18	19	19	18	21	20	21	22	23	18	22	19	24	24	17	23	24	23	17	22	21	18	18	18	24	24	24	18
က	2	က	4	က	3	4	က	က	4	3	4	က	က	4	4	3	4	4	4	4	2	4	4	4	က	4	က	က	က	ო	4	4	4	ĸ
ო	2	က	4	က	3	4	က	က	3	3	က	က	က	4	4	က	4	4	4	4	2	4	4	4	က	4	က	က	က	က	4	4	4	က
က	7	4	4	4	3	4	က	က	3	က	4	က	4	4	က	က	4	3	4	4	က	က	4	4	က	က	က	က	3	က	4	4	4	c
ო	3	4	4	4	4	4	က	ო	က	က	က	က	က	က	4	က	4	က	4	4	က	4	4	4	က	4	4	က	3	က	4	4	4	n
က	3	3	4	3	က	4	က	က	က	က	က	4	4	က	4	က	4	3	4	4	က	4	4	က	က	4	4	က	ဗ	က	4	4	4	က
ო	က	က	4	4	က	4	က	4	က	က	4	4	4	4	4	က	2	7	4	4	4	4	4	4	7	က	4	က	ო	က	4	4	4	m
10	12	15	ნ	14	ω	13	12	12	7	7	14	4	15	16	12	12	16	14	14	16	16	10	16	15	15	7	10	12	10	10	16	12	16	10
7	က	က	7	4	7	က	က	က	7	က	4	4	4	4	က	က	4	4	4	4	4	7	4	4	က	7	7	က	7	7	4	ო	4	ď
5	က	4	7	4	7	က	က	က	က	က	က	4	4	4	က	က	4	က	2	4	4	4	4	က	4	-	2	က	2	2	4	ო	4	S
က	က	4	0	က	0	4	က	က	က	က	4	က	4	4	က	က	4	က	4	4	7	7	4	4	4	Ψ	က	က	က	က	4	က	4	C
က	က	4	က	က	7	က	က	က	က	7	က	က	က	4	က	က	4	4	4	4	4	7	4	4	4	က	က	က	က	ო	4	က	4	ď
ω	ω	=	တ	12	7	1	6	12	တ	თ	12	1	-	တ	12	ω	5	10	12	12	တ	9	10	-	თ	10	6	6	9	ω	9	ဝ	9	σ
7	7	4	က	4	2	4	က	4	က	က	4	4	က	က	4	က	7	က	4	4	7	က	4	က	က	2	က	က	2	7	က	က	က	۲
က	က	4	က	4	က	4	က	4	က	က	4	4	4	2	4	2	4	က	4	4	4	4	က	4	7	4	က	က	4	က	4	က	4	٣
က	က	က	က	4	2	က	က	4	က	က	4	က	4	4	4	က	4	4	4	4	က	က	က	4	4	4	က	က	4	က	က	က	က	٣
თ	6	თ	თ	9	တ	11	12	11	10	တ	11	10	1	7	7	8	ω	თ	- თ	12	12	ω	12	-	ω	10	7	6	6	ω	+	တ	11	5
က	7	က	က	4	က	4	4	က	က	က	4	4	4	4	က	က	2	4	4	4	4	2	4	4	က	က	က	က	က	ო	4	က	4	7
n	က	т	4	7	က	က	4	4	က	က	4	က	က	က	4	7	က	~	7	4	4	က	4	က	2	က	4	က	က	7	4	ო	4	r
ო	4	က	2	4	က	4	4	4	4	က	က	က	4	4	4	က	က	က	က	4	4	က	4	4	က	4	4	က	က	က	က	က	က	r
96	97	98	66	00	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	120

Σ	4	0	4	0.	Q.	2	œ	4	4	4	4	ω	7.	74	4	8	7	8	ω	4	24	Q	<u></u>	17	က္က	ω	<u></u>	9	61	33	24	8	21	20
2	2	7	2	2	7	2	~	2	CA	2	2	-	7	2	-		. 1		_	_	(1						•		,		. 4			
က	4	ო	4	3	ო	4	က	4	4	4	4	က	4	4	က	3	4	က	က	τ-	4	က	ო	ო	4	ო	ო	2	2	4	4	4	4	က
ო	4	3	4	3	က	4	က	4	4	4	4	4	3	4	₹-	3	4	က	က	က	4	7	က	က	4	က	က	7	က	4	4	4	4	4
4	4	က	4	3	ო	3	က	4	4	4	4	2	4	4	က	က	4	က	က	3	4	4	က	က	က	က	က	ო	က	4	4	-	4	ო
4	4	3	4	ဗ	က	က	ဗ	4	4	4	4	2	က	4	2	3	3	က	က	7	4	က	က	က	4	က	က	က	က	4	4	-	4	က
4	4	4	4	4	4	4	က	4	4	4	4	က	က	4	က	က	က	က	က	က	4	4	3	7	4	က	က	က	4	4	4	4	၁	က
3	4	4	4	4	4	4	က	4	4	4	4	4	4	4	2	က	က	3	က	7	4	4	3	က	4	က	က	က	4	က	4	4	2	4
13	16	12	12	12	12	14	12	12	12	14	16	15	13	10	11	13	11	11	11	တ	16	12	12	11	16	11	13	7	14	12	16	13	6	12
ო	4	3	က	4	က	4	ဗ	က	က	4	4	က	က	7	3	ო	2	3	2	7	4	3	3	င	4	3	4	4	4	3	4	4	က	ო
4	4	က	ო	4	က	4	3	က	က	4	4	4	4	2	က	4	2	က	က	7	4	ო	က	3	4	2	3	3	4	က	4	-	က	က
က	4	က	က	7	က	က	က	က	က	က	4	4	က	က	က	က	က	2	က	7	4	က	က	2	4	က	B	3	က	က	4	4	_	က
က	4	က	က	7	3	က	က	က	က	က	4	4	က	က	2	က	4	က	က	က	4	က	က	က	4	က	က	4	က	က	4	4	2	3
7	12	თ	တ	တ	10	ω	12	10	12	10	12	7	ω	-	9	တ	9	တ	თ	9	7	=	6	80	1	ω	12	6	6	တ	=	თ	12	თ
က	4	ო	က	က	4	4	4	4	4	4	4	က	ო	က	ო	က	4	က	က	က	က	4	က	က	4	7	4	7	က	က	4	4	4	က
7	4	က	က	က	က	7	4	က	4	က	4	2	2	4	က	က	7	က	က	4	7	4	က	က	က	က	4	4	7	ო	က	4	4	က
2	4	က	က	က	က	7	4	ო	4	က	4	2	က	4	4	က	4	က	က	က	7	က	က	7	4	က	4	က	4	က	4	-	4	က
10	7	-	6	တ	7	10	-	11	11	12	11	10	10	æ		တ	10	10	တ	တ	တ	10	ω	ω	12	ω	10	10	თ	თ	10	10	11	6
4	က	က	က	က	က	4	4	4	က	4	ო	4	4	က	က	က	4	4	က	က	က	4	2	က	4	က	က	4	က	က	4	2	4	က
2	4	4	က	က	4	က	4	4	4	4	4	က	က	2	4	က	7	က	က	က	က	က	3	7	4	က	က	က	4	က	4	4	က	က
4	4	4	က	က	4	က	3	က	4	4	4	က	က	က	4	က	4	က	က	က	က	က	က	က	4	7	4	က	2	က	7	4	4	က
131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165

15	16	19	18	22	23	17	23	24	13	16	14	8	9	21	16	24	20	21	18	24	18	9	18	24	22	24	22	19	23	24	24	17	18	18
က	ဗ	က	က	က	4	က	4	4	2	2	က	က	4	4	4	4	2	က	3	4	3	က	2	4	က	4	3	3	4	4	4	က	က	3
3	က	က	က	က	4	2	4	4	2	2	ო	က	4	4	4	4	4	4	၁	4	3	က	7	4	က	4	3	3	4	4	4	က	4	က
2	2	ო	ო	4	4	က	4	4	2	က	2	က	က	4	2	4	4	4	က	4	က	ო	က	4	4	4	4	4	က	4	4	ო	ო	ო
က	7	က	ო	4	က	ဗ	4	4	2	က	7	က	2	4	3	4	4	4	က	4	က	ო	4	4	4	4	4	3	4	4	4	က	က	က
2	ო	ო	ო	4	4	င	4	4	7	က	2	ო	2	7	1	4	3	က	က	4	က	က	4	4	4	4	4	က	4	4	4	က	ო	ო
2	ო	4	ო	4	4	3	က	4	က	က	2	က	4	က	2	4	3	က	3	4	3	က	က	4	4	4	4	3	4	4	4	2	2	ო
12	7	16	12	16	16	11	15	ω	12	14	ထ	12	16	7	6	16	13	12	12	16	10	-	8	14	12	13	12	14	1	12	တ	6	13	12
က	ო	4	က	4	4	က	4	7	3	4	2	က	4	က	က	4	4	3	က	4	7	ဗ	2	4	က	2	3	က	က	က	2	3	က	က
က	က	4	က	4	4	က	က	7	က	က	7	က	4	7	2	4	က	က	က	4	7	က	2	က	ო	က	က	4	က	က	7	7	4	ო
က	7	4	3	4	4	2	4	2	3	3	2	3	4	3	_	4	က	3	3	4	က	2	2	4	3	4	က	က	3	3	2	2	က	က
က	က	4	3	4	4	က	4	2	က	4	2	3	4	က	က	4	က	3	က	4	က	က	2	က	က	4	က	4	2	က	ო	2	က	က
7	o	-	6	6	10	6	ω	7	6	11	9	6	11	11	ω	10	10	10	6	12	10	8	6	11	11	8	11	10	10	10	8	7	1	တ
7	က	4	3	ဗ	က	3	က	7	က	4	2	3	4	4	7	4	က	3	က	4	7	က	က	4	4	2	4	က	4	4	7	7	4	ď
7	က	က	က	က	က	က	7	2	က	4	2	3	4	4	7	က	4	က	က	4	4	က	က	က	က	4	4	က	က	က	ო	က	4	ന
က	က	4	က	က	4	3	က	က	က	က	7	3	က	က	4	က	က	4	က	4	4	7	က	4	4	2	က	4	က	က	က	7	ო	က
ω	თ	7	ნ	12	-	10	9	10	10	ဖ	8	8	6	11	œ	10	10	11	8	10	တ	10	10	11		7	11	-	10	6	10	8	5	တ
4	က	4	က	4	ო	4	ო	က	က	7	7	2	က	4	7	4	က	4	က	4	4	4	က	4	က	_	4	က	3	က	ო	က	4	ო
7	က	က	က	4	4	3	4	3	က	7	3	3	7	က	4	က	4	4	2	3	7	က	4	က	4	3	က	4	3	က	ო	7	က	က
2	ო	4	က	4	4	က	က	4	4	7	က	က	4	4	7	ო	က	ဗ	ო	က	ო	က	က	4	4	က	4	4	4	က	4	က	က	က
166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	199	200	201

				<u> </u>	Γ-	Ī	<u> </u>			ļ	<u> </u>			_]	T	ļ .	_	<u> </u>	Γ	Γ-	·	J	Γ	Ι-								
17	22	8	20	23	22	9	23	18	18	20	<u>8</u>	13	24	18	17	9	18	9	21	2	23	21	16	8	<u>æ</u>	17	20	16	20	16	9	18	22	20
က	4	က	က	4	4	က	4	က	က	က	က	2	4	က	ო	က	က	က	4	4	4	4	က	က	က	က	က	က	4	က	က	3	က	က
2	4	က	က	4	4	ဗ	4	က	က	က	က	2	4	က	က	က	က	က	4	4	က	4	7	ო	က	က	7	7	4	7	က	3	က	က
က	3	က	3	က	က	က	4	က	က	4	က	က	4	က	က	က	က	ო	က	က	4	4	က	က	က	က	က	က	က	ო	က	က	4	က
က	က	ო	က	4	ო	က	က	ო	က	က	က	2	4	က	က	က	က	က	က	က	4	က	က	က	က	ო	4	ო	က	7	ო	ო	4	4
က	4	ო	4	4	4	ო	4	ო	က	က	က	2	4	က	က	က	က	က	က	က	4	က	2	က	က	က	4	က	က	က	က	က	4	က
က	4	ო	4	4	4	က	4	ო	က	4	က	2	4	ო	7	က	က	ო	4	က	4	ന	က	က	က	7	4	7	က	က	က	ო	4	4
တ	11	12	13	7	15	12	16	11	12	10	12	11	13	10	11	-	12	æ	14	12	16	4	12	7	12	တ	တ	12	7	7	11	11	ω	12
2	က	က	3	က	4	က	4	က	က	3	က	7	4	2	2	က	က	7	က	က	4	က	က	က	ო	7	2	က	က	_	က	7	7	က
2	3	4	က	ო	4	က	4	7	က	2	က	က	က	7	က	7	က	7	4	က	4	ო	က	4	ო	7	7	က	2	2	က	ო	7	က
2	က	7	က	2	က	က	4	က	က	7	က	က	က	က	က	က	က	7	ო	ო	4	4	m	7	က	7	8	က	က	က	7	က	7	က
က	7	က	4	က	4	က	4	က	က	3	က	က	က	က	က	ო	က	2	4	က	4	4	ო	7	က	က	7	က	ო	-	က	ო	7	ო
6	6	6	11	6	1,	တ	9	10	တ	10	6	7	10	7	8	ω	တ	တ	တ	9	12	9	တ	10	တ	တ	10	7	တ	6	တ	#	ω	တ
4	က	2	4	က	4	က	က	4	က	3	3	က	က	2	ဗ	7	က	က	က	က	4	က	က	4	က	ო	2	က	က	က	က	4	ო	က
2	က	4	4	က	4	က	4	က	က	3	3	7	4	3	က	က	က	က	ო	4	4	ო	က	4	ო	က	4	2	က	က	က	4	က	ო
က	က	3	က	က	က	3	က	က	က	4	က	2	က	2	2	က	က	က	က	က	4	4	က	2	က	က	4	2	က	က	က	ო	7	က
6	10	10	တ	10	12	10	1,	6	တ	10	6	6	8	11	10	12	6	10	17	10	12	10	10	11	6	6	8	6	6	8	8	10	ω	ω
က	က	က	4	က	4	4	4	က	က	4	က	က	က	4	က	4	က	4	က	က	4	ო	4	4	က	က	ဗ	က	က	က	က	က	ო	က
က	4	က	7	4	4	က	က	က	ო	က	က	က	7	4	4	4	က	ო	4	4	4	က	က	4	က	ო	7	က	3	7	2	4	က	2
က	က	4	က	က	4	က	4	က	က	က	က	က	က	က	က	4	က	က	4	က	4	4	က	က	က	က	က	က	က	က	က	ო	7	က
202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236

		Γ		Γ		Γ	T		Τ		T	Γ		Γ		Γ	Γ	Г		T	T	Γ			Γ			Π	Τ		Π	Π	T	Т
17	19	22	12	21	22	19	17	17	18	10	23	19	24	17	18	20	20	21	18	19	22	18	24	20	24	24	17	23	18	22	20	24	21	24
က	က	4	2	က	4	က	က	က	2	-	4	က	4	4	က	4	4	က	က	4	4	က	4	က	4	4	က	က	က	4	3	4	က	4
2	ო	4	2	က	4	7	က	2	7	က	က	4	4	က	က	4	က	4	က	2	4	2	4	က	4	4	ო	4	ო	4	က	4	က	4
2	က	4	7	က	က	ო	က	က	က	-	4	က	4	4	က	က	4	4	က	ო	ო	က	4	က	4	4	က	4	ო	4	က	4	က	4
3	က	က	7	4	4	က	2	က	က	-	4	က	4	7	က	က	က	4	က	က	4	က	4	က	4	4	က	4	က	4	က	4	4	4
က	က	က	2	4	4	4	က	က	4	-	4	က	4	2	က	က	က	4	က	4	က	4	4	4	4	4	2	4	က	က	4	4	4	4
4	4	4	2	4	က	4	က	ო	4	က	4	3	4	7	က	ന	က	2	က	က	4	က	4	4	4	4	ဗ	4	က	က	4	4	4	4
12	16	-	တ	13	ω	14	ω	12	7	16	7	11	12	14	8	11	16	9	8	ω	13	9	16	-	14	16	8	14	တ	13	15	15	13	15
က	4	က	7	က	7	4	2	ო	7	4	_	ო	7	4	7	ဗ	4	7	7	7	က	7	4	က	4	4	7	4	2	က	4	4	က	4
က	4	က	2	က	2	4	2	ო	4	4	2	က	က	က	7	3	4	~	7	7	ო	7	4	က	က	4	7	က	2	က	4	က	က	4
က	4	2	2	က	7	က	2	ო	က	4	2	ო	4	က	7	7	4	—	7	2	က	က	4	7	က	4	7	3	2	က	3	4	က	က
က	4	က	3	4	7	က	2	က	2	4	7	7	က	4	7	က	4	7	7	2	4	က	4	က	4	4	7	4	က	4	4	4	4	4
8	တ	10	တ	7	О	8	6	8	8	6	7	9	တ	12	တ	တ	6	ω	7	10	6	6	12	7	တ	10	7	œ	တ	6	ω	12	6	10
7	က	က	က	7	က	က	7	က	က	4	2	က	က	4	က	က	က	က	7	က	က	3	4	4	က	က	က	က	က	က	က	4	က	က
က	က	4	က	က	က	7	4	7	က	7	7	4	7	4	က	က	က	က	က	က	2	က	4	<u>.</u>	က	က	7	7	က	က	7	4	က	က
က	က	က	က	2	က	က	က	က	2	က	က	က	4	4	က	က	က	7	7	4	4	က	4	2	က	4	2	က	က	က	က	4	က	4
7	=	9	ω	9	ω	တ	တ	10	9	12	10	ω	တ	တ	ნ	10	12	9	ω	ဝ	12	10	12	7	10	10	ω	10	ω	9	10	12	11	7
က	က	က	က	က	7	က	က	ო	က	4	က	က	ო	ო	က	က	4	7	7	4	4	က	4	က	က	4	7	4	က	က	ო	4	က	က
4	4	က	2	3	က	က	ო	4	က	4	4	က	4	က	က	က	4	က	က	7	4	က	4	4	က	က	က	က	7	က	က	4	4	4
4	4	4	က	4	က	က	က	က	4	4	က	7	7	က	က	4	4	-	က	က	က	က	4	4	က	7	7	က	က	4	4	-	က	က
237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260	261	262	263	264	265	266	267	268	269	270	271

22	20	21	19	19	17	13	23	24	24	23	19	22	4	21	16	24	15	18	20	24	14	13	18	12	8	18	17	24	16	17	18	18	22	1 a
		-							-	-					-																-			
4	4	(C)	က	3	-	က	4	4	4	4	2	2	2	8	က	4	က	က	4	4	က	က	4	2	က	က	က	4	7	က	-	2	က	יין נ
4	4	က	က	4	7	က	4	4	4	က	4	4	7	4	က	4	-	2	ო	4	7	2	7	2	က	က	7	4	2	7	4	2	က	, (
4	က	က	က	က	-	က	4	4	4	4	4	4	က	4	က	4	က	4	က	4	က	2	က	2	က	က	က	4	က	က	4	4	4	
က	က	4	က	က	-	-	က	4	4	4	က	4	7	က	က	4	7	4	က	4	7	7	က	2	က	က	က	4	က	က	က	4	4	~
က	က	4	4	က	7	-	4	4	4	4	က	4	2	4	2	4	က	7	က	4	7	2	က	2	က	က	က	4	က	က	က	က	4	ď
4	က	4	ო	ო	4	7	4	4	4	4	က	4	က	က	2	4	က	က	4	4	2	2	က	2	က	က	က	4	က	က	3	က	4	ď
13	-	13	13	15	13	2	14	16	16	16	13	13	10	15	43	14	10	16	12	16	6	16	14	တ	14	æ	12	12	13	12	12	12	12	ر. ابر
က	~	ო	က	က	4	_	က	4	4	4	3	2	က	က	က	4	က	4	က	4	က	4	4	7	7	7	က	7	က	က	4	က	က	4
7	က	4	4	4	4	, -	4	4	4	4	4	က	က	4	က	2	က	4	က	4	က	4	4	က	4	7	4	7	4	က	7	က	ო	4
4	3	က	က	4	က	-	က	4	4	4	က	4	7	4	4	4	2	4	က	4	-	4	С	-	4	7		4	က	က	က	က	က	4
4	က	က	က	4	7	7	4	4	4	4	က	4	7	4	က	4	2	4	က	4	7	4	က	က	4	7	4	4	က	က	က	က	က	m
ဖ	တ	ნ	10	ω	9	7	7	12	12	7	1	9	တ	10	ω	ω	7	2	ω	10	∞	တ	9	12	9	ဖ	တ	7	ω	ω	12	ნ	10	7
က	က	က	က	က	7	~	4	4	4	4	4	7	က	က	က	7	က	7	က	4	-	က	7	4	7	7	4	က	က	4	4	က	က	3
-	က	2	က	7	4	4	က	4	4	4	4	-	က	4	7	7	7	Ā	က	4	4	က	7	4	7	7	4	7	7	7	4	က	က	2
7	က	4	4	က	4	7	4	4	4	က	က	က	က	က	က	4	7	7	7	7	က	က	7	4	7	7	-	7	က	2	4	က	4	7
12	တ	တ	တ	9	10	æ	10	1	12	12	12	12	ω	10	10	12	ω	9	10	9	10	တ	0	7	o	ω	ω	-	ω	7	12	တ	ဝ	<u>;</u>
4	7	7	7	7	4	က	က	4	4	4	4	4	က	ო	4	4	က	-	4	4	4	4	4	က	4	7	4	4	ო	က	4	4	7	4
4	n	က	4	4	က	က	က	က	4	4	4	4	7	4	7	4	7	7	m	4	7	7	-	7	7	n	~	4	7	7	4	7	ო	က
4	4	4	4	4	က	ო	က	က	4	4	4	4	4	4	4	4	က	4	ო	2	4	4	4	4	4	4	m	က	4	4	က	က	က	2
717	2/3	274	275	276	277	278	279	280	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	787	298	299	300	301	302	303	304	305	306

22	21	18	38	18	12	16	22	16	24	17	24	20	24	21	19	20	22	22	19	24	19	18	24	18	21	20	20	18	19	23	21	19	21	24
₩	m	2	8	~	2	2	2	8	-	~	-	-	-	-	~	_						~			-		_					က		
	-	-		-	-		-	-	-	_		-	-	-	-	-	-	-	_			-	-	-	-	-	_	-		-	-			-
7	(1)					-		-	-			-	-			-	-														-	က	-	-
က	4	4	က	က	7	2	4	2	4	က	4	က	4	က	က	က	က	4	က	4	က	က	4	က	4	4	4	က	က	4	က	က	က	c
4	4	က	က	က	7	က	4	7	4	က	4	က	4	7	က	က	က	4	က	4	က	က	4	က	က	က	2	က	က	4	4	က	4	4
4	4	4	က	က	7	7	က	က	4	က	4	က	4	4	က	က	4	4	က	4	က	က	4	က	4	က	က	4	က	က	က	က	က	ď
က	ო	က	က	က	2	က	က	က	4	4	4	က	4	4	4	က	4	4	4	4	က	က	4	က	က	2	က	4	က	4	က	4	က	ď
7	7	12	11	12	11	10	တ	12	10	16	16	13	16	တ	15	16	11	14	12	16	16	12	14	12	15	13	13	15	11	12	14	12	14	1.5
7	က	3	3	ო	2	3	3	3	ဗ	4	4	3	4	2	4	4	က	4	က	4	4	က	3	က	4	က	4	4	ო	3	4	က	4	4
					_		-		-		ш								_						-	-				_		က	\vdash	-
\dashv				\dashv			-				>							\dashv						-	-		_	_		-		က	-	⊢
	-		(,)	(,)	.,		(1	(1)	(1)	7	4	4	4	ניז	4	4	ന	e)	(T)	4	4	က	က	ന	4	4	က	4	က	က	က	က	က	4
ω	7	ω	ω	80	7	ω	ω	တ	9	12	12	9	10	ω	ი	8	တ	7	တ	တ	10	9	တ	9	12	7	9	ω	တ	-	9	9	ω	12
က	4	7	က	က	က	က	7	က	က	4	4	က	4	က	4	က	က	က	က	4	4	က	က	7	4	ო	က	ო	က	4	က	က	က	4
7	4	4	7	က	က	7	7	က	က	4	4	4	က	က	7	7	က	7	က	-	7	4	က	7	4	4	4	က	4	4	4	က	က	4
က	က	7	က	7	-	က	4	က	4	4	4	က	က	7	က	က	က	7	က	4	4	က	က	7	4	4	က	7	7	က	က	4	7	4
တ	12	ω	တ	ω	ω	6	12	တ	10	12	တ	∞	12	12	10	7	ω	თ	- ნ	10	ω	11	6	ω	-	-	12	12	11	10	ω	9	7	10
2	4	4	က	က	4	က	4	က	က	4	က	7	4	4	4	4	7	က	က	4	က	4	က	4	4	4	4	4	4	4	က	က	က	4
3	4	7	7	4	က	ო	4	က	က	4	က	က	4	4	က	က	က	က	က	7	7	က	က	7	က	4	4	4	က	က	-	က	7	~
4	က	4	2	က	က	က	က	က	7	4	က	4	4	4	4	7	4	-	-	က	4	က	4	4	က	က	4	4	က	4	က	က	က	4
307	308	310	311	312	313	314	315	316	317	318	319	320	321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340	341	342

9	0	100	18	ς α	24	ά	24	20	4	22	9	13	15	23	1 8	9	2	15	22	2	138	28	17	18	19	19	20	19	198	24	17	13)
c) (r.	(m	۲.) (r.	4	· (*	0 4	m	2	4	2	2	2	4	3	(n)	က	4	4	4	8	4	2	က	က	က	4	3	3	4	m	2	-
c	0 00	m	c) (C	4	c	4	m	2	က	2	2	ر س	4	3	က	4	6	4	4	က	က	2	က	4	2	4	8	3	4	က	2	
m	m	m	8	(C)	4	c.	4	2	m	4	4	2	2	4	8	က	က	2	က	4	3	4	က	က	က	4	က	4	3	4	m	2	
6	4	m	m	(C)	4	8	4	4	2	က	4	2	က	4	က	က	က	2	4	4	က	က	က	က	က	က	က	က	m	4	ر س	ო	,
60	6	4	2	m	4	3	4	4	က	4	က	က	က	4	က	4	က	2	4	2	က	က	က	က	က	4	က	က	က	4	က	2	+
4	m	က	2	m	4	က	4	4	7	4	က	2	2	ო	က	m	4	2	3	2	က	က	4	က	ო	က	က	က	m	4	2	7	1
10	12	æ	10	10	15	15	16	10	12	16	12	တ	12	16	12	14	12	12	7	12	12	16	13	О	13	13	16	æ	12	16	10	တ	1
2	က	2	က	က	4	4	4	က	က	4	က	က	က	4	က	က	က	က	-	3	က	4	က	7	ო	ო	4	2	က	4	က	2	-
2	က	7	7	က	4	က	4	2	က	4	က	7	4	4	က	က	ဗ	က	7	က	က	4	4	7	က	က	4	2	က	4	က	7	1
\vdash	1		 	t-	 	 	 	-	-	-		_		-		4				_		-			_		-	Щ.				_	1
က	က	2	က	2	4	4	4	2	က	4	က	7	က	4	က	4	က	က	2	က	က	4	က	က	4	က	4	7	က	4	7	က	-
တ	ω	6	8	5	တ	10	12	8	တ	9	6	တ	8	တ	6	တ	ထ	12	10	ထ	ω	8	-	8	10	တ	æ	6	0 0	12	ω	ω	
က	က	က	က	7	က	က	4	က	က	က	က	က	7	4	က	က	က	4	3	က	က	က	4	က	4	က	က	7	က	4	က	က	-
က	7	3	က	4	3	4	4	က	က	က	က	က	က	4	က	2	က	4	4	က	7	က	4	က	က	က	7	က	7	4	က	ო	[
က	က	3	7	4	က	က	4	2	က	4	က	က	က	-	က	4	7	4	က	7	က	7	က	7	က	က	က	4	က	4	7	7	ľ
6	ω	10	10	6	6	တ	11	ω	တ	12	တ	ω	တ	10	б	æ	7	10	ω	О	10	12	9	0	-	9	-	10	တ	12	တ	9	
7	4	4	4	က	4	က	က	က	က	4	4	7	ო	က	ო	7	7	4	4	4	4	4	4	က	4	က	ო	က	က	4	က	4	
4	2	4	က	က	7	က	4	7	က	4	7	က	က	4	က	ო	n	7	က	7	က	4	3	<u>ო</u>	4	4	4	က	က	4	က	က	•
က	4	က	7	4	ო	4	4	4	က	4	4	7	4	ო	7	7	က	ო	က	က	4	က	m	7	က	က	က	က	ო	က	7	4	-
343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	0

			1		,	-		-1	1				Ψ	_				,	,					
24	24	42 4	5 0	2 0	20	24	24	101	4	œ	27	23	24	17	18	19	20	20	1,8	22	23	2 2	19	0.0
4	4	- (*) m	n ر	7	4	4	4	· (r)	0 00	4	4	4	4	(2)	4	4	4	C.	A	- (*) (r.	4	. 60
4	4	- (*) (r	7	7	4	· (C)	7	m	m	4	4	4	4	3	4	4	4	ď	7	4	4	4	8
4	4	ď) m) (r.	4	4	· (C)	m	2	က	က	4	4	2	n	က	က	4	m	c	4	4	m	3
4	4	۲۲.) (r.	o cr	7	4	· က	m	7	က	4	4	4	က	က	က	က	4	က	c	4	4	2	m
4	4	C.	CC CC	· (r.	4	4	4	2	2	က	က	4	4	2	ო	က	က	2	m	4	4	m	က	m
4	4	(1)	4	m	4	4	4	က	7	က	က	3	4	2	က	2	က	2	ო	4	4	m	က	4
15	16	12	10	14	14	16	4	တ	11	16	14	16	16	12	7	10	7	10	7	16	12	16	10	15
4	4	က	2	က	4	4	က	က	7	4	က	4	4	4	ო	7	7	2	7	4	က	4	2	4
4	4	n	7	4	7	4	က	7	က	4	က	4	4	က	က	7	7	4	7	4	က	4	2	က
က	4	က	က	က	4	4	4	7	က	4	4	4	4	2	7	က	-	2	က	4	n	4	က	4
4	4	က	က	4	4	4	4	7	က	4	4	4	4	က	3	က	2	2	4	4	က	4	ო	4
თ	12	=	0	10	10	1	10	9	တ	2	10	10	တ	10	တ	ထ	8	10	1	တ	10	11		တ
က	4	က	ო	က	7	4	4	က	က	2	က	4	4	2	က	2	က	က	4	က	က	4	4	4
7	4	4	က	4	4	က	က	က	က	2	4	7	7	4	က	က	7	4	4	7	4	4	က	က
4	4	4	က	က	4	4	က	4	က	က	က	4	က	4	က	က	က	က	က	4	က	ო	4	2
7	-	7	9	10	တ	7	10	7	7	9	12	တ	-	6	10	ω	6	11	12	11	11	10	ω	10
4	4	ო	4	4	က	4	4	ო	က	-	4	က	4	က	က	7	က	က	4	4	ო	4	က	4
က	က	4	က	3	က	ဗ	3	7	7	7	4	က	က	က	က	က	7	4	4	4	4	က	7	က
က	4	ო	က	က	က	4	4	က	4	က	က	7	က	4	4	4	က	က	ო	4	က	7	7	က
378	379	380	381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400	401	402

NDONESIA

Uji Mann-Whitney Jenis Kelamin Terhadap Faktor

Ranks

	GENDER	N	Mean Rank	Sum of Ranks
HARGA	laki-laki	179	195.57	35007.50
[perempuan	223	206.26	45995.50
ĺ	Total	402		

Test Statistics^a

ICIA	HARGA
Mann-Whitney U	18897.500
Wilcoxon W	35007.500
Z	937
Asymp. Sig. (2-tailed)	.349

a. Grouping Variable: GENDER

Uji Mann-Whitney Jenis Kelamin Terhadap Faktor Desain

Ranks

	GENDER	N	Mean Rank	Sum of Ranks
DESAIN	laki-laki	179	183.61	32866.00
	perempuan	223	215.86	48137.00
	Total	402		~ "

Test Statistics^a

	DESAIN
Mann-Whitney U	16756.000
Wilcoxon W	32866.000
Z	-2.831
Asymp. Sig. (2-tailed)	.005

a. Grouping Variable: GENDER

Uji Mann-Whitney Jenis Kelamin Terhadap Faktor Fitur

Ranks

	GENDER	N	Mean Rank	Sum of Ranks
FITUR	laki-laki	179	198.87	35598.00
1	perempuan	223	203.61	45405.00
	Total	402		

Test Statistics^a

1		FITUR
ĺ	Mann-Whitney U	19488.000
	Wilcoxon W	35598.000
	Z	411
	Asymp. Sig. (2-tailed)	.681

a. Grouping Variable: GENDER

Uji Mann-Whitney Jenis Kelamin Terhadap Faktor Jaminan Purna Jual

Ranks

	GENDER	N	Mean Rank	Sum of Ranks
JP_JUAL	laki-laki	179	197.98	35438.50
	perempuan	223	204.33	45564.50
-	Total	402		

Test Statisticsa

	JP_JUAL
Mann-Whitney U	19328.500
Wilcoxon W	35438.500
Z	549
Asymp. Sig. (2-tailed)	.583

a. Grouping Variable: GENDER

Mann-Whitney FTI, FMIPA dan Faktor Desain

Ranks

	FAKULTAS	N	Mean Rank	Sum of Ranks
DESAIN	ti	172	122.09	20999.50
	mipa	65	110.82	7203.50
ļ	Total	237		

Test Statistics

	DESAIN
Mann-Whitney U	5058.500
Wilcoxon W	7203.500
Z	-1.157
Asymp. Sig. (2-tailed)	.247

a. Grouping Variable: FAKULTAS

Mann-Whitney FTI, FTSP dan Faktor Desain

Ranks

	FAKULTAS	N	Mean Rank	Sum of Ranks
DESAIN	ti	172	147.73	25409.50
17	tsp	115	138.42	15918.50
10	Total	287		

Test Statistics

	DESAIN
Mann-Whitney U	9248.500
Wilcoxon W	15 918.500
Z	951
Asymp. Sig. (2-tailed)	.342

a. Grouping Variable: FAKULTAS

Mann-Whitney FTI, FPSIKOLOGI dan Faktor Desain

Ranks

- ''	FAKULTAS	N	Mean Rank	Sum of Ranks
DESAIN	ti	172	112.41	19334.00
	psikologi	50	108.38	5419.00
i	Total	222		

Test Statistics

	DESAIN
Mann-Whitney U	4144.000
Wilcoxon W	5419.000
z	399
Asymp. Sig. (2-tailed)	.690

a. Grouping Variable: FAKULTAS

Mann-Whitney FMIPA, FTSP dan Faktor Desain

Ranks

	FAKULTAS	N	Mean Rank	Sum of Ranks
DESAIN	mipa	65	89.87	5841.50
10	tsp	115	90.86	10448.50
	Total	180		/ 1

Test Statistics

	DESAIN
Mann-Whitney U	3696.500
Wilcoxon W	5841.500
Z	125
Asymp. Sig. (2-tailed)	.901

a. Grouping Variable: FAKULTAS

Mann-Whitney FMIPA, FPSIKOLOGI dan Faktor Desain

Ranks

	FAKULTAS	N	Mean Rank	Sum of Ranks
DESAIN	mipa	65	56.60	3679.00
	psikologi	50	59.82	2 9 91.00
	Total	115		

Test Statistics

	DESAIN
Mann-Whitney U	1534.000
Wilcoxon W	3679.000
Z	527
Asymp. Sig. (2-tailed)	.598

a. Grouping Variable: FAKULTAS

Mann-Whitney FTI, FMIPA dan Faktor Desain

Ranks

ĺ		FAKULTAS	N	Mean Rank	Sum of Ranks
ĺ	DESAIN	tsp	115	82.27	9460.50
		psikologi	50	84.69	4234.50
		Total	165		

Test Statistics^a

	DESAIN
Mann-Whitney U	2790.500
Wilcoxon W	9460.500
ZISLA	306
Asymp. Sig. (2-tailed)	.760
a Ossanias Masiable	
a. Grouping Variable	FARULIA
a. Grouping variable	: FARULTA
a. Grouping variable	; FAKULTA
a. Grouping Variable	: FAKULTA:
a. Grouping variable	: FAKULTA
a. Grouping variable	: PARULTA
a. Grouping variable	FAKULTA
a. Grouping variable	FAKULTAS

Lampiran 6

Uji Kruskal-Wallis Untuk Fakultas dan Umur Terhadap Faktor Harga, Desain, Fitur dan Jaminan Purna Jual

Fakultas dan Faktor Harga, Fitur, Desain dan Jaminan Purna Jual

NPar Tests

Kruskal-Wallis Test

Ranks

			Mara Dook
	FAKULTAS	N	Mean Rank
HARGA	fti	172	209.23
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	fmipa	65	191.29
	ftsp	115	195.54
	fpsikologi	50	201.89
	Total	402	\mathcal{A}

Test Statistics^{a,b}

	HARGA
Chi-Square	1.635
df	3
Asymp. Sig.	.651

- a. Kruskal Wallis Test
- b. Grouping Variable: FAKULTAS

NPar Tests Kruskal-Wallis Test

Ranks

	FAKULTAS	N	Mean Rank
DESAIN	fti	172	214.66
	fmipa	65	203.81
	ftsp	115	178.35
\cup	fpsikologi	50	206.48
	Total	402	

Test Statisticsa,b

	DESAIN
Chi-Square	7.217
df	3
Asymp. Sig.	.065

- a. Kruskal Wallis Test
- b. Grouping Variable: FAKULTAS

NPar Tests Kruskal-Wallis Test

Ranks

	FAKULTAS	N	Mean Rank
FITUR	fti	172	213.14
Ì	fmipa	65	164.31
ì	ftsp	115	202.64
	fpsikologi	50	207.19
	Total	402	

Test Statistics^{a,b}

1.0	FITUR
Chi-Square	8.710
df	3
Asymp. Sig.	.033

- a. Kruskal Wallis Test
- b. Grouping Variable: FAKULTAS

NPar Tests Kruskal-Wallis Test

Ranks

	FAKULTAS	N	Mean Rank
JP_JUAL	fti	172	215.71
-	fmipa	65	182.58
=	ftsp	115	195.33
	fpsikologi	50	191.41
=	Total	402	

Test Statisticsa,b

ورخار وسير	JP_JUAL
Chi-Square	5.085
df	3
Asymp. Sig.	.166

- a. Kruskal Wallis Test
- b. Grouping Variable: FAKULTAS

NPar Tests Kruskal-Wallis Test

Ranks

	UMUR	N	Mean Rank
FITUR	15-19	77	227.13
}	20-24	307	195.06
1	25-29	16	206.34
	30-34	2	164.25
	Total	402	

Test Statisticsa,b

	FITUR
Chi-Square	5.034
df	3
Asymp. Sig.	.169

- a. Kruskal Wallis Test
- b. Grouping Variable: UMUR

NPar Tests Kruskal-Wallis Test

Ranks

	UMUR	N	Mean Rank
JP JUAL	15-19	7 7	194.04
_	20-24	307	203.49
	25-29	16	217.25
	30-34	2	57.50
	Total	402	9

Test Statisticsa,b

andradii	JP JUAL
Chi-Square	3.840
df	3
Asymp. Sig.	.279

- a. Kruskal Wallis Test
- b. Grouping Variable: UMUR

Lampiran 7

Uji Friedman Untuk Jenis Kelamin, Fakultas, dan Umur Terhadap Faktor Harga, Desain, Fitur, dan Jaminan Purna

Jual Z

NPar Tests Friedman Test Jenis Kelamin laki-laki

Ranks

	Mean Rank
HARGA	1.75
DESAIN	1.49
FITUR	2.80
JP_JUAL	3.96

Test Statistics

N	179
Chi-Square	426.313
df	3
Asymp. Sig.	.000

a. Friedman Test

NPar Tests Friedman Test Jenis Kelamin Perempuan

Ranks

	Mean Rank
HARGA	1.68
DESAIN	1.52
FITUR	2.79
JP_JUAL	4.00

Test Statistics

N	223
Chi-Square	554.867
df	3
Asymp. Sig.	.000

NPar Tests Friedman Test Fakultas TI

Ranks

	Mean Rank
HARGA	1.65
DESAIN	1.51
FITUR	2.86
JP JUAL	3.98

Test Statistics

N	172
Chi-Square	435.013
df	3
Asymp. Sig.	.000

a. Friedman Test

NPar Tests Friedman Test Fakultas MIPA

Ranks

	Mean Rank
HARGA	1.74
DESAIN	1.54
FITUR	2.72
JP_JUAL	4.00

Test Statistics

N	65
Chi-Square	158.095
df	3
Asymp. Sig.	.000

NPar Tests Friedman Test Fakultas TSP

Ranks

1		Mean Rank
	HARGA	1.78
	DESAIN	1.49
	FITUR	2.77
	JP_JUAL	3.96

Test Statistics^a

N	115
Chi-Square	271.709
df	3
Asymp. Sig.	.000

a. Friedman Test

NPar Tests Friedman Test Fakultas PSIKOLOGI

Ranks

	Mean Rank
HARGA	1.74
DESAIN	1.54
FITUR	2.72
JP_JUAL	4.00

Test Statistics

N	50
Chi-Square	117.694
df	3
Asymp. Sig.	.000

NPar Tests Friedman Test Umur 20-24

Ranks

1		Mean Rank
	HARGA	1.72
	DESAIN	1.52
	FITUR	2.77
	JP_JUAL	3.99

Test Statistics

N	307
Chi-Square	746.351
df	3
Asymp. Sig.	.000

a. Friedman Test

NPar Tests Friedman Test Umur 15-19

Ranks

	Mean Rank
HARGA	1.69
DESAIN	1.47
FITUR	2.86
JP_JUAL	3.97

Test Statistics

N	7 7
Chi-Square	192.181
df	
Asymp. Sig.	.000

NPar Tests Friedman Test Umur 25-29

Ranks

	Mean Rank
HARGA	1.72
DESAIN	1.44
FITUR	2.91
JP_JUAL	3.94

Test Statistics

N	16
Chi-Square	40.391
df	3
Asymp. Sig.	.000

a. Friedman Test

NPar Tests Friedman Test Umur 30-34

Ranks

	Mean Rank
HARGA	1.50
DESAIN	2.25
FITUR	2.50
JP_JUAL	3.75

Test Statistics^a

N	2
Chi-Square	3.316
df	3
Asymp. Sig.	345

NPar Tests Laki-Laki

Sign Test

Frequencies

		N
DESAIN - HARGA	Negative Differences	87
	Positive Differences ^b	47
	Ties ^c	45
	Total	179

- a. DESAIN < HARGA
- b. DESAIN > HARGA
- c. HARGA = DESAIN

Test Statistics

7	DESAIN - HARGA
Z	-3.369
Asymp. Sig. (2-tailed)	.001

a. Sign Test

NPar Tests

Sign Test

Frequencies

		N
FITUR - HARGA	Negative Differences	14
	Positive Differences ^b	147
	Ties ^c	18
17	Total	179

- a. FITUR < HARGA
- b. FITUR > HARGA
- c. HARGA = FITUR

Test Statistics

	FITUR - HARGA
Z	-10.403
Asymp. Sig. (2-tailed)	.000

a. Sign Test

NPar Tests

		N
JP_JUAL - HARGA	Negative Differences	2
	Positive Differences ^b	177
	Ties ^c	0
	Total	179

- a. JP_JUAL < HARGA
- b. JP_JUAL > HARGA
- c. HARGA = JP_JUAL

Test Statistics

	JP_JUAL - HARGA
Z	-13.005
Asymp. Sig. (2-tailed)	.000

a. Sign Test

NPar Tests

Sign Test

Frequencies

		4	N
FITUR - DESAIN	Negative Differences		10
	Positive Differences ^b	9	154
	Ties ^c		15
3 1/4	Total		179

- a. FITUR < DESAIN
- b. FITUR > DESAIN
- c. DESAIN = FITUR

Test Statistics

	FITUR - DESAIN
Z	-11.166
Asymp. Sig. (2-tailed)	.000

a. Sign Test

NPar Tests

Sign Test

Frequencies

		N
JP_JUAL - DESAIN	Negative Differences ^a	1
	Positive Differences ^b	177
	Ties ^c	1
	Total	179

- a. JP_JUAL < DESAIN
- b. JP_JUAL > DESAIN
- c. DESAIN = JP_JUAL

Test Statistics

	JP_JUAL - DESAIN
Z	-13.117
Asymp. Sig. (2-tailed)	.000

a. Sign Test

NPar Tests

Sign Test

Frequencies

		N
JP_JUAL - FITUR	Negative Differences	4
13.5	Positive Differences ^b	175
	Tiesc	0
	Total	179

- a. JP_JUAL < FITUR
- b. JP_JUAL > FITUR
- c. FITUR = JP_JUAL

Test Statistics

	JP_JUAL - FITUR
Z	-12.706
Asymp. Sig. (2-tailed)	.000

a. Sign Test

PEREMPUAN

Sign Test

Frequencies

		N
DESAIN - HARGA	Negative Differences	95
ļ	Positive Differences ^b	63
	Tiesc	65
	Total	223

- a. DESAIN < HARGA
- b. DESAIN > HARGA
- c. HARGA = DESAIN

Test Statistics

		DESAIN - HARGA
H	Z	-2.466
	Asymp. Sig. (2-tailed)	.014

a. Sign Test

NPar Tests

Sign Test

Frequencies

		N
FITUR - HARGA	Negative Differences	17
10	Positive Differences ^b	191
	Ties ^c	15
	Total	223

- a. FITUR < HARGA
- b. FITUR > HARGA
- c. HARGA = FITUR

Test Statistics

and the second s	
	FITUR -
	HARGA
Z	-11.995
Asymp. Sig. (2-tailed)	.000

a. Sign Test

NPar Tests

Sign Test

Frequencies

		N
JP_JUAL - HARGA	Negative Differences	0
	Positive Differences ^b	223
	Ties ^c	0
	Total	223

- a. JP_JUAL < HARGA
- b. JP_JUAL > HARGA
- c. HARGA = JP_JUAL

Test Statistics

ISL	JP_JUAL - HARGA
Z	-14.866
Asymp. Sig. (2-tailed)	.000

a. Sign Test

NPar Tests

SignTest

Frequencies

145		N
FITUR - DESAIN	Negative Differences	13
199	Positive Differences ^b	193
	Tiesc	17
	Total	223

- a. FITUR < DESAIN
- b. FITUR > DESAIN
- c. DESAIN = FITUR

Test Statistics

- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	FITUR -
	DESAIN
Z	-12.472
Asymp. Sig. (2-tailed)	.000

a. Sign Test

NPar Tests

		N
JP_JUAL - DESAIN	Negative Differences	0
	Positive Differences ^b	223
	Ties ^c	0
	Total	223

- a. JP_JUAL < DESAIN
- b. JP_JUAL > DESAIN
- C. DESAIN = JP_JUAL

Test Statistics

	JP_JUAL - DESAIN
Z	-14.866
Asymp. Sig. (2-tailed)	.000

a. Sign Test

NPar Tests

Sign Test

Frequencies

		N
JP_JUAL - FITUR	Negative Differences	0
100	Positive Differences ^b	223
	Tiesc	0
	Total	223

- a. JP_JUAL < FITUR
- b. JP_JUAL > FITUR
- c. FITUR = JP_JUAL

Sign Test

Frequencies

		Ν
DESAIN - HARGA	Negative Differences	0
	Positive Differences ^b	0
	Tiesc	172
	Total	172

- a. DESAIN < HARGA
- b. DESAIN > HARGA
- c. HARGA = DESAIN

Test Statistics

7047	DESAIN - HARGA
Asymp. Sig. (2-tailed)	1.000

a. Sign Test

NPar Tests

Sign Test

Frequencies

		N
FITUR - HARGA	Negative Differences	7
TW.	Positive Differences ^b	152
	Ties ^c	13
	Total	172

- a. FITUR < HARGA
- b. FITUR > HARGA
- C. HARGA = FITUR

Test Statistics

	FITUR -
	HARGA
Z	-11.420
Asymp. Sig. (2-tailed)	.000

a. Sign Test

NPar Tests

		N
JP JUAL - HARGA	Negative Differences ^a	1
_	Positive Differences ^b	171
	Ties ^c	0
	Total	172

- a. JP_JUAL < HARGA
- b. JP_JUAL > HARGA
- c. HARGA = JP_JUAL

Test Statistics

	JP_JUAL - HARGA
Z	-12.886
Asymp. Sig. (2-tailed)	.000

a. Sign Test

NPar Tests

Sign Test

Frequencies

V		N
FITUR - DESAIN	Negative Differences	7
T.C.	Positive Differences ^b	152
10.00	Ties ^c	13
1,00	Total	172

- a. FITUR < DESAIN
- b. FITUR > DESAIN
- c. DESAIN = FITUR

Test Statistics

	FITUR -
Acres Parking	DESAIN
Z	-11.420
Asymp. Sig. (2-tailed)	.000

a. Sign Test

NPar Tests MIPA

Sign Test

Frequencies

		Ν
DESAIN - HARGA	Negative Differences	27
	Positive Differences ^b	17
	Tiesc	21
	Total	65

- a. DESAIN < HARGA
- b. DESAIN > HARGA
- c. HARGA = DESAIN

Test Statistics

	DESAIN - HARGA
Z	-1.357
Asymp. Sig. (2-tailed)	.175

a. Sign Test

NPar Tests

Sign Test

Frequencies

		N
FITUR - HARGA	Negative Differences	7
17	Positive Differences ^b	51
14	Tiesc	7
10	Total	65

- a. FITUR < HARGA
- b. FITUR > HARGA
- c. HARGA = FITUR

Test Statistics

	FITUR - HARGA
Z	-5.646
Asymp. Sig. (2-tailed)	.000

a. Sign Test

NPar Tests

		2
JP JUAL - HARGA	Negative Differences	0
	Positive Differences ^b	65
	Ties ^c	0
	Total	65

- a. JP_JUAL < HARGA
- b. JP_JUAL > HARGA
- c. HARGA = JP_JUAL

Test Statistics

	JP_JUAL - HARGA
Z	-7.938
Asymp. Sig. (2-tailed)	.000

a. Sign Test

NPar Tests

Sign Test

Frequencies

		N
FITUR - DESAIN	Negative Differences	4
144 1	Positive Differences ^b	54
1111	Tiesc	7
TW.	Total	65

- a. FITUR < DESAIN
- b. FITUR > DESAIN
- c. DESAIN = FITUR

Test Statistics

	FITUR - DESAIN
Z	-6.434
Asymp. Sig. (2-tailed)	.000

a. Sign Test

NPar Tests

		Ν
JP_JUAL - DESAIN	Negative Differences ^a	0
	Positive Differences ^b	65
	Ties ^c	0
	Total	65

- a. JP_JUAL < DESAIN
- b. JP_JUAL > DESAIN
- c. DESAIN = JP_JUAL

Test Statistics^a

	JP_JUAL - DESAIN
Z	-7.938
Asymp. Sig. (2-tailed)	.000

a. Sign Test

NPar Tests

Sign Test

Frequencies

		Z
JP_JUAL - FITUR	Negative Differences	0
100	Positive Differences ^b	65
	Ties ^c	0
I W	Total	65

- a. JP_JUAL < FITUR
- b. JP_JUAL > FITUR
- c. FITUR = JP_JUAL

Test Statistics

	JP_JUAL - FITUR
Z	-7.938
Asymp. Sig. (2-tailed)	.000

a. Sign Test

FTSP NPar Tests

		N
DESAIN - HARGA	Negative Differences	56
	Positive Differences ^b	27
	Ties ^c	32
	Total	115

- a. DESAIN < HARGA
- b. DESAIN > HARGA
- c. HARGA = DESAIN

Test Statistics

	DESAIN - HARGA
Z	-3.073
Asymp. Sig. (2-tailed)	.002

a. Sign Test

NPar Tests

Sign Test

Frequencies

		\ \ \	4
FITUR - HARGA	Negative Differences		11
100	Positive Differences ^b		93
	Ties ^c		11
I I W	Total		115

- a. FITUR < HARGA
- b. FITUR > HARGA
- c. HARGA = FITUR

Test Statistics

	FITUR -
	HARGA
Z	-7.943
Asymp. Sig. (2-tailed)	.000

a. Sign Test

NPar Tests

		Ν
JP_JUAL - HARGA	Negative Differences	1
	Positive Differences ^b	114
	Ties ^c	0
	Total	115

- a. JP_JUAL < HARGA
- b. JP_JUAL > HARGA
- c. HARGA = JP_JUAL

Test Statistics

	JP_JUAL - HARGA
Z	-10.444
Asymp. Sig. (2-tailed)	.000

a. Sign Test

NPar Tests

Sign Test

Frequencies

		N
FITUR - DESAIN	Negative Differences	9
TO S	Positive Differences ^b	99
1	Ties ^c	7
	Total	115

- a. FITUR < DESAIN
- b. FITUR > DESAIN
- c. DESAIN = FITUR

Test Statistics

	FITUR -
	DESAIN
Z	-8.564
Asymp. Sig. (2-tailed)	.000

a. Sign Test

NPar Tests

		N
JP_JUAL - DESAIN	Negative Differences	0
	Positive Differences ^b	114
	Ties ^c	1
	Total	115

- a. JP_JUAL < DESAIN
- b. JP_JUAL > DESAIN
- c. DESAIN = JP_JUAL

Test Statistics

	JP_JUAL - DESAIN
Z	-10.583
Asymp. Sig. (2-tailed)	.000

a. Sign Test

NPar Tests

Sign Test

Frequencies

		Ν
JP_JUAL - FITUR	Negative Differences	3
	Positive Differences ^b	112
100	Ties ^c	0
1 1 1	Total	115

- a. JP_JUAL < FITUR
- b. JP_JUAL > FITUR
- c. FITUR = JP_JUAL

Test Statistics

		JP_JUAL -
		FITUR
9	Z	-10.071
	Asymp. Sig. (2-tailed)	.000

a. Sign Test

FPSIKOLOGI NPar Tests

Sign Test

Frequencies

		N
DESAIN - HARGA	Negative Differences	25
ļ	Positive Differences ^b	15
,	Tiesc	10
,	Total	50

- a. DESAIN < HARGA
- b. DESAIN > HARGA
- c. HARGA = DESAIN

Test Statistics

	DESAIN - HARGA
Z	-1.423
Asymp. Sig. (2-tailed)	.155

a. Sign Test

NPar Tests

Sign Test

Frequencies

		N
FITUR - HARGA	Negative Differences	6
1=	Positive Differences ^b	42
12	Tiesc	2
13	Total	50

- a. FITUR < HARGA
- b. FITUR > HARGA
- c. HARGA = FITUR

Test Statistics

	FITUR - HARGA
Z	-5.052
Asymp. Sig. (2-tailed)	.000

a. Sign Test

NPar Tests

		N
JP_JUAL - HARGA	Negative Differences	0
	Positive Differences ^b	50
	Ties ^c	0
	Total	50

- a. JP_JUAL < HARGA
- b. JP_JUAL > HARGA
- c. HARGA = JP_JUAL

Test Statistics

	JP_JUAL - HARGA
Z	-6.930
Asymp. Sig. (2-tailed)	.000

a. Sign Test

NPar Tests

Sign Test

Frequencies

		N
FITUR - DESAIN	Negative Differences	5
I CO	Positive Differences ^b	41
1.55	Tiesc	4
	Total	50

- a. FITUR < DESAIN
- b. FITUR > DESAIN
- c. DESAIN = FITUR

Test Statistics

	FITUR -
i	DESAIN
Z	-5.160
Asymp. Sig. (2-tailed)	.000

a. Sign Test

NPar Tests

		N
JP_JUAL - DESAIN	Negative Differences ^a	0
	Positive Differences ^b	50
	Tiesc	0
	Total	50

- a. JP_JUAL < DESAIN
- b. JP_JUAL > DESAIN
- c. DESAIN = JP_JUAL

Test Statistics

	JP_JUAL - DESAIN
Z	-6.930
Asymp. Sig. (2-tailed)	.000

a. Sign Test

NPar Tests

Sign Test

Frequencies

		N
JP_JUAL - FITUR	Negative Differences	0
In S	Positive Differences ^b	50
100	Ties ^c	0
	Total	50

- a. JP_JUAL < FITUR
- b. JP_JUAL > FITUR
- C. FITUR = JP_JUAL

Test Statistics

		JP_JUAL -
		FITUR
9	Z	-6.930
	Asymp. Sig. (2-tailed)	.000

a. Sign Test

USIA 15-19 NPar Tests

		N
DESAIN - HARGA	Negative Differences	37
Ĭ,	Positive Differences ^b	22
	Ties ^c	18
	Total	77

- a. DESAIN < HARGA
- b. DESAIN > HARGA
- c. HARGA = DESAIN

Test Statistics

	DESAIN - HARGA
Z	-1.823
Asymp. Sig. (2-	-tailed) .068

a. Sign Test

NPar Tests

Sign Test

Frequencies

		Z
FITUR - HARGA	Negative Differences	5
100	Positive Differences ^b	69
1.55	Ties ^c	3
3.1	Total	77

- a. FITUR < HARGA
- b. FITUR > HARGA
- c. HARGA = FITUR

Test Statistics

	FITUR - HARGA
Z	-7.324
Asymp. Sig. (2-tailed)	.000

a. Sign Test

NPar Tests

		N
JP_JUAL - HARGA	Negative Differences	1
	Positive Differences ^b	76
	Ties ^c	0
	Total	77

- a. JP_JUAL < HARGA
- b. JP_JUAL > HARGA
- c. HARGA = JP_JUAL

Test Statistics

	JP_JUAL - HARGA
Z	-8.433
Asymp. Sig. (2-tailed)	.000

a. Sign Test

NPar Tests

Sign Test

Frequencies

		N
FITUR - DESAIN	Negative Differences	3
100	Positive Differences	70
100	Ties ^c	4
	Total	77

- a. FITUR < DESAIN
- b. FITUR > DESAIN
- c. DESAIN = FITUR

Test Statistics

	FITUR -
	DESAIN
Z	-7.725
Asymp. Sig. (2-tailed)	.000

a. Sign Test

NPar Tests

		N
JP_JUAL - DESAIN	Negative Differences ^a	0
	Positive Differences ^b	77
	Ties ^c	0
	Total	77

- a. JP_JUAL < DESAIN
- b. JP_JUAL > DESAIN
- C. DESAIN = JP_JUAL

Test Statistics

	JP_JUAL - DESAIN
Z	-8.661
Asymp. Sig. (2-tailed)	.000

a. Sign Test

NPar Tests

Sign Test

Frequencies

		N
JP_JUAL - FITUR	Negative Differences	1
100 3	Positive Differences ^b	76
144	Ties ^c	0
	Total	77

- a. JP_JUAL < FITUR
- b. JP_JUAL > FITUR
- c. FITUR = JP_JUAL

Test Statistics

Land Parker	JP_JUAL - FITUR
Z	-8.433
Asymp. Sig. (2-tailed)	.000

a. Sign Test

UMUR 20-24 NPar Tests

Sign Test

Frequencies

		N
DESAIN - HARGA	Negative Differences	137
	Positive Differences ^b	83
	Ties ^c	87
	Total	307

- a. DESAIN < HARGA
- b. DESAIN > HARGA
- c. HARGA = DESAIN

Test Statistics

	DESAIN - HARGA
Z	-3.573
Asymp. Sig. (2-tailed)	.000

a. Sign Test

NPar Tests

Sign Test

Frequencies

		N
FITUR - HARGA	Negative Differences	25
17	Positive Differences ^b	254
4	Tiesc	28
	Total	307

- a. FITUR < HARGA
- b. FITUR > HARGA
- c. HARGA = FITUR

Test Statistics

	FITUR -
	HARGA
Z	-13.650
Asymp. Sig. (2-tailed)	.000

a. Sign Test

NPar Tests

Sign Test

Frequencies

		N
JP_JUAL - HARGA	Negative Differences	1
	Positive Differences	306
}	Ties ^c	0
	Total	307

- a. JP_JUAL < HARGA
- b. JP_JUAL > HARGA
- c. HARGA = JP_JUAL

Test Statistics

	JP_JUAL - HARGA
Z	-17.350
Asymp. Sig. (2-tailed)	. 00 0

a. Sign Test

NPar Tests

Sign Test

Frequencies

		N
FITUR - DESAIN	Negative Differences	19
THE N	Positive Differences ^b	261
1111	Ties ^c	27
160	Total	307

- a. FITUR < DESAIN
- b. FITUR > DESAIN
- c. DESAIN = FITUR

Test Statistics

	FITUR -
	DESAIN
Z	-14.403
Asymp. Sig. (2-tailed)	.000

a. Sign Test

NPar Tests

		N
JP_JUAL - DESAIN	Negative Differences	1
	Positive Differences ^b	306
	Ties ^c	0
	Total	307

- a. JP_JUAL < DESAIN
- b. JP_JUAL > DESAIN
- c. DESAIN = JP_JUAL

Test Statistics

	JP_JUAL - DESAIN
Z	-17.350
Asymp. Sig. (2-tailed)	.000

a. Sign Test

NPar Tests

Sign Test

Frequencies

		4	Ν
JP_JUAL - FITUR	Negative Differences		2
IN S	Positive Differences ^b		305
	Ties ^c		0
	Total		307

- a. JP_JUAL < FITUR
- b. JP_JUAL > FITUR
- C. FITUR = JP_JUAL

UMUR 25-29 NPar Tests

Sign Test

Frequencies

		N
DESAIN - HARGA	Negative Differences	7
	Positive Differences ^b	4
	Ties ^c	5
	Total	16

- a. DESAIN < HARGA
- b. DESAIN > HARGA
- c. HARGA = DESAIN

Test Statistics

	JP_JUAL - HARGA
Exact Sig. (2-tailed)	.000ª

- a. Binomial distribution used.
- b. Sign Test

NPar Tests

Sign Test

Frequencies

		N
FITUR - DESAIN	Negative Differences	0
	Positive Differences ^b	15
	Tiesc	1
	Total	16

- a. FITUR < DESAIN
- b. FITUR > DESAIN
- c. DESAIN = FITUR

Test Statistics^b

	FITUR - DESAIN
Exact Sig. (2-tailed)	.000ª

- a. Binomial distribution used.
- b. Sign Test

NPar Tests

Sign Test

Frequencies

		N
JP_JUAL - DESAIN	Negative Differences	0
14/100	Positive Differences ^b	16
	Tiesc	0
	Total	16

- a. JP_JUAL < DESAIN
- b. JP_JUAL > DESAIN
- c. DESAIN = JP_JUAL

Test Statistics^b

	JP_JUAL - DESAIN
Exact Sig. (2-tailed)	.000ª

- a. Binomial distribution used.
- b. Sign Test

NPar Tests

Frequencies

		N
JP_JUAL - FITUR	Negative Differences ^a	1
	Positive Differences ^b	15
	Ties ^c	0
10	Total	16

- a. JP_JUAL < FITUR
- b. JP_JUAL > FITUR
- c. FITUR = JP_JUAL

Sign Test

Test Statistics^b

	JP_JUAL - FITUR
Exact Sig. (2-tailed)	.001 ^a

- a. Binomial distribution used.
- b. Sign Test

LAMPIRAN 9 Tabel Distribusi Normal Standar

TA	BLE A	Sta	andarc	l nor	mal p	robab	ilities	:		
z	.00	.01	.02	.03	.0+	.05	.06	.07	.08	.09
-3 + - 3 3	0.03	.003	.0003	.0003	6003	.0003	.0003	.0003		
-32	0007	.005 007	9005 9006	6.70.4	्राष्ट्र	(1004	0.004	\$003 +0003	.0003 +COG	000.7 000.3
-31	5510	17.50	0009	0009 0006	-2006 -2008	0006	VV06	.3005	0005	0003
-30	(X)13	9613	.0013	0012	2012	.0008 0011	.0008	.0008	.0007	0007
-58	.0019	2018	.0018	.00117	dilo	.0016	0011 0015	.0011 .0015	.0010	0010
-27	(1/35	N25	0024 0033	.0013	.6023	.0022	.0021	.0021	.0014 .0020	0014 0019
-26	0047	c\'+5	.0044	.0032 0043	0031 0041	0030	.0029	.0028	.0027	0019
-25	Cc.2)	1,00	.2059	.0057	0035	0400. 4200	0039	W38	.0037	0036
-24 -23	0082 0107	20.50	0078	.0075	2073	0071	0052 .0069	00'51 0068	.0049	61-00
-22	0139	0104 0136	.0162	66170	1.00	.0094	9091	.0089	0066 0087	0064
-21	0179	3174	.0132 0170	9100 9153	3125	0122	0119	.0116	.0113	9110 3093
- 20	9228	9555	0217	0515	727. 7163	0158	0154	.0150	ò+10.	01+3
-13	0287	0281	0274	0268	0202	0202 .0256	0197	0193	6810.	0193
-1 S -1 7	0359	0351	0344	0330	0329	0322	0250 0314	.0244	.0239	0233
-16	6,446	0436 0537	.0427	0418	د میران	.0401	0392	.0307 0384	0301 .0375	0294
-13	14.03	0055	,0526, £400.	0316	(150)5	.0445	.0483	0.101	.0465	0367
-14	0508	(1743	0778	()5,01). +07.0	Vo!8	0006	.0594	.0582	.0571	0455 0559
-13	3508	. 451	0434	0.13	0149 0401	0735 0385	0.721	.0703	0694	0691
-12 -11	1337	1131	1112	1003	1075	1056	086 9 1018	.0833	ઇશ્વ ક્ય	0857
-10	1387	1335 1562	1314	1292	1271	1251	1230	.1020 1240	.1003 .1190	0965
-09	1841	1814	1539 1788	1515	1492	1469	1446	.1+23	.1401	1170 1379
-0 S	2119	3050	2061	1762 2033	.1736 2005	1711	1685	.1560	.1635	1611
7 0 - 3 0 -	2+20	2359	.2358	.2327	2796	.1977 .2266	.1949 .2236	.1922	.1394	1867
-05	27+3 .3085	1709 3050	.2676	.2643	2611	.2578	25+6	.2206 .2514	.2177 .2483	2148
~ U +	34+0	3409	3015 3372	2981 333n	2945	2912	.2877	.23+3	.2810	2451 2776
-0.3	3521	37\$3	.37+5	.3707	337u 3669	3264	.3228	.3102	.3156	3121
-01 -02	.+207	÷168	.4129	,+v>0	+052	.363 <u>2</u> .4013	.35 94 .397 4	.3557	.3520	J-83
-0.0	- 4002 5000	4562 4960	.4522	4483	4-+3	.4404	.4364	.3936 . 1 325	.3897	3859
0.0	.5000	-5040 -5040	.4920 .5080	4880	48+0	4801	.4761	.4721	. 1 286 . 1 681	4247 4341
0.1	.5398	5438	.5478	.5120 .5517	5160 5557	.5199	.5239	.5279	.5519	.5359
03	.5793	5832	.5871	.5910	5948	.559ć .5987	.5636	.5675	.5714	.5753
0.4	6179 6554	.6217	.6255	.6293	.d331	6.68	.6026 .6406	.6064 .6 1 43	.6103	6141
0.5	6915	5950 5950	.6628 .6985	6601	0070	6736	.6772	.6808	.6430 .6844	6517 6379
05	7257	7291	.7324	.7019 7357	7054	7088	7123	.7157	.7190	722-
0.7	7580	1167.	7042	7073	7339 7704	.7 4 22 . 7734	.7454	.7436	7517	75-19
08	7881	7910	.7939	7967	.7995	.8023	.776+ .8051	.779+	.7823	7852
1.0	8159 .8413	.8186 8438	8212	8238	8304	8289	.9315	.8078 .8340	.8106 .8365	8.33
11	3643	34.2 3 3665	- 16+8 - 8686	.8485	\$508	8531	8554	.8577	.8599	3389 3621
1.2	3849	5369	.8888	.8708 8907	8729 8925	87+9	8770	8790	.8310	.8830
13	9032	<i>み</i> り4み	9066	80.83	77,74	89+ 4 9115	.8962	8980	.895.7	9015
1+	9142 .9332	9207	9222	.9236	9251	9265	.9131 .9279	.9147 9292	.9162	.9177
10	9432	9345 ⇒363	.9357 .947 4	.9370	9382	.9394	.9+06	.9+18	.9506 .9429	7.19
1.7	9554	4504	9573	9484 9582	9495	9505	.9515	9525	.9535	9441 9545
15	9641	7043	9556	9664	9591 9071	9599	9608	9616	.9625	9653
19	9713	9719	.9726	9732	3733	.9678 97 11	.9686 .9750	9693	.9699	.9706
21	.9772 9321	9778 9816	.9783	9783	9793	9798	.9730	.9756 .9108	.9761 .9812	9767
2.2	9861	.9864	.9830 .9868	.9834 9871	9838	.9842	.9546	.9850	.9812 .9854	9817 9857
2.3	9893	9896		.9901	.9873 .9904	9878	9881	.9884	.9687	.7890
2 + 2 5	9918 2018	4920	.9922	9925	3907	.9906 .9929	.9909 .9931	2911	9913	9916
20	4438 9953	~ }4 0 ∀935	9941 0034	9943	4443	.9946	7948	.932 9 1 9	. 993 + . 99 51	.7936
2.7	9963	CCEE.	9956 9967	9457 9468	9939	9900	.9961	.9962	.9963	9952 . 9 964
28	4474	W75	3907	2022	55°7	9970	.9971	.9372	.9973	.9974
3.0	9981	-482	9983	9983	20 54 20 74	9976 9984	.9979	.9\$79	9980	1866
3.0	9937 9990	⊋\$87 5560	9987	.9958	9733	.9894	.9985 .9389	.9985 .9989	.9986	9986
32	9993	३५५१ १५५५	.9991 .1666	9991	999 <u>1</u>	3305	.9992	.9989	.9990 .9993	.5'990
33	4445	<i>3442</i>	.9994 .9995	.9994 9996	10354	9994	.9994	.9995	.9995	.999 3 .9 9 95
3 +	7007	w97	.9997	9990 9997	9296 9997	.9996	.9996	.9996	.9996	.9997
						.9997	9997	9997	.9997	9998

Lampiran 10 Wilcoxon-Mann-Whitney

TABLE J (continued)

5									į	T H E									
.0143 26 .0079 30 .0048 34 .0030 .0286 25 .0159 29 .0095 33 .0061 .0571 24 .0317 28 .0190 32 .0121 .1000 23 .0556 27 .0333 31 .0212 .1714 22 .0952 26 .0571 30 .0364 .2429 21 .1429 25 .0857 29 .0545 .3429 20 .2663 24 .1286 28 .0818 .4429 19 .2778 23 .1762 27 .1152 .5571 18 .3651 22 .2381 26 .1576 .5571 16 .3476 20 .3810 24 .2634 .8736 15 .6349 19 .4571 23 .3242 .9000 14 .7222 18 .5429 22 .3939 .9429 13 .7937 17 .6190 21 .4636 .9714 12 .8571 16 .6952 20 .5364 .9857 11 .9648 15 .7619 19 .6061 1.0000 10 .9444 14 .8238 18 .6738 .9867 11 .9648 15 .7914 17 .7344 .9891 12 .9683 13 .9714 17 .7344 .9891 13 .9657 11 .9638 .9905 12 .9455 .9905 11 .9638 .9905 12 .9455	C.	n = 4	c.	11 = 5	ζ,	9 = 11	c.	u	c _u	8 = 2	c.	6="	j.	n = 10	٥	=======================================	C.	n = 12	ن ا
.0284 25 .0159 29 .0095 33 .0061 .0571 24 .0317 28 .0190 32 .0121 .1000 23 .0554 27 .0333 31 .0212 .1714 22 .0952 26 .0571 30 .0344 .2429 21 .1429 25 .0857 29 .0545 .3429 20 .2643 24 .1286 28 .0818 .4429 19 .2778 23 .1762 27 .1152 .5571 18 .3451 22 .2381 24 .2634 .5571 16 .5476 20 .3810 24 .2634 .8284 15 .6349 19 .4571 23 .3242 .9000 14 .7222 18 .5429 22 .3939 .9429 13 .7937 17 .6190 21 .4634 .9857 11 .9648 15 .7619 19 .6061 1.0000 10 .9444 14 .8238 18 .6738 .9857 11 .9648 15 .7619 16 .7939 .9857 11 .9648 15 .7619 16 .7939 .9857 11 .9648 15 .3614 17 .7344 .9857 11 .9648 15 .3714 17 .7344 .9857 11 .9648 15 .3714 17 .7344 .9857 11 .9648 15 .3714 17 .7344 .9857 11 .9648 15 .3714 17 .7344 .9857 11 .9648 15 .3714 17 .7344 .9857 11 .9657 14 .8848 .9857 11 .9657 14 .8848 .9858 15 .3787 17 .7344 .9858 15 .3787 .3788	10	.0143	28	.0079	33	.0048	34		88	00	42	00 14	44	00 00	100	1000	1		- [
.0571 24 .0317 28 .0190 32 .0121 .1000 23 .0556 27 .0333 31 .0212 .1714 22 .0952 26 .0571 30 .0364 .2429 21 .1429 25 .0857 29 .0545 .3429 20 .2663 24 .1286 28 .0818 .4429 19 .2778 23 .1762 27 .1152 .5571 18 .3651 22 .2381 26 .1576 .6571 17 .4524 21 .3048 25 .2061 .7571 16 .5476 20 .3810 24 .2634 .9000 14 .7222 18 .5429 22 .3939 .9429 13 .7937 17 .6190 21 .4634 .9657 11 .9648 15 .7619 19 .6061 1.0000 10 .9444 14 .8238 18 .6758 .9657 11 .9648 15 .7619 16 .7939 .9857 11 .9648 15 .7619 16 .7939 .9857 11 .9648 15 .7619 16 .7939 .9857 11 .9648 15 .7619 16 .7939 .9857 11 .9648 15 .7619 16 .7939 .9857 11 .9648 15 .7619 16 .7939	=	.0286	X	.0159	8	.00%	33		37	0040		0000	7	0100	3 3	/nan•	רו ה	.0005	
. 1000 23 .0554 27 .0333 31 .0212 .1714 22 .0952 24 .0571 30 .0344 .2429 21 .1429 25 .0857 29 .0545 .3429 20 .2643 24 .1286 28 .0818 .4429 19 .2778 23 .1762 27 .1152 .5571 18 .3451 22 .2381 24 .2634 .5571 16 .5474 21 .3048 25 .2061 .7571 16 .5474 21 .3048 25 .2061 .9000 14 .7222 18 .5429 22 .3939 .9429 13 .7937 17 .6170 21 .4634 .9657 11 .9643 15 .7619 19 .6061 1.0000 10 .9444 14 .8238 18 .6758 .9683 13 .9729 15 .7619 16 .7939 .9681 12 .9143 16 .7939 .9681 12 .9143 16 .7939 .9681 13 .9655 12 .9455 .9555 11 .7635	12	.0571	24	.0317	28	0190	3 6		3 6	יייייייייייייייייייייייייייייייייייייי	;	0700	₽;	600.	*	.0015	K	.001	
. 1714 22 . 0952 26 . 0571 30 . 0344 . 2429 21 . 1429 25 . 0857 29 . 0545 . 3429 20 . 2643 24 . 1286 28 . 0818 . 4429 19 . 2778 23 . 1762 27 . 1152 . 5571 18 . 3451 22 . 2381 24 . 1574 . 4571 17 . 4524 21 . 3048 25 . 2041 . 7571 16 . 5476 20 . 3810 24 . 2434 . 9700 14 . 7222 18 . 5429 22 . 3939 . 9429 13 . 7937 17 . 4190 21 . 4434 . 9714 12 . 8571 16 . 4852 20 . 5344 . 9657 11 . 9043 15 . 7419 16 . 7939 . 9429 13 . 9444 14 . 8238 18 . 6758 . 9781 12 . 9781 12 . 9143 16 . 7939 . 9781 12 . 9781 12 . 9143 16 . 7939 . 9781 12 . 9781 13 . 9787 . 9755 11 . 9787 13 . 9782 . 9755 11 . 9783 . 9755 11 . 9787 . 9778 13 . 7787 . 9778 13 . 7787 . 9778 13 . 7787 . 9778 13 . 7787 . 9778 13 . 7787 . 9778 13 . 7787 . 9778 13 . 7787 . 9778 13 . 7787 . 9778 13 . 7787 . 9778 13 . 7787 . 9778 13 . 7787 . 9778 13 . 7787 . 9778 14 . 8848 . 9778 17 . 7344 . 9778 17 . 9778 . 9778 17 . 9778 . 9778 17 . 9778 . 9778 17 . 9778 . 9778 17 . 9778 . 9778 17 .	Ξ	1000	23	1554	3	0333	2 5		8 8	Tonn.	•	9CDA-	44	.0040	8	.0029	25	.0022	
. 2429 21 . 1429 25 . 0857 29 . 0545 . 3429 20 . 2643 24 . 1286 28 . 0818 . 4429 19 . 2778 23 . 1762 27 . 1152 . 5571 18 . 3451 22 . 2381 24 . 1574 . 4571 17 . 4524 21 . 3048 25 . 2041 . 7571 16 . 5476 20 . 3810 24 . 2434 . 8236 15 . 6349 19 . 4571 23 . 3242 . 9000 14 . 7222 18 . 5429 22 . 3939 . 9429 13 . 7937 17 . 6190 21 . 4636 . 9714 12 . 8571 16 . 6952 20 . 5364 . 9657 11 . 9048 15 . 7619 19 . 6061 1.0000 10 . 9444 14 . 8238 18 . 6758 . 9657 11 . 9048 15 . 7619 17 . 7364 . 9657 11 . 9048 15 . 7619 17 . 7364 . 9657 11 . 9048 15 . 7619 17 . 7364 . 9657 11 . 9048 13 . 9718 16 . 7939 . 9718 12 . 9721 11 . 9429 15 . 9424 1.0000 10 . 9445 11 . 9429 15 . 9455 . 9752 11 . 7635 . 9752 11 . 7635	3 2	717	3 2	0000	3 6	.0333	, c		S :	.0141		.0098	43	0200"	47	.0051	21	.903	
	Ľ Á		3 2	70,00	१ १	1/60.	2		ces Ces	.0242		.0168	42	.0120	46	.0088	B	9900	
. 4429 19 . 2778 23 . 1762 27 . 1152	2 :	7757	7 8	.140	Q;	780.	&	2	83	.0364	_	.0252	41	.0180	45	.0132	6	00%	
. 5571 18 . 3651 22 . 2381 26 . 11576	0 C	.3427	२ :	. 2003	5 7	1286	28		32	.0545	_	.0378	各	.0270	4	.0198	\$.0148	
	<u> </u>	747	<u> </u>	8/17	2 8	.1762	27	•	~	.0768		.0531	ક્ક	.0380	₩	.0278	47	.0209	
	<u> </u>		<u>, </u>	.363	3 2	.2381	55		ଛ	1071		.0741	æ	0529	42	.0388	\$.0291	
.737. 16 .3476 20 .3810 24 .2634 .8736 15 .6349 19 .4571 23 .3242 .9000 14 .7222 18 .5429 22 .3939 .9429 13 .7937 17 .6190 21 .4634 .9657 11 .9048 15 .7619 19 .6061 1.0000 10 .9444 14 .8238 18 .6758 .9657 11 .9043 15 .3714 17 .7364 .9010 10 .9464 14 .8238 18 .6758 .9657 11 .9049 13 .5734 .9921 11 .9429 15 .8424 1.0000 10 .9657 14 .8848 .9915 12 .9455 .9952 11 .7632	. 5		= :	67Ch-	7 8	3048	C :		&	.1414		.1993	33	.0709	41	.0520	45	0330	
.8235 13 .0347 17 .4571 23 .3242 .9000 14 .7222 18 .5429 22 .3939 .9429 13 .7937 17 .6190 21 .4634 .9714 12 .8571 16 .6952 20 .5364 .9657 11 .9043 15 .7619 19 .6061 1.0000 10 .9444 14 .8238 18 .6758 .9683 13 .9714 17 .7364 .9811 12 .9143 16 .7937 .9921 11 .9429 15 .8424 1.0000 10 .9667 14 .8848 .9910 13 .5182 .9952 11 .7632	3 5	767.	2 :	24/6	R :	3810	24		æ	888		1301	38	.0939	4	.0689	4	7150	
.7000 14 .722 18 .5429 22 .3939 .9429 13 .7937 17 .6190 21 .4634 .9714 12 .8571 16 .6952 20 .5364 .9657 11 .9648 15 .7619 19 .6061 1.0000 10 .9444 14 .8238 18 .6758 .9683 13 .9714 17 .7364 .9641 12 .9143 16 .7939 .9721 11 .9429 15 .8424 1.0000 10 .9667 14 .8848 .9810 13 .5182 .9952 11 .7633	3 5	872e.	₽;	.6347	<u> </u>	.4571	23		23	.2303		. 1650	Ŕ	.1139	ક્ષ	7880.	43	.0645	
.7427 13 .7737 17 .6190 21 .4634 .9714 12 .8571 16 .6852 20 .5364 .9657 11 .9648 15 .7619 19 .6061 1.0000 10 .9444 14 .8238 18 .6758 .9683 13 .9714 17 .7364 .9641 12 .9143 16 .7937 .9721 11 .9429 15 .8424 1.0000 10 .9667 14 .8848 .9910 13 .9782 .9952 11 .7632	3 6	. 2000	<u></u> (777/	22 !	87.	77		28	. 2848		88.	34	.1518	88	.1128	42	.0857	
77.14 12 .8371 10 .6952 20 .5364 -9657 11 .9048 15 .7519 19 .6051 1.0000 10 .9444 14 .8238 18 .6758 -9683 13 .8714 17 .7364 -9741 12 .9143 16 .7939 -9721 11 .9429 15 .8424 1.0000 10 .9667 14 .8848 -9810 13 .9182 -9752 11 .7632 -9753	3 3	7367.	: :	. /33/	≥ ;	0619.	7		X	.3414		.2517	8	. 18.48	37	.1399	7	1060	
1.0000 10 .9444 14 .8238 18 .6758 1.0000 10 .9444 14 .8238 18 .6758 .9483 13 .8714 17 .7344 .9641 12 .9143 16 .7939 .9921 11 .9429 15 .8424 1.0000 10 .9467 14 .8848 .9810 13 .9182 .9952 11 .9635 .9952 11 .9635	5 X	F1 //:	¥ :	128.	2 :	7675	2		24	404		.3021	32	.2269	38	1714	\$	1308	
3.0000 10 3.944 14 3.8238 18 3.6758 3.8714 17 3.364 3.9714 17 3.7364 3.971 11 3.929 15 3.8424 1.0000 10 3.9667 14 8848 3.910 13 5.182 3.9952 11 3.633 1.0000 10 3.738	3 2	767.	= 5	7043	Ω;	./619	<u>~</u> :	.606	23	.4867	22	.3552	3	.2697	ध्र	.2059	8	.1582	÷ €
. 7465 15 . 3714 17 . 7364 . 9841 12 . 9143 16 . 7939 . 9921 11 . 9429 15 . 8424 1.0000 10 . 9667 14 . 8848 . 9810 13 . 9182 . 9905 12 . 9455 . 9952 11 . 7632 1.0000 10 . 9788	3 E	0000-1	2	. 7444	4 (9£78°	20 !	95/9.	22	.5333		.4128	R	.3177	æ	.2447	æ	. 1896	
. 7641 12 . 7143 16 . 7937 . 9921 11 . 9429 15 . 8424 1.0000 10 . 9667 14 . 8848 . 9810 13 . 9182 . 9905 12 . 9455 . 9952 11 . 7633 1.0000 10 . 9788	; &			.7463	2 5	.87.14	\ :	7.364	21	.5960		6693.	8;	.3566	33	.2857	37	.231	
1.0000 10 .9429 15 .8424 1.0000 10 .9467 14 .8848 .9810 13 .5182 .9905 12 .9455 1.0000 10 .9788	3 8			.764	7 :	.7143	9	./934	R	.6386		.5301	82	.4196	35	.3304	સ	.2604	
1.0000 10 .7667 14 .8848 .9810 13 .9182 .9905 12 .9455 .9952 11 .7633	<u>ک</u> ک			. 27721	= :	. 9429	2 :	.8424	<u>∽</u>	.7152		.5874	23	.4725	31	.3765	ĸ	.2995	
.9810 13 .9182 .9905 12 .9455 .9952 11 .9633	3 5			1-0000	2	7996	7 :	8848	82	7697.		. 6448	55	.5275	ଞ୍ଚ	.4256	34	3418	
.9905 12 .9455 .9952 11 .9634 1.0000 10 .9788	7 6					30	, (1)	7317.	2	.8162		6793.	X	588	\$	14747	33	.3852	
1,060û 10 9732 1,060û 10 9789	ر در					50%	77	. 7455	91	88.		.7480	24	, 6334	æ	.5253	K	RUE Y	
6826 01 0000 T	2. 2.					. 8952	-	.7636	15	88.38	अ	3分次	g	£189°	22	.5744	3;	3.75	XX
3	T					1.000U	5	.9788	7	.833		.8350	22	.7303	25	.6234	(F	573	-

TABLE J (continued)

					E	% = ₩						
C.	n = 5	رد	n = 6	Ca	n = 7	c_{tt}	3¢ ⊞	c _e	6 = u	C _U	n = 10	Cu
15	04		62	45	001	50	00	52	00	60	2	65
16	6200.	39	.0043	44	.0025	46	.6018	54	.0010	29	2000.	64
17	2		08	43	005	48	03	53.	02	58		63
18	27		15	42	800	47	05	52	93	57)2	62
19	47		26	41	0.15	46	60	51	90	56	04	61
20	25		₩	40	024	45	7	20	60	52)6	90
21	Anna		\sim	38	036	44	22	48	14	54	90	59
22	₩-		38	38	053	43	32	48	21	53	14	58
23			23	37	074	42	46	42	30	52	20	22
24	m		54	38	101	41	63	46	4	5	22	58
25	11.7		14	32	33	40	85	45	55	20	37	52
26	\sim		88	34	171	36	-	44	73	48	49	54
27	.5000		31	33	15	38	42	43	94	48	64	53
28	\mathbf{D}		98	32	265	37	77	42	19	47	082	25
25	v		65	31	319	36	17	41	48	46	80	51
30	V		34	30	77	35	5.1	40	8	45	27	50
31	()		03	29	38	34	10	39	3	44	54	48
32	ш		89	28	00	33	62	38	59	43	85	48
33	Li.		31	27	6.1	35	16	37	303	.45	1 9	<u>C</u>
34	v.		85	26	22	31	7	36	49	41	58	4.5
35	- 1		35	25	80	30	37	55	g,	40	0.	45
36	EV.		3	50	34	53	8	34	449	36	33	44
37	⋖-		***	23	ů.	28	3	33	00	38	83	43
38	į V		37	22	28	22	8	3.5		32	29	42
36	0966*		S	21	99	26	38	31	0	38	78	77
40	1.0000		74	20	66	25	82	30	50	32	23	40

TABLE J (continued)

					m = 6					
CL	n = 6	¢υ	n = 7	۲	n = 8	c_{t}	n = 9	c _U	n = 10	cu
21	.0011	57	0006	63	.0003	69	.0002	75	.0001	81
22	.0022	56	.0012	62	.0007	68	.0004	74	.0002	80
23	.0043	55	.0023	61	.0013	67	.0008	73	.0005	79
24	.0076	54	.0041	60	.0023	රර	.0014	72	.0009	78
25	.0130	53	.0070	59	.0040	ó5	.0024	71	.0015	77
26	0206	52	.0111	58	.0063	64	.0038	70	.0024	76
27	.0325	51	.0175	57	.0100	63	.0060	69	0037	75
28	.0465	50	.0256	56	.0147	62	.0088	68	.0055	74
29	.0660	49	.0367	55	.0213	61	.0128	67	.0080	73
30	.0898	48	.0507	54	.0296	60	.0180	රර	.0112	72
31	.1201	47	.û688	53	.0406	59	.0248	65	.015გ	71
32	.1548	43	.0903	-52	.0539	58	.0332	64	.0210	70
33	.1970	45	.1171	51	.0709	57	.0440	હ 3	.0280	69
34	.2424	44	.1474	50	.0906	5 6	.0567	32	.0343	68
35	.2944	43	.1830	49	-1142	55	.0723	61	.0467	67
36	.3496	42	.2226	48	.1412	54	.0905	5 0	.0589	66
37	.4091	41	.2669	47	.1725	5 3	.1112	59	.0736	გ5
38	.468 6	40	.3141	46	.2068	52	. 1361	58	.0903	64
39	.5314	39	.3654	45	.2454	51	.1638	57	.1099	63
40	.5909	38	.4178	44	.2864	50	. 1942 .	56	, 1317	62
41	. 6504	37	.4726	43	.3316	49	.2280	55	. 1563	61
42	. 7056	36	.5274	42	.3773	48	.2643	54	.1938	60
43	.7576	35	.5822	41	.4259	47	.3035	5 3	.2139	59
44	.8030	34	.6346	40	.4749	46	.3445	52	.2461	58
45	.8452	33	.6859	39	.5251	45	.3878	51	.2311	57
46	.879 9	32	.7331	38	.5741	44	.4320	50	.3177	56
47	.9102	31	.7774	37	.6227	43	.4773	49	.3564	55
48	.9340	30	.8170	_36	.6690	42	.5227	43	.3932	54
49	.9535	29	.8526	35	.7136	41	.5880	47	.4374	53
50	.9675	28	.8829	34	.7546	40	.6122	43	.4789	52
51	.9794	27	.9097	3 3	.7932	39	.6555	45	.5211	51

TABLE J (continued)

				m = 7				······································
C _L	n = 7	c _t .	n = 8	ζυ	n = 9	c _t .	n = 10	۲.
28	.0003		.0002	84	.0001	91	.0001	58
29	.0006		.0003	83	.0002	90	.0001	97
30	.0012		.000ಕ	82	.0003	89	.0002	96
31	.0020	.74	.0011	81	.000ನ	88	.0004	95
32	.0035		.0019	80	.0010	87	.0006	94
33	.0055	72	.0030	79	.0017	86	.0010	93
34	.0087	71	.0047	78	.0024	85	.0015	92
35	.0131	70	.0070	77	.0039	84	.6023	91
36	.0189	69	.0103	76	.0058	83	.0034	90
37	.0265	68	.0145	75	.0082	82	.0048	89
38	.0364	67	.0200	74	.0115	81	.0068	88
39	.0487	66	.0270	73	.015ć	80	.0093	87
40	.0641	65	.0361	72	.0209	79	.0125	86
41	.0825	64	.0469	71	.0274	78	.0165	ε5.
42	.1043	63	.0603	70	.035ó	7 7	.0215	84
43	.1297	62	.0760	69	.0454	76	.0277	83
44	.1588	ó1	.0946	68.	.0571	75	.0351	€2
45	.1914	60	.1159	67	.0708	74	.0439	81
46	.2279	59	.1405	66	.0869	73	.0544	80
17	.2675	58	.1678	65	.1052	72	.0665	79
1 8	.3100	57	. 1984	64	. 1261	71	.0806	78
19	.3552	56	.2317	63	. 1496	70	.0966	77
50	.4024	55	.2679	62	1755	69	.1148	76
51	.45 08	54	.3063	61	.2039	68	.1349	75
52	.5000	53	.3472	60	.2349	67	.1574	779
3	.5492	52	.3854	59	2680	66	.1819	73
4	.5 976	51	.4333	58	.3032	65	.2087	73
5	.6448	50	.4775	57	.3403	64	.2374	
ó	.6900	49	.5225	56	.3788	63	.2681	71
7	.7325	48	.5667	5 5	.4185	62	.3004	70 70
8	.7721	47	.6106	54	.4591	61		39 40
9	.8086	46	.6528	53	.5000	60	.3345	88
0	.8412	45	.6937	52	.5409		.3698	ó7
1	.8703	44	.7321	51		5 9	.4063	66
2	.8957	43	.7683	50	.5815 .6212	58 57	.4434	5 5
3	.9175	42	.8016	49		57 57	.4811	64
	• • • • •	14	.0010	77	.6597	56	.5189	63

TABLE J (continued)

			m = 8			
CL	n = 8	cu	n = 9	c _v	n = 10	ı, f.
36	.0001	100	.0000	108	.0000	116
37	.0002	99	.0001	107	.0000	115
38	.0003	98	.0002	106	.0001	114
39	.0005	97	.0003	105	.0002	113
40	.0009	96	.0005	104	.0003	112
41	.0015	95	.0008	103	.0004	111
42	.0023	94	.0012	102	.0007	110
43	.0035	93	.0019	101	.0010	102
44	.0052	92	.0028	100	.0015	108
45	.0074	91	.0039	99	.0022	107
46 47	.0103	90	.0056	98	.0031	106
49	.0141	89	.0076	27	.0043	105
49	.0249	98	.0103	96	.0058	104
50 "	.0325	87 04	.0137	95	.0078	103
51	.0323	ઇઠ 8 5	.0180	94	.0103	102
52	.0524	84	.0232	93	.0133	101
53	.0324	83	.0296	92	.0171	100
54	.0803	82	.0372	91	.0217	99
55	.0803		.0464	90	.0273	98
56	.1172	81	.0570	89	.0338	97
57	.1393	79	.0694	88	.0416	96
58	.1641	78	.0834 .0998	37	.0506	95
59	.1911	77	.1179	86	.0610	94
60	.2209	76	.1383	85 84	.0729	93
61	.2527	75	.1606	83	.0864	92 91
62	.2869	74	.1852	82	.1185	90
63	.3227	73	.2117		.1371	89
64	.3605	72	2404	80	.1577	88
6 5	3992	71	.2707	79	.1800	87
66	.4392	70	.3029	78	.2041	86
67	.4796	69	.3365	77	.2299	85
68	.5204	68	.3715	76	.2574	84
69	.5608	67	.4074	75	.2863	83
70	.6008	66	.4442	74	.3167	82
71	.6395	65	.4813	73	.3482	81
72	.6773	64	.5187	72	.3809	80
73	.7131	63	.5558	71	.4143	79
74	.7473	62	.5926	70	.4484	78
75	.7791	61	.6285	69	.4827	77
76	.8089	60	.6635	68	.5173	76

TABLE J (continued)

TABLE J	(continue	3)						
				י אה	E 9			
CL	n = 9	CU	n = 10	c_{i}	CL	n = 9 (cont.)		• .
45 46 47 48 49 50 51 52 53	.0000 .0000 .0001 .0001 .0002 .0004 .0006 .0009	126 125 124 123 122 121 120 119 118	.0000 .0000 .0000 .0001 .0001 .0002 .0003 .0005	135 134 133 132 131 130 129 128 127	68 69 70 71 72 73 74 75	.0680 103 .0807 102 .0951 101 .1112 100 .1290 99 .1487 98 .1701 97 .1933 96 .2131 95	, 1394 , 1474 , 1564 , 1669 , 1669 , 1669	
54 55 56 57	.0020 .0028 .0039 .0053	117 116 115 114	.0011 .0015 .0021	126 125 124 123	77 78 79 80	.2447 94 .2729 93 .3024 92 .3332 91	.0577	
58 59 60	.0071	113 112 111	.0038	121 120	81 82 83	.3552 90 .3981 89 .4317 88 .4657 87	.2488 .2745 .36.19	\$\frac{1}{2}
61 62 63	.0157 .0200 .0252		.0086	1!8	84 85 86	.5000 86 .5343 85	.35 76 .35 76 .370 1	₽
64 65 66 67	.0313 .0385 .0470 .0567		.0175 .0217 .0267 .0326	115	87 88 89 90	.5683 84 .6017 83 .6348 82 .6668 81	.4524	\$ 2 \$: \$:

TABLE J (continued)

<u></u>		,	n = 10	
C _L	n = 10	c _t .	c_L	$n = 10$ $c_{\rm U}$ (cont.)
55	.0000	155	81	.0376 129
5ა	.0000	154	82	.0446 128
57	.0000	153	83	.0526 127
58	.0000	152	84	.0615 126
59	.0001	151	85	.0716 125
ό θ	.0001	150	83	.0827 124
61	.0002	149	87	.0952 123
62	.0002	148	88	.1088 122
63	.0004	147	89	.1237 121
64 ·	.0005	146	90	.1399 120
6 5	.0008	145	91	.1575 119
దర	.0010	144	92	.1763 118
67	.0014	143	93	.1965 117
68	.0019	142	94	.2179 116
69	.0026	141	95	.2406 115
70	.0034	140	96	.2644 114
71	.0045	139	97	.2894 113
72	.0057	138	98	.3153 112
73	.0073	137	99	.3421 111
74	.0093	136	100	.3697 110
75	.0116	135	101	.3980 109
7ó	.0144	134	102	.4267 198
77	.0177	133	103	.4559 107
78	.0216	132	104	.4853 106
79	.0262	131	105	.5147 105
80	.0315	130	11 000	2011 / PSY

TABLE K Critical values of \hat{U} for the robust rank order test'

			· · · · · · · · · · · · · · · · · · ·			п					
1	3	4	5	6	7	8	9	10	1!		
.10	2.347	1.732	1.632	1.897	1.644	1.500	1.67				
.05	x: *	3.273	2.324	2.912	2.605	2.777					
025		∞ •	4.195	5.116	6.037	4.082					
01			x •	χ.•	x*	6.957	3.566 7.876				
		1.507					7.870	8.795	583	5.00)()
		1.586 2.502	1.500	1.434	1.428	1.371	1.434	1.466	1.44	8 1.45	ξ
		4.483	2.160	2.247	2.104	2.162	2.057	2.000	2.66		
		4.405 ∞*	3.265	3.021	3.295	2.868	2.683	2951	2.776		
			χ•	0.899	4.786	4.252	4.423	4.236	4 01 3		
			1.447	1.362	1.308	1.378	1.361	1.361	1.3.0		
			2.063	1.936	1.954	1.919	1.893	1.900	1.3-10		
			2.859	2 622	2.465	2.556	2.536	2.496	1.89		
			7.187	3.913	4.246	3.730	3.388	3.443	2.497 3.435		
						- 44	P\\\			- 5,444	·
			I/n	1.335 1.860	1.326	1.327	1.238	1.339	1,320	1.330	ı
			147	2.502	1.816	1.796	1.845	. 1.829	1.833	1.835	
			100	3.712	2.500 3.519	2.443	2.349	2.339	2.3.37	2.349	(
		1	125	5.715	3.319	3.230	3.224	3:164	3.161	3.151	
					1.333	1.310	1.320	1313	1_302	1_318	
			1.75		1.804	1.807	1.790	1.776	1 769	1.787	
					2.331	2.263	2.287	2.248	2.2.40	2.239	7
			120		3.195	J.088	2.967	3.002	2.979	2.929	,
			ш.	- 1	_	1.295	1.283	1.284	1.200		
			111			1.766	1.765	1.756	1.290 1.746	1.293	
			ĮW.			2.251	2.236	2.209	2.205	1.759	
						2.954	2925	2.880	2.856	2.198 2.845	8
			7				1.294	1.304	1.288	1.299	
			14				1.741	1.742	1.744	1,737	
			5				2.206	2.181		2.172	9
							2.857	2.802	2.798	2 770	
Tabl	led values	in successi	ve rows are	for x = .	1005, .02	5.		1.295	1.284	1.284	
		values of		الحسب	14154	100			1.726	1.720	
same	on is the	smaller :	sample siz	e and n i	s the larg	c		an entre l'a	2152	2.144	10
- 241111b	NC 3125. Y	alue in the I closest to	table is r	he one tu	11 - 2	11			2.733	2.718	.)
• The	highest v	alue of U	is need :=	conar val	ues.		-				
or	L'is undel	ined.	is used, in	which V	or V, is ().			1.289	1.290	
						نـــ			1.716	1.708	
									2.1 38 2.705	2.127 2.683	11
											-
										1.283	
										1.708	
										2.117	12
										2.661	

¹ Adapted from Fligner, M. A. & Policello, G. E., II (1981). Robust tank procedures for the Behrens-Fisher problem. Journal of the American Statistical Association, 76, 162-168. With the permission of authors and publisher:

ANGKA KRITIK NILAL 1

Derajat Cebebasan (df)	5%	1%	Derajat Kebebasan (df)	5%	1%
1	.997	1.000	24	338	.495
2	,950	.990	2.5	.381	485
3	.878	.959	26	.374	478
4	.811	.917	27	.367.	.463
5	.754	.874	2.8	.361	.463
6	.707	.834	29	355	1456
7	.666	.798	30	.349	.449
8	.632	.765	35	.325	.418
9	.602	.735	40	.304	.393
10	.576	.708	45	288	372
1.1	.553	.684	50	273	.354
12	.532	.661	60	.250	.325
13	.497	.623	70	.232	.302
14	.497	.623	80	.217	.283
15	.482	.606	90	.205	.267
16	.468	.590	100	.195	.254
1 7	.456	.575	125	.174	.228
18	.444	.561	150	.159	.208
19	.433	.549	200	.138	. 581
20	.423	.537	300	.113	148
2 1	.413	.526	4.00	.098	.128
22	.404	.515	500	.088	.115
23	.396	.505	1000	.062	.081

SUMBER: Fisher dan Yates, "Statistical tables for biological agricultural and medical research", dikutip dari R.P. Kolstoe, Introduction to Statistic for the Behavioral Sciences, Homewood, Illinois, Dorsey Press, 1973.

Test Statistics^b

	DESAIN - HARGA
Exact Sig. (2-tailed)	.549 ^a

- a. Binomial distribution used.
- b. Sign Test

NPar Tests

Sign Test

Frequencies

		N
FITUR - HARGA	Negative Differences	1
	Positive Differences ^b	13
1	Tiesc	2
/ 1	Total	16

- a. FITUR < HARGA
- b. FITUR > HARGA
- c. HARGA = FITUR

Test Statistics^b

	FITUR -
	HARGA
Exact Sig. (2-tailed)	.002 ^a

- a. Binomial distribution used.
- b. Sign Test

NPar Tests

Sign Test

Frequencies

)		Ν	
JP_JUAL - HARGA	Negative Differences		0
10/2001	Positive Differences ^b	111	16
	Ties ^c	19.71	0
-	Total		16

- a. JP_JUAL < HARGA
- b. JP_JUAL > HARGA
- c. HARGA = JP_JUAL